

# **Andreas Schneidt**

Mehrphasige phänomenologische sowie mehrskalige mikroskopische Modellierung von Phasenumwandlungen in einem Hybridumformprozess

Lehrstuhl für Technische Mechanik Prof. Dr.-Ing. Rolf Mahnken

P-2017-1

## Mehrphasige phänomenologische sowie mehrskalige mikroskopische Modellierung von Phasenumwandlungen in einem Hybridumformprozess

# zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Maschinenbau der Universität Paderborn

### genehmigte DISSERTATION

von

Andreas Schneidt, M.Sc. geboren am 08.03.78 in Karaganda, Kasachstan

Tag der Kolloquiums: 25. Mai 2016

Referenten:Prof. Dr.-Ing. habil. Rolf MahnkenKorreferent:Univ.-Prof. Dipl.-Ing. Dr.mont. Thomas AntretterKorreferent:Prof. Dr.-Ing. habil. Thomas Böhlke

Schriften des Lehrstuhls für Technische Mechanik herausgegeben von Prof. Dr.-Ing. Rolf Mahnken, M.Sc.

P-2017-1

# Andreas Schneidt

Mehrphasige phänomenologische sowie mehrskalige mikroskopische Modellierung von Phasenumwandlungen in einem Hybridumformprozess

D 466 (Diss. Universität Paderborn)

Shaker Verlag Aachen 2017

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Paderborn, Univ., Diss., 2016

Herausgeber: Prof. Dr.-Ing. Rolf Mahnken, M.Sc. Lehrstuhl für Technische Mechanik Warburger Straße 100 33098 Paderborn Tel.: +(49) 5251 602283

Copyright Shaker Verlag 2017 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-5671-6 ISSN 1867-1675

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

#### Abstract

The main objective of this thesis is the numerical simulation of hybrid-forming processes in steel production with particular focus on phase transformation. In order to display the specific processes two methods of material modeling, a macroscopic-phenomenological and micromechanical multiscale approach are formulated. The thermodynamically consistent phenomenological multiphase model combines a variety of features such as time- and temperature-dependent phase transformation, austenitisation, transformation plasticity, volume change, temperature- and microstucture-dependent elastoplasticity and viscoplasticity. The FEM simulation of the hybrid-forming process is based on numerical implementation and exhibits good agreement with the structure distribution in the real shaft. Furthermore, it illustrates the possibilities for prediction of the phase distribution by varying the process parameters. A physically motivated, thermodynamic-consistent multiscale model for N-grains and n-bainite variants is developed in the second step, which combines the elasto-viscoplastic behavior with a phase transformation in a polycrystalline structure. This model is capable of capturing both TRIP effects, the contribution due to load-based orientation of bainite-variants ("Magee effect") and plastic accommodation of the new phase ("Greenwood-Johnson effect"). Finally, these phenomena are evaluated quantitatively for different loads.

#### Zusammenfassung

Die zentrale Zielsetzung der hier vorliegenden Dissertation ist die numerische Simulation von Hybridumformungsprozessen unter besonderer Berücksichtigung der Phasenumwandlung. Zur Abbildung der spezifischen Vorgänge in diesem Prozess werden zwei Modellierungsstrategien, ein makroskopisch-phänomenologischer und ein mikromechanischer Mehrskalenansatz verfolgt. Das entwickelte thermodynamisch konsistente, phänomenologische Mehrphasenmodell vereint in sich vielfältige Eigenschaften wie zeit- und temperaturabhängige Phasenumwandlung, Austenitisierung, Umwandlungsplastizität, Volumenveränderung, temperatur- und mikrostukturabhängige Elasto- bzw. Viskoplastizität. Die auf der numerischen Implementierung basierende FEM-Simulation des Hybridumformprozesses zeigt eine sehr gute Übereinstimmung mit der Gefügeverteilung in der realen Welle und veranschaulicht die Möglichkeiten der Vorhersagbarkeit der Phasenverteilung durch Variation der Prozessparameter.

