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Summary

This thesis presents work in the area of electromagnetic modeling of through silicon vias
(TSVs). TSVs are vertical interconnects in silicon wafers and an important component for
the three-dimensional integration that is required for the further increase in performance
of integrated circuits and integrated systems.

Major parts of this thesis discuss the adaptation of the physics-based modeling approach
from the original application for the modeling of vias in printed circuit boards to the ap-
plication in interposers with a suflicient amount of metallizations of the substrate. Adap-
tations are necessary because the substrate can show significant conductivity and has to
be regarded as a layered medium. The latter is due to the required dielectric insulators
and due to oxide layers that results from the TSV fabrication process. Further layers need
to be included in the analysis if the depletion layer effects due to the metal-oxide-insulator

interface are to be considered.

The adaptations consist in the adaptation of a far field model for which an effective wave
number of radial wave propagation in the layered medium is computed. They consist also
in the computation of a near field model for the mode conversion at the junction between
coaxial ports at the top and bottom of the interposer and the inner radial ports that
connect to the far field model. In conjunction, the adaptations lead to an efficient and

exact modeling over a large parameter range.

The efficient modeling is further applied to large scale crosstalk analysis. A measure for
the effective total crosstalk of uncorrelated signal alongs the channels for single-ended
links is defined and analyzed for several parameter variations. This measure allows for the
investigation of the influence of several important design parameters of silicon interposers
on the crosstalk.

Several test structures with TSVs have been fabricated and measured. Using full-wave
simulations, the measurement results have been validated.
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