Verfahrenstechnik

Christian Bläker

Experimentelle und theoretische Untersuchungen zur Kombination von Adsorptionsvolumetrie und -kalorimetrie

Experimentelle und theoretische Untersuchungen zur Kombination von Adsorptionsvolumetrie und -kalorimetrie

Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau und Verfahrenstechnik der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades

eines

Doktors der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

von

Christian Bläker aus Bocholt

Gutachter:

Prof. Dr.-Ing. Dieter Bathen Prof. Dr. rer. nat. Dirk Enke

Tag der mündlichen Prüfung: 30.04.2018

Berichte aus der Verfahrenstechnik

Christian Bläker

Experimentelle und theoretische Untersuchungen zur Kombination von Adsorptionsvolumetrie und -kalorimetrie

> Shaker Verlag Aachen 2018

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Duisburg-Essen, Univ., Diss., 2018

Copyright Shaker Verlag 2018 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6060-7 ISSN 0945-1021

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

I. Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Thermische Verfahrenstechnik der Universität Duisburg-Essen.

Ein besonderer Dank gilt dem Lehrstuhlinhaber, Herrn Prof. Dr. Dieter Bathen, für das entgegengebrachte Vertrauen sowie die kontinuierliche Unterstützung und Förderung in den letzten vier Jahren. Vor allem der Austausch in den monatlichen Promotionsgesprächen war sehr hilfreich für das Gelingen dieser Forschungsarbeit.

Den akademischen Oberräten, Herrn Dr. Christoph Pasel und Herrn PD Dr. Michael Luckas, möchte ich für die herausragende fachliche Unterstützung danken. Insbesondere Christoph Pasel hat durch die vielen tiefgehenden Diskussionen, Anregungen und Hilfestellungen erheblich zum Erfolg dieser Arbeit beigetragen.

Den technischen Mitarbeitern des Lehrstuhls, Anja Elsner und Guido Schraven, danke ich herzlich für die wertvollen Hilfestellungen im Labor sowie die Unterstützung bei der Einarbeitung in das neue Themengebiet. Vor allem die unzähligen Ideen und Anregungen von Guido Schraven haben mir bei der Entwicklung des Messgerätes sehr geholfen. Unserer Sekretärin Frau Iris Di Nisio möchte ich für die organisatorische Unterstützung danken.

Bei den Arbeitskollegen Martin Helmich, Bernd Burrichter, Roman Ortmann, Julian Treese, Christoph Cox, Volkmar Chowanietz, Florian Birkmann, Dirk Bucher, Frederik Berg, Jan Birkmann, Jonas Moritz Ambrosy, Johanna Muthmann und Sonja Schmittmann bedanke ich mich für die vielen fachlichen Diskussionen und das sehr gute kollegiale Umfeld in der Arbeitsgruppe.

Meinen Bachelor- und Masterarbeitern Janis Overhoff, Daniel Sowa, Amit Khot und Fabian Plaschna möchte ich für den hervorragenden Einsatz im Labor und die wertvollen fachlichen Beiträge zu dieser Arbeit danken.

Meiner Familie danke ich für die großartige Unterstützung in jeglicher Hinsicht während meiner gesamten Ausbildungszeit.

Der größte Dank gilt meiner Freundin Carina für die Geduld und den Rückhalt insbesondere in den letzten Monaten.

II. Inhaltsverzeichnis

I.	Dar	nksa	gung	
II.	Inha	altsv	erzeichnis	IV
III.	For	melv	erzeichnis	VI
IV.	Abb	oildur	ngsverzeichnis	X
V.	Tab	eller	verzeichnis	XIV
1	Ein	eitur	ng und Motivation	1
1	.1	Ads	orptionsenthalpie	2
1	.2	Sta	nd des Wissens zur Adsorptionsenthalpie	3
	1.2	.1	Methoden zur Bestimmung der Adsorptionsenthalpie	3
	1.2	.2	Daten zur Adsorptionsenthalpie	8
1	.3	Auf	gabenstellung	
2	The	oret	scher Hintergrund	11
2	2.1	Ads	sorption	11
	2.1	.1	Adsorptionsgleichgewicht	13
	2.1	.2	Wechselwirkungen bei der Adsorption	
2	2.2	Vol	umetrie	
2	2.3	Kal	orimetrie	
3	App	oarat	ive Entwicklung	31
З	3.1	Ser	nsorgaskalorimeter: Zimmermann und Keller (Siegen)	31
3	8.2	Zwi	llingsanordnung mit externer Kalorimeterzelle	
З	8.3	Zwi	llingsanordnung mit miniaturisierter Kalorimeterzelle	35
4	Exp	erim	entelles	
4	l.1	Sto	ffeigenschaften	
	4.1	.1	Adsorbentien	
	4.1	.2	Adsorptive	47
4	.2	Ver	suchsdurchführung	51
	4.2	.1	Vorbereitung	
	4.2	.2	Versuchsablauf	55