Ferner wird ein physikalisch motiviertes und thermodynamisch konsistentes Mehrskalenmodell für N-Körner und n-Bainitvarianten entwickelt, welches das elasto-viskoplastische Verhalten mit der Phasenumwandlung in einer polykristallinen Struktur kombiniert. Das implementierte Mehrskalenmodell bildet die Volumenänderung infolge der Phasenumwandlung, die Umwandlungsplastizität, die Rückverformung der umwandlungsplastischen Verzerrung sowie den Magee- und den Greenwood-Johnson-Effekt ab. Diese Phänomene werden für verschiedene Belastungen quantitativ evaluiert.

### Liste der Veröffentlichungen

MAHNKEN, R., SCHNEIDT, A., ANTRETTER, T., EHLENBRÖKER, U., WOLFF, M.: Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels. International Journal of Solids and Structures, **54** (2015), S. 156–171

MAHNKEN, R., WOLFF, M., SCHNEIDT, A., BÖHM, M.: Multi-phase transformations at large strains Thermodynamic framework and simulation. International Journal of Plasticity, **39** (2012), S. 1–26

MAHNKEN, R., SCHNEIDT, A., TSCHUMAK, S., MAIER, H.: On the simulation of austenite to bainite phase transformation. Computational Materials Science, **50** (2011), Nr. 6, S. 1823–1829

PARVIZIAN, F., SCHNEIDT, A., SVENDSEN, B., MAHNKEN, R.: Thermo-mechanically coupled modeling and simulation of hot metal-forming processes using adaptive remeshing method. GAMM-Mitteilungen, **33** (2010), Nr. 1, S. 95–115

MAHNKEN, R., SCHNEIDT, A., ANTRETTER, T.: Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. International Journal of Plasticity, **25** (2009), Nr. 2, S. 183–204

MAHNKEN, R., SCHNEIDT, A.: Simulation of a hybrid-forming process considering phase transformations in the workpiece. Steinhoff, K.; Maier, H.J.; Biermann, D. (Eds.): Functionally graded materials in industrial mass production. (2009), Verlag Wissenschaftliche Skripten, S. 175–184

SCHNEIDT, A., MAHNKEN, R.: Macromodelling of Transformation Induced Plasticity combined with Viscoplasticity for Low-Alloy Steels. Steel Research International, **79** (2008), Nr. 2, S. 116

SCHNEIDT, A., MAHNKEN, R.: Modeling of bainitic phase transformation. PAMM 10 (2010), Nr. 1, S. 323–324

MAHNKEN, R., SCHNEIDT, A.: A thermodynamic framework and numerical aspects for transformationinduced plasticity at large strains. Archive of Applied Mechanics, **80** (2010), Nr. 3, S. 229–253

MAHNKEN, R., SAUERLAND, K.-H., SCHNEIDT, A., GOCKEL, F.-B.: Deformation and Damage Analysis of a Hybrid-Forming Tool under Thermal Shock Conditions. PAMM 8 (2008), Nr. 1, S. 10237– 10238

SCHNEIDT, A., MAHNKEN, R.: Modellierung der Umwandlungsplastizität und Viskoplastizität niedrig legierter Stähle. PAMM 8 (2008), Nr. 1, S. 10461–10462

MAHNKEN, R., SCHNEIDT, A., ANTRETTER, T.: Macro Modeling and Homogenization for Iden-

tification of Material Parameters to Simulate Phase Transformations. Proc. 9th Int. Conf. on Computational Structures Technology, Civil-Comp Press (2008), S. 1–13

SAUERLAND, K., MAHNKEN, R., SCHNEIDT, A.: Influences of a hybrid-forming process on the forming tool and the work piece under thermal shock conditions. Proceedings of the 1st International Conference on Process Machine Interactions, 2008

SCHNEIDT, A., MAHNKEN, R.: Experimentelle Untersuchungen zum Thermoschock beim Hybridumformprozess. PAMM 7 (2007), Nr. 1, S. 4030013–4030014

