‘R\Nﬂ'l

Timo Greifenberg
Steffen Hillemacher
Bernhard Rumpe

Towards a Sustainable
Artifact Model

Artifacts in Generator-Based
Model-Driven Projects

Aachener Informatik-Berichte,
Software Engineering Band 30

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Aachener Informatik-Berichte, Software Engineering

herausgegebenvon
Prof. Dr. rer. nat. Bernhard Rumpe
Software Engineering
RWTH Aachen University

Band 30

Timo Greifenberg
Steffen Hillemacher
Bernhard Rumpe
RWTH Aachen University

Towards a Sustainable Artifact Model

Artifacts in Generator-Based Model-Driven Projects

Shaker Verlag
Aachen 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Copyright Shaker Verlag 2017

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printedin Germany.

ISBN 978-3-8440-5678-5

ISSN 1869-9170

Shaker Verlag GmbH « P.O.BOX 101818 D-52018 Aachen

Phone: 0049/2407/9596-0 « Telefax: 0049/2407/9596-9
Internet: www.shaker.de ¢ e-mail: info@shaker.de

Abstract

Model-driven development (MDD) is an enabler for the automatic generation of program-
ming language files for products or for tests from explicitly defined models. MDD projects
manage a large magnitude of artifacts (files, etc.) with various relationships.

A large class of artifact relations comes from artifacts using others, e.g., via importing
types and signatures. This form of usage strongly differs from generation dependencies,
where one artifact is generated, compiled, and transformed from or to other artifacts.

An MDD project usually entails a number of potentially dependent process steps, where
a chain of artifact generations, compilations, and packagings arises. During these steps a
multitude of artifacts are created, read or even executed. Those artifacts are thus related to
each other in various ways.

The number and complexity of occurring dependencies and other relationships between
development artifacts can lead to several problems, such as poor maintainability and long
development times of both, MDD tools and the product, in an MDD process. To tackle
these problems, it is important to understand which artifacts are involved and how these
artifacts are related to each other in MDD projects.

In this report, we (1) develop an abstract and rather general artifact model and (2) apply
the artifact model by examining in detail the kinds of artifacts and related concepts relevant
for a form of wide-spread projects, namely Java projects. We also dive into the core of
generative projects, by looking at the generator as a set of artifacts executed at design time.
Artifacts are regarded as storable and explicitly named elements of MDD projects, such as
model files, directories, libraries, and source code files. Thus, artifacts are the physical
manifestation of all information in an MDD project.

For a precise definition of all relevant concepts, we introduce the Artifact Model (AM),
which allows the precise, model-based specification of involved kinds of artifacts, corre-
sponding concepts, and their relations. The AM can also be considered as a specific form
of meta-model for models representing the concrete elements and relations between these
in MDD projects.

Contents

1. Introduction

4.1. Languages

1.1. How to Read the CD4A and OCL Specification
1.2. Contentsof the Report
1.3. Acknowledgements
2. Essence of Artifact Models
2.1. Artifacts and Artifact Containers
2.1.1. Artifacts.
2.1.2. Relations between Artifacts
2.1.3. Artifact Containers
2.1.4. Directorieso
2.1.5. Archives
2.2. Systemsand Tools
2200 Systems
222, Modules
2.3. How to Use the ArtifactModel
3. Extending the Artifact Model to Java
3.1. JavaSourceandClassFiles
3.1.1. JavaArtifactso Lo
3.1.2. JavaSourceFiles
3.1.3. JavaClassFiles
3.1.4. JavaArchives
3.2. Relation Between Java Artifacts and Types
3.2.1. Packages
322, JavaTypes
3.3. Detailed Examination of Java Artifacts and Types
3.3.1. Case 1: Java Compiles All Files It ReliesOn
3.3.2. Case 2: Where Java Looks for Types
3.3.3. Case 3: Where Java Looks for Inner Types
3.3.4. Case 4: How Java Handles Archives
3350 Summary ... L
4. Modelling Languages and Their Definitions

17
17
18
18
19
20
20
21
21
25
26
27
29
30
31

33
34

iii

4.2. Grammar-Based Definitions oL,
4.3. ModelFiles Conform to Languages

Class Diagrams in the Artifact Model

Generators and their Artifacts in MontiCore

6.1. Static Artifact Structures L.
6.1.1. Templates L
6.1.2. Generators i

6.2. Dynamic Monitoring of Tool Executions
6.2.1. Representing Actions and Events
6.2.2. Actions in a Generation Process
6.2.3. Tools Read and Create Artifacts
6.2.4. Template and Java Files Contribute to Artifacts

Artifacts in Maven-managed Java Projects

7.1. MavenModuleso oo Lo
7.2. Relations between Maven Modules
7.3. Target Directories and Target Artifacts
74. POMand VCSRootDir
7.5. MavenPhases o o L
7.6. ExecutingMaven o o

Applications of the Artifact Model

8.1. Analyses based on Tool Monitoring
8.2. Understanding the Module/Artifact Architecture
8.3. Generated Systems
8.4. Template Relations Induced by Generated Artifacts
8.5. Incremental Toolchain Execution
8.6. UnusedImports e

Conclusion
9.1. Considerations on the ArtifactModel
9.2. Multi-level considerations on CD4A andOCL

Bibliography

A.

Merged Artifact Model

Entire Application Model

Index

iv

37

M
41
42
44
45
45
47
49
50

53
54
55
56
57
59
60

65
66
66
69
70
71
73

75
75
76

79

91

109

113