4	.3	Aus	wertung	57
	4.3.	1	Bestimmung der Gleichgewichtsbeladungen	57
	4.3.	2	Bestimmung der beladungsabhängigen Adsorptionsenthalpie	58
4	.4	Kali	brierung	59
	4.4.	1	Aufbau und Messprinzip	59
	4.4.	2	Parameterstudie	62
	4.4.	3	Abschätzung von Wärmeverlusten	65
4	.5	Feh	lerrechnung	74
4	.6	Veri	ifizierung des Messprinzips	79
4	.7	Gre	nzen der Messmethode	81
5	Exp	erim	entelle Ergebnisse und Diskussion	83
5	.1	Glei	ichgewichtsdaten	83
	5.1.	1	Adsorption der homologen Reihe der n-Alkane	83
	5.1.	2	Adsorption der homologen Reihe der 1-Alkene	91
	5.1.	3	Adsorption von C5-Kohlenwasserstoffen	96
	5.1.	4	Adsorption von C6-Kohlenwasserstoffen	102
	5.1.	5	Zusammenfassung der wichtigsten Erkenntnisse	107
5	.2	Abs	chätzung energetischer Beiträge von Wechselwirkungen	
	5.2.	1	Eigenschaften der eingesetzten Faujasit-Zeolithe	
	5.2.	2	Gleichgewichtsdaten	
	5.2.	3	Annahmen und Vereinfachungen	112
	5.2.	4	Methodik zur Abschätzung der energetischen Beiträge	114
	5.2.	5	Energetische Beiträge zur Adsorptionsenthalpie	115
6	Zus	amm	nenfassung und Ausblick	122
6	.1	Zus	ammenfassung	122
6	.2	Kriti	ische Diskussion der Arbeit	125
6	.3	Aus	blick	
VI.	Lite	ratur	verzeichnis	XVI
VII.	VII. AnhangXXII			

III. Formelverzeichnis

Lateinische Buchstaben

Zeichen	Einheit	Bezeichnung
А	J/m ⁶	Konstante
А	m²/s	Temperaturleitfähigkeit
Ai	m²	Charakteristische Fläche
A _{Ads} (n)	Pa s	Fläche unterhalb der Druckdifferenzkurve des n-ten
		Adsorptionsschrittes
A _{Kal}	Pa s	Fläche unterhalb der Druckdifferenzkurve bei der Ka-
		librierung
В	J/m ¹²	Konstante
B´	1/Pa	2. Virialkoeffizient
b _{HDB}	1/kPa	Hill-de-Boer-Koeffizient
bL	1/kPa	Langmuir-Koeffizient
С	_	Hill-de-Boer-Koeffizient
Ci	kJ/(kg K)	Spezifische Wärmekapazität
C _{v,i}	kJ/(kg K)	Wärmekapazität
D	nm	Durchmesser
d _{kin}	nm	Kinetischer Durchmesser
dU_{i}	J	Änderung der inneren Energie
E _{Ca}	J	Durchschnittlicher energetischer Beitrag eines Calci-
		um-Kations
Eel	J	Elektrische Energie
E _{Na}	J	Durchschnittlicher energetischer Beitrag eines Natri-
		um-Kations
g	m/s ²	Erdbeschleunigung
Gr	_	Grashof-Zahl
Н	m	Höhe
Kf	J/(Pa s)	Kalibrierfaktor
k _{Fr}	mol/(kg kPa ⁿ)	Freundlich-Koeffizient
kн	mol/(kg kPa)	Henry-Konstante
ki	W/(m² K)	Wärmedurchgangskoeffizient
kʻ _i	W/(m² K)	Formaler Wärmedurchgangskoeffizient bis zur
		Wandmitte
L	m	Charakteristische Länge