# Inhaltsverzeichnis

| 1 | Einl | inleitung                      |                                                          |      |  |  |  |
|---|------|--------------------------------|----------------------------------------------------------|------|--|--|--|
|   | 1.1  | Fertig                         | ung im Rahmen eines Hybridumformprozesses                | 1    |  |  |  |
|   | 1.2  | Stand                          | der Forschung                                            | 3    |  |  |  |
|   | 1.3  | Ziele o                        | ler Arbeit                                               | 5    |  |  |  |
|   | 1.4  | Aufba                          | u der Arbeit                                             | 6    |  |  |  |
|   |      |                                |                                                          |      |  |  |  |
| 2 | Gru  | ndlagen der Phasenumwandlungen |                                                          |      |  |  |  |
|   | 2.1  | Theore                         | etische Grundlagen                                       | 7    |  |  |  |
|   |      | 2.1.1                          | Austenit                                                 | 10   |  |  |  |
|   |      | 2.1.2                          | Martensit                                                | 11   |  |  |  |
|   |      | 2.1.3                          | Bainit                                                   | 13   |  |  |  |
|   |      | 2.1.4                          | Das kristallographische Modell                           | 15   |  |  |  |
|   |      | 2.1.5                          | Umwandlungsplastizität                                   | 17   |  |  |  |
|   | 2.2  | Experi                         | imente zu Phasenumwandlungen                             | 18   |  |  |  |
|   |      | 2.2.1                          | Versuchsstand                                            | 18   |  |  |  |
|   |      | 2.2.2                          | Experimentelle Ergebnisse der martensitischen Umwandlung | 20   |  |  |  |
|   |      | 2.2.3                          | Experimentelle Ergebnisse der bainitischen Umwandlung    | 21   |  |  |  |
|   |      | 2.2.4                          | Mechanische Eigenschaften des unterkühlten Austenits     | 23   |  |  |  |
| 3 | Phä  | nomeno                         | ologische Modellierung für kleine Deformationen          | 25   |  |  |  |
|   | 3.1  | Konsti                         | itutive Gleichungen                                      | 25   |  |  |  |
|   |      | 3.1.1                          | Kinematik                                                | 25   |  |  |  |
|   |      | 3.1.2                          | Massen- und Volumenanteile der Phasen                    | 26   |  |  |  |
|   |      | 3.1.3                          | Thermodynamisch konsistente Formulierung                 | 28   |  |  |  |
|   | 3.2  | Ein Pr                         | ototypmodell für den Hybridumformprozess                 | 30   |  |  |  |
|   |      | 3.2.1                          | Freie Helmholtz-Energie                                  | 30   |  |  |  |
|   |      | 3.2.2                          | Thermodynamische Kräfte                                  | 32   |  |  |  |
|   |      | 3.2.3                          | Verzerrungstensoren                                      | 33   |  |  |  |
|   |      | 3.2.4                          | Evolutionsgleichungen der Phasenumwandlungen             | 38   |  |  |  |
|   |      | 3.2.5                          | Thermodynamische Konsistenz                              | 41   |  |  |  |
|   | 3.3  | Nume                           | rische Implementierung                                   | 42   |  |  |  |
|   |      | 3.3.1                          | Implizites Integrationsschema                            | 42   |  |  |  |
|   |      | 3.3.2                          | Lokale Iteration                                         | 43   |  |  |  |
|   |      | 3.3.3                          | Tangentenmodul                                           | 44   |  |  |  |
|   | 3.4  | Param                          | eteridentifikation                                       | 45   |  |  |  |
|   |      | 2 4 1                          | Disconversion diverses                                   | 16   |  |  |  |
|   |      | 3.4.J                          | Phasenumwandiungen                                       | - 40 |  |  |  |
|   |      | 3.4.1                          | Elasto-Viskoplastizität des unterkühlten Austenits       | 40   |  |  |  |

