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Abstract

Model-driven development (MDD) is an enabler for the automatic generation of program-
ming language files for products or for tests from explicitly defined models. MDD projects
manage a large magnitude of artifacts (files, etc.) with various relationships.

A large class of artifact relations comes from artifacts using others, e.g., via importing
types and signatures. This form of usage strongly differs from generation dependencies,
where one artifact is generated, compiled, and transformed from or to other artifacts.

An MDD project usually entails a number of potentially dependent process steps, where
a chain of artifact generations, compilations, and packagings arises. During these steps a
multitude of artifacts are created, read or even executed. Those artifacts are thus related to
each other in various ways.

The number and complexity of occurring dependencies and other relationships between
development artifacts can lead to several problems, such as poor maintainability and long
development times of both, MDD tools and the product, in an MDD process. To tackle
these problems, it is important to understand which artifacts are involved and how these
artifacts are related to each other in MDD projects.

In this report, we (1) develop an abstract and rather general artifact model and (2) apply
the artifact model by examining in detail the kinds of artifacts and related concepts relevant
for a form of wide-spread projects, namely Java projects. We also dive into the core of
generative projects, by looking at the generator as a set of artifacts executed at design time.
Artifacts are regarded as storable and explicitly named elements of MDD projects, such as
model files, directories, libraries, and source code files. Thus, artifacts are the physical
manifestation of all information in an MDD project.

For a precise definition of all relevant concepts, we introduce the Artifact Model (AM),
which allows the precise, model-based specification of involved kinds of artifacts, corre-
sponding concepts, and their relations. The AM can also be considered as a specific form
of meta-model for models representing the concrete elements and relations between these
in MDD projects.
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