m _{Ads}	g	Masse an Adsorbens
m _{EZ}	g	Masse einer Einheitszelle
n	-	Freundlich-Exponent
N _A	1/mol	Avogadro-Konstante
n _{Ads} (n)	mol/kg	Adsorbierte Stoffmenge nach dem n-ten Adsorptions-
		schritt
n* _{Ads} (n)	Moleküle/Einheitszelle	Adsorbierte Stoffmenge nach dem n-ten Adsorptions-
		schritt
n _{D,1} (n)	mol	Stoffmenge in der Dosierstrecke vor dem Druckaus-
		gleich
n _{D,2} (n)	mol	Stoffmenge in der Dosierstrecke nach dem Druckaus-
		gleich
N _{KS}	-	Anzahl der Kettensegmente
N _{Na}	-	Anzahl Natrium-Kationen auf den Kation-Plätzen II
		und III
Nu	-	Nußelt-Zahl
р	kPa	Druck
p ₀	kPa	Sättigungsdampfdruck
p _{A,GI}	kPa	Gleichgewichts Adsorptiv-Partialdruck
p _{D,1} (n)	kPa	Druck in der Dosierstrecke vor dem Druckausgleich
p _{D,2} (n)	kPa	Druck in der Dosierstrecke nach dem Druckausgleich
p _{PG,GI} (n)	kPa	Druck im Probengefäß beim Adsorptionsgleichgewicht
Pr	-	Prandtl-Zahl
Q	As	Elektrische Ladung
Qi	W	Wärmestrom
r ₀	m	Gleichgewichtsabstand
ri	m	Abstand
R	J/(mol K)	Universelle Gaskonstante
Ra	-	Rayleigh-Zahl
SWand	m	Dicke der Gefäßwand
Т	К	Temperatur
T _{GI}	К	Gleichgewichts Temperatur
Ui	J	Innere Energie
Ui	-	Messunsicherheit
VD	cm ³ [STP]	Volumen der Dosierstrecke
Vm	m³/mol	Molares Volumen
V _{PG}	cm ³ [STP]	Volumen des Probengefäßes

w	J/mol	Adsorpt-Adsorpt Wechselwirkungsenergie
WBinder	_	Binderanteil bei Zeolithen
X _{GI}	mol/kg	Gleichgewichts Beladung
X _{BG}	Pa	Bestimmungsgrenze bei der Druckdifferenzmessung
Xi	-	Eingangsgröße mit bekannter Unsicherheit
X _{Mon}	mol/kg	Monomolekulare Beladung
Y	_	Berechnungsvorschrift zur Bestimmung des Messer-
		gebnisses
Zi	_	Koordinationszahl
Z _x	kJ/(mol cm ³)	Verhältnis aus dem energetischen Beitrag und dem
		Produkt aus der Anzahl der Bindungsstellen und der
		Polarisierbarkeit

