

Lehrstuhl für Elektrische Antriebstechnik und Aktorik

Chair of Electrical Drives and Actuators

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Hrsg.: Prof. Dr.-Ing. Dieter Gerling

Sven Luthardt

Berücksichtigung der Pulswechselrichtereinflüsse bei der Berechnung hochperformanter elektrischer Maschinen

EAA Forschungsberichte Band 36

Berücksichtigung der Pulswechselrichtereinflüsse bei der Berechnung hochperformanter elektrischer Maschinen

Sven Luthardt

Vollständiger Abdruck der von der Fakultät für Elektro- und Informationstechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation

Gutachter:

- 1.: Prof. Dr.-Ing. Dieter Gerling
- 2.: Prof. Dr.-Ing. Ralph Kennel

Die Dissertation wurde am 26.10.2017 bei der Universität der Bundeswehr München eingereicht und durch die Fakultät für Elektro- und Informationstechnik am 15.11.2017 angenommen. Die mündliche Prüfung fand am 05.11.2018 statt.

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 36

Sven Luthardt

Berücksichtigung der Pulswechselrichtereinflüsse bei der Berechnung hochperformanter elektrischer Maschinen

> Shaker Verlag Aachen 2018

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Univ. der Bundeswehr, Diss., 2018

Copyright Shaker Verlag 2018 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6350-9 ISSN 1863-0707

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als Doktorand in der Vorentwicklung Triebstrang und Elektrifizierung der Dr. Ing. h.c. F. Porsche AG am Standort Weissach. Den Kollegen am Standort gilt mein Dank. Hervorheben möchte ich an dieser Stelle den Leiter der Vorentwicklung Triebstrang und Elektrifizierung Herrn Dr.-Ing. Axel Heitmann, der es mir ermöglichte diese Arbeit zu schreiben und mir den nötigen Freiraum im täglichen Geschäft einräumte. Ein sehr großer Dank geht an meinen Betreuer Herrn Dr.-Ing. Stefan Schmitz, der durch sein großes Engagement, seine Diskussionsbereitschaft und das Einbringen neuer Gedankenansätze entscheidend zum Gelingen der Arbeit beigetragen hat. Den übrigen Kollegen des Teams möchte ich für die schöne Zeit danken.

Herrn Professor Dr.-Ing. Dieter Gerling möchte ich für die Übernahme des Referats und das Interesse an der vorliegenden Arbeit danken. Danke sagen möchte ich auch für die freundlichen und unkomplizierten Treffen und die engagierte Lösung diverser Angelegenheiten.

Herrn Professor Dr.-Ing. Ralph Kennel danke ich ebenfalls für das Interesse an dieser Arbeit und für die Übernahme des Koreferats. Herrn Professor Dr.-Ing. Rainer Marquardt danke ich für die Übernahme des Prüfungsvorsitzes.

Mein herzlichster Dank gilt meinen Eltern für das stetige Vertrauen und die Schaffung eines hervorragenden Umfeldes, das den eingeschlagenen Weg erst ermöglichte. Ein großer Dank gebührt außerdem meiner Frau Diana für ihre Unterstützung in der Zeit vieler Entbehrungen.

Kurzfassung

Die vorliegende Arbeit befasst sich mit einer Verbesserung der Methodik zur Berechnung elektrischer Traktionsantriebe für hochperformante Anwendungen unter Berücksichtigung des Pulswechselrichtereinflusses. Hierzu werden simulative Untersuchungen an einem Traktionsantrieb durchgeführt und mit Messungen am Prüfstand validiert.

Die strikten Anforderungen an Bauraum und Fahrleistungen führen zu einer Leistungsdichte, die in aktuellen elektrischen Antrieben nicht erreicht wird. Dies ist notwendig, um das Gewicht der Batterie, das aktuell zu einem Mehrgewicht eines BEVs im Vergleich zu einem konventionellen Fahrzeug führt, zu kompensieren. Elektrisch angetriebene Sportwagen benötigen eine sehr hohe Dauerleistung des Antriebs, damit ein reproduzierbares Fahrgefühl gewährleistet werden kann. Die hohe Spitzenleistungsdichte des Antriebs und eine große Dauerleistung verstärken Einflüsse, die in der heutigen Auslegung typischerweise nicht berücksichtigt werden¹. Einer dieser Effekte ist der steigende Einfluss der Stromoberschwingungen auf die Rotorverluste. Die Stromoberschwingungen entstehen durch das Schalten des Umrichters und der Regelung des elektrischen Antriebs.