Inhaltsverzeichnis

| 4    | Phä                    | nomeno   | ologische Modellierung für große Deformationen                        | 51  |  |  |  |
|------|------------------------|----------|-----------------------------------------------------------------------|-----|--|--|--|
|      | 4.1                    | Therm    | nodynamisch konsistente Formulierung                                  | 51  |  |  |  |
|      |                        | 4.1.1    | Kinematik                                                             | 51  |  |  |  |
|      |                        | 4.1.2    | Volumenänderung infolge von Druck, Temperatur und Phasenanteilen      | 54  |  |  |  |
|      |                        | 4.1.3    | Thermodynamisches Konzept                                             | 56  |  |  |  |
|      |                        | 4.1.4    | Wärmeleitungsgleichung                                                | 57  |  |  |  |
|      | 4.2                    | Protot   | ypmodell für den Hybridumformprozess                                  | 58  |  |  |  |
|      |                        | 4.2.1    | Freie Helmholtz-Energie                                               | 58  |  |  |  |
|      |                        | 4.2.2    | Thermodynamische Kräfte                                               | 59  |  |  |  |
|      |                        | 4.2.3    | Evolutionsgleichungen der Viskoplastizität und umwandlungsinduzierter |     |  |  |  |
|      |                        |          | Plastizität                                                           | 59  |  |  |  |
|      |                        | 4.2.4    | Thermodynamische Konsistenz                                           | 61  |  |  |  |
|      |                        | 4.2.5    | Spezielle Form der Wärmeleitungsgleichung                             | 61  |  |  |  |
|      |                        | 4.2.6    | Zusammenfassung der konstitutiven Gleichungen                         | 62  |  |  |  |
|      | 4.3                    | Nume     | rische Implementierung                                                | 63  |  |  |  |
|      |                        | 4.3.1    | Integrationsschema                                                    | 65  |  |  |  |
|      |                        | 4.3.2    | Spektralzerlegung                                                     | 67  |  |  |  |
|      |                        | 4.3.3    | Lokale Iteration                                                      | 67  |  |  |  |
|      |                        | 4.3.4    | Spektralzerlegung des Tangentenmoduls                                 | 68  |  |  |  |
|      | 4.4                    | Simul    | ation des Hybridumformprozesses                                       | 69  |  |  |  |
|      |                        | 4.4.1    | Prozessbeschreibung                                                   | 69  |  |  |  |
|      |                        | 4.4.2    | Simulation des Standardprozesses                                      | 70  |  |  |  |
|      |                        | 4.4.3    | Variation der Ausgangstemperatur                                      | 73  |  |  |  |
|      |                        | 4.4.4    | Variation der Prozessführung                                          | 75  |  |  |  |
| 5    | Mehrskalenmodellierung |          |                                                                       |     |  |  |  |
| •    | 5 1                    | Konsti   | itutive Gleichungen - Verallgemeinertes Modell                        | 79  |  |  |  |
|      | 5.1                    | 511      | Thermodynamische Formulierung der Makroebene                          | 79  |  |  |  |
|      |                        | 512      | Meso-Mikro-Ebene                                                      | 80  |  |  |  |
|      |                        | 513      | Makro-Meso-Beziehung                                                  | 81  |  |  |  |
|      |                        | 5.1.4    | Clausius-Duhem-Ungleichung                                            | 82  |  |  |  |
|      | 52                     | Konsti   | itutive Gleichungen - Prototypmodell                                  | 83  |  |  |  |
|      | 0.2                    | 5.2.1    | Freie Helmoltz-Energie                                                | 83  |  |  |  |
|      |                        | 5.2.2    | Thermodynamische Kräfte                                               | 85  |  |  |  |
|      |                        | 523      | Evolutionsgleichungen der Phasentransformationen                      | 86  |  |  |  |
|      |                        | 524      | Evolutionsgleichungen der Viskonlastizität                            | 87  |  |  |  |
|      |                        | 5.2.5    | Thermodynamische Konsistenz                                           | 88  |  |  |  |
|      | 53                     | Nume     | rische Implementierung                                                | 90  |  |  |  |
|      | 0.0                    | 531      | Formulierung der diskreten Zustandsgleichungen                        | 90  |  |  |  |
|      |                        | 532      | Projizierte Newton-Iteration Algorithmus I                            | 92  |  |  |  |
|      |                        | 533      | Viskonlastizität Algorithmus II                                       | 94  |  |  |  |
|      |                        | 534      | Der Tangentenmodul                                                    | 96  |  |  |  |
|      | 54                     | Nume     | rische Beisniele                                                      | 96  |  |  |  |
|      | 0.11                   | 541      | Variantenselektion in einem Finzelkorn                                | 98  |  |  |  |
|      |                        | 5.4.2    | Modellierung eines Polykristalls (RVE).                               | 100 |  |  |  |
|      |                        | 2        |                                                                       | 200 |  |  |  |
| 6    | Zus                    | ammen    | fassung und Ausblick                                                  | 105 |  |  |  |
| Lite | eratu                  | rverzeio | chnis                                                                 | 109 |  |  |  |

4