Griechische Buchstaben / Formelzeichen

Zeichen	Einheit	Bezeichnung
α	CM ³	Polarisierbarkeit
α	W/(m ² K)	Wärmeübergangskoeffizienten
β	1/K	Wärmeausdehnungskoeffizient
Δh_{Ads}	kJ/mol	Adsorptionsenthalpie
$\Delta\Delta h_{\text{Ads}}$	kJ/mol	Differenz der Adsorptionsenthalpie
Δh_{B}	kJ/mol	Bindungsenthalpie
Δh_{Disp}	kJ/mol	Energetischer Beitrag der Dispersionswechselwirkungen
Δh_{Ind}	kJ/mol	Energetischer Beitrag der Induktionswechselwirkungen
$\Delta h_{\text{lateral}}$	kJ/mol	Energetischer Beitrag der lateralen Wechselwirkungen
$\Delta h_{Quad-Kat}$	kJ/mol	Energetischer Beitrag der Quadrupol-Kation-
		Wechselwirkungen
Δh_V	kJ/mol	Verdampfungsenthalpie
$\Delta h_{\rm x}$	kJ/mol	Energetischer Beitrag der Wechselwirkungsart x
$\Delta n_{\text{Ads}}(n)$	mol/kg	Beladungsänderung des n-ten Schrittes
$\Delta n_D(n)$	mol/kg	Änderung der Stoffmenge in der Dosierstrecke im n-ten Schritt
ΔN_{Na}	-	Differenz der Natrium-Kationen
$\Delta n_{PG}(n)$	mol/kg	Änderung der Stoffmenge im Probengefäß im n-ten Schritt
Δpi	Pa	Druckdifferenz zwischen den Sensorgasvolumina
Δp_0	Pa	Ausgangswert der Druckdifferenz zwischen den Sensorgasvo-
		lumina
η_{Ads}	_	Sensitivitätsfaktor bei der Adsorption

η _{Kal}	-	Sensitivitätsfaktor bei der Kalibrierung
Θi	C m²	Quadrupolmoment
θ	-	Bedeckungsgrad
θί	-	Winkel zwischen elektrischem Feld und Dipolmoment
λ	W/(mK)	Wärmeleitfähigkeit
μ	Cm	Dipolmoment
v	m²/s	Kinematische Viskosität
φ	-	Winkel zwischen zwei Dipolmomenten

IV. Abbildungsverzeichnis

Abbildung 1: Begriffsdefinitionen in der Adsorptionstechnik [4]	11
Abbildung 2: Darstellungsweisen von Adsorptionsgleichgewichten [60]	13
Abbildung 3: Schematische Darstellung der Isothermen (links) und der	
beladungsabhängigen Adsorptionsenthalpie (rechts) ausgewählter	
Isothermen-Modelle	15
Abbildung 4: Einfluss von Mehrschichtadsorption und Kapillarkondensation sowie von	
Wechselwirkungen zwischen den Adsorpt-Molekülen auf die Form der	
Isotherme (links) sowie die beladungsabhängige Adsorptionsenthalpie	
(rechts) bei der Adsorption an homogenen Adsorbentien	16
Abbildung 5: Einfluss von anziehenden und abstoßenden Wechselwirkungen zwischen den	
Adsorpt-Molekülen auf die Form der Isotherme (links) sowie die	
beladungsabhängige Adsorptionsenthalpie (rechts) bei der Adsorption an	
heterogenen Adsorbentien	18
Abbildung 6: Schematische Darstellung der Form von s-, p- und d-Orbitalen	21
Abbildung 7: Überlappung der p-Orbitale bei σ -Bindungen (links) und π -Bindungen	
(rechts)	22
Abbildung 8: Multipole (n-Pole)	23
Abbildung 9: Anordnungsmöglichkeiten von Quadrupolen2	23
Abbildung 10: Wechselwirkungen zwischen permanenten Multipolen am Beispiel von zwei	
Dipolen	24
Abbildung 11: Schematische Darstellung von Dispersionswechselwirkungen2	24
Abbildung 12: Schematische Darstellung von induzierten Wechselwirkungen	25
Abbildung 13: Schematische Darstellung einer Kation-π-Wechselwirkung	25
Abbildung 14: Schematische Darstellung von π - π -Wechselwirkungen	26
Abbildung 15: Anordnungsmöglichkeiten von Benzol-Molekülen untereinander [73]2	26
Abbildung 16: Schematische Darstellung eines volumetrischen Messaufbaus (links) und	
eines zeitabhängigen Druckverlaufs während eines Adsorptionsschrittes	
(rechts)	29
Abbildung 17: Sensorgaskalorimeter nach Zimmermann und Keller [39, 50]	32
Abbildung 18: Probengefäß in Zwillingsanordnung mit externer Kalorimeterzelle (links) und	
der Versuchsaufbau mit Probengefäß in Zwillingsanordnung mit externer	
Kalorimeterzelle (rechts)	33
Abbildung 19: Einfluss externer Störgrößen auf den Druckdifferenzverlauf bei	
Adsorptionsmessungen	34