Aus diesem Grund untersucht die vorliegende Arbeit den Einfluss des Pulswechselrichters auf die Verluste eines hochperformanten elektrischen Antriebs. Zuerst wird die Modellierung der elektrischen Maschine und eine Erweiterung der Berechnung der Luftspaltflussdichte um Stromoberschwingungen vorgestellt. Anschließend erfolgen Erläuterungen zur Modellierung des Pulswechselrichters und der zugehörigen Regelung. Es werden Untersuchungen zu den Verlustarten und deren Berechnung durchgeführt und es wird auf die Berechnung der Eisenverluste näher eingegangen. Die Einführung der neuen Methodik und deren Umsetzung erweitern die Berechnung der elektrischen Maschinen auf die neuen Anforderungen.

Die erarbeiteten Methoden werden an einem Beispielantrieb der 400V-Klasse simulativ in 2D-Berechnungen untersucht und anschließend messtechnisch validiert. Es zeigt sich, dass eine Validierung anhand einer Ermittlung der Verlustleistungsaufteilung sehr komplex ist. Eine zuverlässige Validierungsmethode ist ein Vergleich der Dauerleistungskennlinien aus Simulation und Messung, da der Rotor beim untersuchten Maschinentyp in einem weiten Bereich das limitierende Bauteil darstellt.

Die Ergebnisse verdeutlichen eine Verbesserung bei der Bestimmung der Dauerleistungskennlinien eines elektrischen Antriebs gegenüber der herkömmlichen Methode ohne Berücksichtigung von Umrichtereinflüssen. Es kann geschlussfolgert werden, dass der Einfluss des Pulswechselrichters bei hochperformanten Antrieben in die Berechnung einbezogen werden muss. Im Dauerdrehmoment ergibt sich eine für diese hochausgenutzten Antriebe typische Badewannenkurve. Die Methode, die die Magnetverluste mit Ansys Maxwell und die Eisenverluste mit FEMAG berechnet, zeigt die besten Ergebnisse im Vergleich zur Messung. Der Einfluss des Wechselrichters auf das Spitzendrehmoment ist vorhanden, aber vernachlässigbar und wird nicht weiter untersucht. Ein Ausblick auf Erweiterungen der Themenstellungen rundet die Arbeit ab.

¹Spitzenleistungsdichte bedeutet einen Kurzzeitwert von 10-60s

Abstract

The following work deals with the improvement of the calculation methodology of an electric motor for high performance traction electric drives concerning influence of the inverter on the e-machine. To reach this goal, a traction motor is simulated and validated by measurements.

The hard requirements concerning package and driving performance lead to a power density which has not yet been reached in conventional electric motors. This is necessary to compensate for the high weight of the battery, which leads to a heavier BEV compared to a conventional vehicle. Electric driven sport vehicles need a great deal of continuous power to guarantee a reproducible driving experience. The strong requirements concerning power density and continuous power intensify influences which have not been considered in the machine calculation yet. One of these effects is the increasing impact of current harmonics on the machine iron losses, especially the rotor losses. The current harmonics are caused by inverter switching and non-ideal effects of the control².

For that reason, the following work investigates the influence of the inverter on the losses of a high performance electric drive. First, the modelling of an electric motor and the extension of the airgap flux density regarding current harmonics are presented. Afterwards, the modelling of the inverter and the control are shown. Investigations concerning the losses of electric motors and especially the iron losses are followed. The introduction of the new methodology and the exact implementation enlarge the calculation of the electric motor to the new requirements.

The suggested approach is analyzed for a 400V-machine in 2D calculations and test bench measurements. It is shown that the loss separation of the machine components is very complex. The possibility which reaches good reliability is the validation by continuous power curve measurements of the e-machine due to the limitation by rotor temperature in a wide operation range.

The results show an improvement in the calculation of continuous power curves using the new method compared to the old one neglecting the inverter effects. It can be summarized that the inverter effect has to be considered in the computation of high performance electric motors. The continuous torque shows a bathtub curve, which can be seen as characteristic for such highly utilized machines. The method which calculates the permanent magnet losses with ANSYS Maxwell and the iron losses with FEMAG shows the best results concerning the measurements. The influence on the peak performance is seen, but is negligible and therefore not in the focus of the work. An outlook of further improvements of the methodology is at the end of the presented work.