Abbildung 20:	Probengefäß in Zwillingsanordnung mit miniaturisierter Kalorimeterzelle	
	(links) sowie der Versuchsaufbau mit Probengefäß in Zwillingsanordnung	
	mit miniaturisierter Kalorimeterzelle (rechts)	36
Abbildung 21:	Sekundäre Bausteine von Zeolithen [84]	39
Abbildung 22:	Sodalith-Käfig oder β-Käfig [85]	39
Abbildung 23:	Faujasit Einheitszelle mit möglichen Kation-Plätzen4	11
Abbildung 24:	Porengrößenverteilung der verwendeten Faujasit Zeolithe4	13
Abbildung 25:	ZSM-5 (MFI)-Zeolith [010]-Ansicht entlang der gradlinigen Poren (links) und	
	[100]-Ansicht entlang der sinusoidalen Poren (rechts) nach [85]4	14
Abbildung 26:	Porengrößenverteilung des ZSM-5 (MFI) Zeolithen HiSiv 30004	15
Abbildung 27:	Porengrößenverteilung der Aktivkohle Norit R1 Extra4	17
Abbildung 28:	Eingabefenster für die Messparameter beim BELSORP-max5	54
Abbildung 29:	Volumetrische Messdaten (oben) und kalorimetrische Messdaten (unten)	
	am Beispiel der Adsorption von n-Butan an der Aktivkohle Norit R1 Extra	
	bei 25°C5	56
Abbildung 30:	Invers aufgetragene Isotherme (oben), zeitabhängiger Druckdifferenzverlauf	
	(Mitte) und beladungsabhängige Adsorptionsenthalpie (unten)5	59
Abbildung 31:	Schematische Darstellung des Versuchsaufbaus bei Kalibrierexperimenten6	30
Abbildung 32:	Mehrpunktkalibrierung mit unterschiedlichen elektrischen Leistungen6	51
Abbildung 33:	Peakfläche in Abhängigkeit der zugeführten Leistung6	32
Abbildung 34:	Kalibrierkurven mit dem Glasprobengefäß (25°C, CO ₂ , 100 kPa) bei einer	
	Heizzeit von 30 Sekunden, 60 Sekunden und 120 Sekunden6	33
Abbildung 35:	Kalibrierkurven mit dem Glasprobengefäß (CO ₂ , 100 kPa) bei einer	
	Temperatur von 25°C, 15°C und 5°C6	34
Abbildung 36:	Kalibrierkurven mit dem Glas- und dem Metallprobengefäß (CO2, 100 kPa)6	35
Abbildung 37:	Schematische Darstellung der Wärmeströme in der Messzelle während der	
	Kalibrierung6	36
Abbildung 38:	Summenkurven der modellierten Wärmeströme mit dem Glasprobengefäß7	71
Abbildung 39:	Sensitivitätsfaktoren für das Glasprobengefäß bei 25°C7	72
Abbildung 40:	Sensitivitätsfaktoren für das Glasprobengefäß und das Metallprobengefäß	
	bei 25°C7	72
Abbildung 41:	Vergleich der Sensitivitätsfaktoren von Kalibrierung und Adsorption7	74
Abbildung 42:	Statistischer Messfehler unter Verwendung der Gaußschen	
	Fehlerfortpflanzung am Beispiel der Adsorption von n-Butan am Zeolith	
	13X-APG bei 25°C	78

Abbildung 43:	Sorptionsisothermen (links) und beladungsabhängige Adsorptionsenthalpien	I
	(rechts) von fünf Wiederholungsmessungen von n-Butan am Zeolith	
	13X-APG bei 25°C	78
Abbildung 44:	Vergleich der beladungsabhängigen Adsorptionsenthalpien eigener	
	Messungen mit Literaturdaten am Beispiel von CO ₂ an 13X Zeolithen bei	
	25°C (oben) und n-Butan an 13X Zeolithen bei 25°C (unten)	80
Abbildung 45:	Druckverläufe im Probengefäß und Druckdifferenz zwischen den	
	Sensorgasvolumina bei schneller Kinetik (oben) und langsamer Kinetik	
	(unten)	81
Abbildung 46:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der n-Alkane Ethan, Propan, n-Butan,	
	n-Pentan und n-Hexan am Zeolith 13X-APG bei 25°C	84
Abbildung 47:	Ausschnitt aus Abbildung 46: Anfangsbereich der Adsorptionsisothermen	
	der n-Alkane Ethan, Propan, n-Butan, n-Pentan und n-Hexan am Zeolith	
	13X-APG bei 25°C	85
Abbildung 48:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der n-Alkane Ethan, Propan, n-Butan,	
	n-Pentan und n-Hexan am Zeolith HiSiv 3000 bei 25°C	87
Abbildung 49:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der n-Alkane Ethan, Propan, n-Butan,	
	n-Pentan und n-Hexan an der Aktivkohle Norit R1 Extra bei 25°C	89
Abbildung 50:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der 1-Alkene Ethen, Propen, 1-Buten,	
	1-Penten und 1-Hexen am Zeolith 13X-APG bei 25°C	92
Abbildung 51:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der 1-Alkene Ethen, Propen, 1-Buten,	
	1-Penten und 1-Hexen am Zeolith HiSiv 3000 bei 25°C	94
Abbildung 52:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) der 1-Alkene Ethen, Propen, 1-Buten,	
	1-Penten und 1-Hexen an der Aktivkohle Norit R1 Extra bei 25°C	95
Abbildung 53:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) von n-Pentan, 1-Penten, Neopentan,	
	Cyclopentan und Cyclopenten am Zeolith 13X-APG bei 25°C	97
Abbildung 54:	Adsorptionsisothermen (oben) und beladungsabhängige	
	Adsorptionsenthalpien (unten) von n-Pentan, 1-Penten, Cyclopentan und	
	Cyclopenten am Zeolith HiSiv 3000 bei 25°C	99

Abbildung 55:	Adsorptionsisothermen (oben) und beladungsabhängige
	Adsorptionsenthalpien (unten) von n-Pentan, 1-Penten, Neopentan,
	Cyclopentan und Cyclopenten an der Aktivkohle Norit R1 Extra bei 25°C101
Abbildung 56:	Adsorptionsisothermen (oben) und beladungsabhängige
	Adsorptionsenthalpien (unten) von n-Hexan, 1-Hexen, Cyclohexan,
	Cyclohexen und Benzol am Zeolith 13X-APG bei 25°C103
Abbildung 57:	Adsorptionsisothermen (oben) und beladungsabhängige
	Adsorptionsenthalpien (unten) von n-Hexan, 1-Hexen, Cyclohexan,
	Cyclohexen und Benzol am Zeolith HiSiv 3000 bei 25°C104
Abbildung 58:	Adsorptionsisothermen (oben) und beladungsabhängige
	Adsorptionsenthalpien (unten) von n-Hexan, 1-Hexen, Cyclohexan,
	Cyclohexen und Benzol an der Aktivkohle Norit R1 Extra bei 25°C106
Abbildung 59:	Beladungsabhängige Adsorptionsenthalpien von Propan, Propen,
	n-Pentan und 1-Penten an den Faujasit-Zeolithen NaMSX K (oben links),
	NaY K (oben rechts), Ca(60)MSX K (unten links) und Ca(75)MSX K (unten
	rechts) bei 25°C; zusätzlich ist die Anzahl an Kationen auf den Plätzen II
	und III (gestrichelte Linie) und die darin enthaltene Anzahl an
	Calcium-Kationen (gepunktete Linie) aufgetragen110
Abbildung 60:	Beladungsabhängige Adsorptionsenthalpien sowie energetische Beiträge
	der Wechselwirkungen von Propan (oben) und Propen (unten) an den
	Zeolithen NaMSX K (links) und NaY K (rechts)117
Abbildung 61:	Beladungsabhängige Adsorptionsenthalpien sowie energetische Beiträge
	der Wechselwirkungen von n-Pentan (oben) und 1-Penten (unten) an den
	Zeolithen NaMSX K (links) und NaY K (rechts)119
Abbildung 62:	Kalibrierkurven mit dem Glasprobengefäß (25°C, CO ₂ , 100 kPa) mit
	ursprünglicher und modifizierter HeizkurveXXII
Abbildung 63:	Kalibrierkurven mit dem Glasprobengefäß (25°C, CO2) bei einem
	Gasphasendruck von 100 kPa, 10 kPa und 1 kPaXXII
Abbildung 64:	Kalibrierkurven mit dem Glasprobengefäß bei 25° C mit CO ₂ und n-Butan .XXIII
Abbildung 65:	Summenkurven der modellierten Wärmeströme für einen Kalibrierschritt
	mit dem MetallprobengefäßXXIII
Abbildung 66:	Sorptionsisothermen von Propan, Propen, n-Pentan und 1-Penten an den
	Faujasit-Zeolithen NaMSX K (oben links), NaY K (oben rechts),
	Ca(60)MSX K (unten links) und Ca(75)MSX K (unten rechts) bei 25°CXXIV