²Peak performance means a short-term-value of 10-60s

Inhaltsverzeichnis

Sy	Symbolverzeichnis V		
1	Ein	leitung	1
2	Motivation und Stand der Technik		
3	Мос	dellierung der elektrischen Maschine	7
	3.1	Aufbau und Funktionsweise	7
	3.2	Mathematische Beschreibung und Ersatzschaltbild	8
		3.2.1 Induktivitätsbasiertes Modell	8
		3.2.2 Flussbasiertes Modell	11
	3.3	Modellierung der Luftspaltflussdichte	11
4	Wei	rkstoffe	21
	4.1	Elektroblech	21
	4.2	Vermessung der Elektrobleche	22
		4.2.1 Einzelblatttester	23
		4.2.2 Epsteinrahmen	23
		4.2.3 Ringkernproben	24
		4.2.4 Vergleich für NO20	25
	4.3	Magnetmaterial	26
5	Ver	lustarten	29
	5.1	Kupferverluste	29
	5.2	Magnetverluste	35
	5.3	Eisenverluste	37
		5.3.1 Hystereseverluste	37
		5.3.2 Wirbelstromverluste	40
		5.3.3 Anomale (Excess-) Verluste	41
	5.4	Reibungsverluste	42
6	Bes	schreibung verschiedener Eisenverlustmodelle	43
	6.1	Frequenzbasierte Modelle	43
		6.1.1 Steinmetz	43
		6.1.2 Jordan	45
		6.1.3 Bertotti	45
		6.1.4 IEM-Formel	48
		6.1.5 Vergleich der Eisenverlustformeln	49
	6.2	Zeitbasierte Modelle	51

	6.3	6.2.1 Zeitbasierte Steinmetzmodelle 6.2.2 Zeitbasierte Bertottimodelle Bearbeitungseinfluss	51 52 56
7	Moc 7.1 7.2 7.3 7.4 7.5	dellierung des Frequenzumrichters und der Regelung Topologien Modulationsverfahren 7.2.1 Unterschwingungsverfahren 7.2.2 Kontinuierliche Modulationsverfahren mit zusätzlicher Nullkomponente Verlustmodellierung Analytische Berechnung der Stromverzerrungen Modellierung der Regelung 7.5.1 Allgemeine Struktur 7.5.2 Reglerauslegung	61 63 63 65 66 68 69 69 71
8	Rea 8.1 8.2	Ilisierung des elektrischen Antriebssystems Möglichkeiten der Kopplung von E-Maschine und Wechselrichter Parasitäre Effekte durch Berücksichtigung des Wechselrichters bei der Auslegung 8.2.1 Oberschwingungen durch Umrichterschalten	75 75 77 77 79 79 81
9	Um 9.1 9.2 9.3 9.4	setzung der Kopplung Anforderungen und Annahmen Aufbau 9.2.1 Zwei-Ebenen-Simulationsmodell 9.2.2 Analytisches Maschinenmodell 9.2.3 Identifikation der Maschinenparameter 9.2.4 Thermische Modelle Programmablauf der Betriebspunktberechnung 9.3.1 Ermittlung der Betriebspunkte in der d-q-Ebene 9.3.2 Ermittlung der Betriebspunkte in der Drehmoment-Drehzahl-Ebene Möglichkeiten der Validierung der Methodik	 83 83 83 83 85 86 87 88 96 98 98 99
10	10.1 10.2	echnungsergebnisse des 400V-Antriebs 1 Sinusförmige Bestromung 1 10.1.1 Maschinen- und Umrichterdaten 1 10.1.2 Vergleich der Kennfelder für unterschiedliche Blechvermessungen 1 10.1.3 Maschinenparameter 1 10.1.4 Vergleich der Kennfelder mit Stromverdrängungseffekten 1 10.1.5 Einfluss des Skineffektes auf die Eisenverluste 1 10.1.6 Berechnung der Kennfelder und Vergleich mit ANSYS Maxwell 1 10.1.7 Vergleich der Verlustmodelle 1 10.1.2 Umrichterbetrieb 1	01 01 03 06 09 12 14 22 24 24

10.2.2 Betrachtung des THD	125	
10.2.3 Wirkungsgrad- und Verlustkennfelder	128	
10.2.4 Vergleich der Ergebnisse mit sinusförmiger Bestromung	129	
10.2.5 Dauerleistungskennlinien	130	
10.3 Einfluss der Spannungslage	133	
10.4 Einfluss der Leistungsdichte	133	
11 Validierung am Prüfstand	137	
11.1 Prüfstandsaufbau	137	
11.2 Parameter	138	
11.3 Wirkungsgrad und Verluste der E-Maschine	140	
11.4 Vergleich der Kennfelder mit den Simulationen	143	
11.4.1 Sinusförmige Bestromung der Maschine	143	
11.4.2 Umrichterbestromung der Maschine	146	
11.5 Ermittlung der Verlustleistungen aus dem Temperaturgradienten	149	
11.6 Vergleich der Dauerdrehmomentkennlinien	149	
12 Zusammenfassung und Ausblick	153	
Abbildungsverzeichnis	155	
Tabellenverzeichnis		
Literatur		