V. Tabellenverzeichnis

Tabelle 1: Potenzielle Wechselwirkungsenergien für starre Moleküle [75]	27
Tabelle 2: Eigenschaften der verwendeten Faujasit-Zeolithe	43
Tabelle 3: Eigenschaften des verwendeten ZSM-5 (MFI) Zeolithen	45
Tabelle 4: Eigenschaften der verwendeten Aktivkohle Norit R1 Extra	46
Tabelle 5: Molekülstruktur der verwendeten C5-Kohlenwasserstoffe	49
Tabelle 6: Eigenschaften der verwendeten Adsorptive	51
Tabelle 7: Kalibrierfaktoren bei einer Messtemperatur von 25°C	65
Tabelle 8: Gleichungssystem für die Modellierung der Wärmeübergänge bei der	
Kalibrierung	67
Tabelle 9: Statistische Fehler der relevanten Einflussgrößen	75
Tabelle 10: Vergleich der Adsorptionsenthalpien [kJ/mol] im Bereich geringster	
Beladungen von Ethan, Propan, n-Butan, n-Pentan und n-Hexan an	
13X Zeolithen bei 25°C	79
Tabelle 11: Angepasste Langmuir-Parameter der Isothermen von Ethan, Propan,	n-Butan,
n-Pentan und n-Hexan	85
Tabelle 12: Angepasste Langmuir-Parameter der Isothermen von Ethen, Propen,	1-Buten,
1-Penten und 1-Hexen	91
Tabelle 13: Angepasste Langmuir-Parameter der Isothermen von Neopentan, Cy	clopentan
und Cyclopenten	96
Tabelle 14: Angepasste Langmuir-Parameter der Isothermen von Cyclohexan, Cy	yclohexen
und Benzol	102
Tabelle 15: Verteilung der Kationen (Natrium/Calcium) auf die Kation-Plätze in de	'n
Faujasit-Zeolithen in Anlehnung an [75, 89, 90, 111, 112]	109
Tabelle 16: Energetische Beiträge bei der Adsorption von Propan und Propen an	den
Faujasit-Zeolithen NaMSX K und NaY K	116
Tabelle 17: Energetische Beiträge bei der Adsorption von n-Pentan und 1-Penter	ı an den
Faujasit-Zeolithen NaMSX K und NaY K	118
Tabelle 18: Normierte energetische Beiträge der C3- und C5-Kohlenwasserstoffe	an den
Faujasit-Zeolithen NaMSX K und NaY K	121
Tabelle 19: Übertragene Wärmen bei der Kalibrierung mit dem Glas- und dem	
Metallprobengefäß	XXIV
Tabelle 20: Sensitivitätsfaktoren bei Kalibrierexperimenten	XXV
Tabelle 21: Sensitivitätsfaktoren bei Adsorptionsmessungen	XXVI
Tabelle 22: Statistische Messfehler unter Verwendung der Gaußschen	
Fehlerfortpflanzung am Beispiel von n-Butan an dem Zeolithen 13X-A	APGXXVII

 Tabelle 23: Berechnete Massen pro Einheitszelle der verwendeten Faujasit-Zeolithe... XXVIII

 Tabelle 24: Angepasste Langmuir-Parameter der Isothermen von Ethan, Propan,

 n-Butan, n-Pentan und n-Hexan

 XXIX