Symbolverzeichnis

Symbol Definition

Abkürzungen

AP	Arbeitspunkt
BEV	Batterieelektrisches Fahrzeug
BP	Betriebspunkt
EM	Elektrische Maschine
FB	Frequenzbasiert
FE	Finite-Elemente
FEM	Finite-Elemente-Methode
FOR	Feldorientierte Regelung
HEV	Hybridelektrisches Fahrzeug
HHS	Haupthystereseschleife
IPM	Permanentmagneterregte Synchronmaschine
	mit eingebetteten Magneten
KOS	Koordinatensystem
LE	Leistungselektronik
MTPA	Maximum Torque per Ampere
MTPV	Maximum Torque per Volt
MZO	Mehrzieloptimierer
NHS	Nebenhystereseschleife
NO	Nicht kornorientiert
OS	Oberschicht
PA	Power Analyzer (Leistungsmessgerät)
PI	Proportional-Integral
PM	Permanentmagnet
PMSM	Permanentmagneterregte Synchronmaschine
PWM	Pulsweitenmodulation
SF	Sinusfilter
SST	Single Sheet Tester
THD	Total Harmonic Distortion
US	Unterschicht
ZB	Zeitbasiert

Formelzeichen

α	Temperaturkoeffizient	1/K
ε	Statorfester Winkel	rad, $^{\circ}$
γ	Rotorlagewinkel	rad, $^{\circ}$

Einheit

Symbol	Definition	Einheit
λ	Magnetischer Leitwert	Vs/A
μ_0	Natürliche Permeabilität	Vs/Am
μ_r	Relative Permeabilität	
ω	Elektrische Kreisfrequenz	rad/s
Ψ	Flussverkettung	Vs
ρ	Dichte	kg/m ³
σ	Elektrische Leitfähigkeit	S/m
σ_{PM}	Elektrische Leitfähigkeit des	S/m
	Permanentmagneten	
τ	Zeitkonstante	8
θ	Durchflutung	А
φ	Winkel von der d-Achse zu einem Rotorpunkt	
M_L	Lastmoment	Nm
А	Fläche	m^2
В	Magnetische Flussdichte	Т
B_r	Remanenzflussdichte	Т
С	Kapazität	F
с	Thermische Wärmekapazität	J/kgK
Е	Elektrische Feldstärke	V/m
E	Energie	J
f	Frequenz	Hz
\mathbf{f}_s	Schaltfrequenz	Hz
G(s)	Ubertragungsfunktion	
Н	Magnetische Feldstärke	A/m
$\mathbf{H}_{cj}, \mathbf{H}_k$	Koerzitivfeldstärke	A/m
I/1	Strom	A
J	Magnetische Polarisation	T
J	Mechanisches Massentragneitsmoment	kgm²
	Absolute Induktivität	H
1	Differentielle Induktivität	H
l_{fe}	Aktive Eisenlange	m Nuu
M	Drenmoment	INM A /m
M	Magnetisterung	A/m
IVI N	Windungsgrad	
IN	Windungszam Maabaniaaba Drabzabl	1/0
II D	L sistung	1/8 W
r	Delpagraph	vv
p	Polpaaizani Spazifisaha Laistung	W/lra
р р.	Flaktrische Leistung	W/Kg W
P.	Mechanische Leistung	vv W
r mech D	Kupferverluste	vv W
г _{v,си} Р	Ficenverluste	vv W
r _{v,fe}	Spezifische Fisenverluste	w W/kg
$P_{v,fe}$	Magnetyerluste	w/kg W
r _{v,mag}	wiagnetvenuste	vv

Symbol	Definition	Einheit
P_{v}	Verlustleistung	W
Qs	Anzahl der Statornuten	
R	Widerstand	Ω
R_{AC}	AC-Widerstand	Ω
R_{DC}	DC-Widerstand	Ω
T_{σ}	Totzeit	S
T_s	Schaltzeit	S
T,t	Zeit/Temperatur	s/K
U/u	Spannung	V
V	Volumen	m ³
W	Arbeit	J

Indizes

α, β	Größen im zweisträngigen statorfesten KOS
ϕ	Winkelkomponente
1, 2, 3,	Harmonische der 1, 2, 3, Ordnung
Amp	Amplitude
avg	Average (Mittelwert)
con	Conductance (Leitungs-)
cu	Kupfer-, Wicklungs-
D	Diode
d, q	Größen im zweisträngigen rotorfesten KOS
d/q	Größen der d/q-Achse
eddy	Wirbelstrom
el	Elektrisch
exc	Excess
ha	Hauptachse
HHS	Haupthystereseschleife
hyst	Hysterese
ind	Induzierte
L	Induktivität
М	Motor
mech	Mechanisch
n	Normalkomponente
na	Nebenachse
NHS	Nebenhystereseschleife
OFF	Ausschalt-
ON	Einschalt-
ph	Phase
R	Widerstand
r	Radialkomponente
R, S	Rotor,Stator
ref	Referenzgröße
S	Strang

Einheit

Symbol Definition

S	Sättigungs-
sin	Sinusförmig
soll	Sollgröße
Т	Transistor
t	Tangentialkomponente
u, v, w	Größen im dreisträngigen statorfesten KOS
ZK	Zwischenkreis