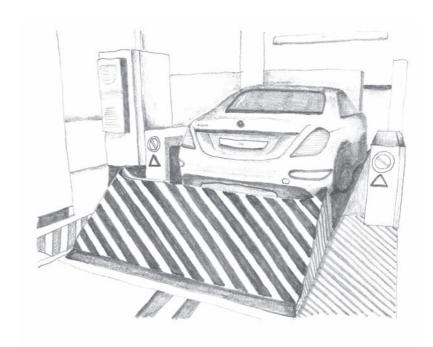
Forschungsberichte Montagetechnik und -organisation


Herausgeber: Prof. Dr.-Ing. Rainer Müller

Johannes Gresser

Band 3

Ganzheitliche Absicherung der Inbetriebnahme

Eine Methodik zur Absicherung der Inbetriebnahme von mechatronischen Komponenten und Systemen am Beispiel des autonomen Fahrens

Ganzheitliche Absicherung der Inbetriebnahme

Eine Methodik zur Absicherung der Inbetriebnahme von mechatronischen Komponenten und Systemen am Beispiel des autonomen Fahrens

Dissertation
zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultät
der Universität des Saarlandes

von

Johannes Sebastian Gresser geboren am 05.09.1987 in Ellwangen (Jagst)

Saarbrücken

2018

Tag des Kolloquiums:	08.08.2018

Dekan: Univ.-Prof. Dr. rer. nat. Guido Kickelbick

Mitglieder des Prüfungsausschusses:

Univ.-Prof. Dr. rer. nat. Andreas Schütze Vorsitzender:

1. Gutachter: Univ.-Prof. Dr.-Ing. Rainer Müller

Univ.-Prof. Dr.-Ing. Michael Vielhaber 2. Gutachter:

Dr. rer. nat. Hans Georg Breunig Akademischer Mitarbeiter:

Forschungsberichte Montagetechnik und -organisation

Band 3

Johannes Gresser

Ganzheitliche Absicherung der Inbetriebnahme

Eine Methodik zur Absicherung der Inbetriebnahme von mechatronischen Komponenten und Systemen am Beispiel des autonomen Fahrens

> Shaker Verlag Düren 2019

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Saarbrücken, Univ., Diss., 2018

Copyright Shaker Verlag 2019 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-6605-0 ISSN 2512-6369

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Foreword

Diese Dissertation entstand im Rahmen meiner Tätigkeit in der Abteilung Prüfsysteme und Inbetriebnahme E/E der Daimler AG in Böblingen in Kooperation mit dem Zentrum für Mechatronik und Automatisierungstechnik gGmbH (ZeMA) in Saarbrücken.

Mein besonderer Dank gilt Herrn Univ.-Prof. Dr.-Ing. Rainer Müller, dem Leiter des ZeMAs, für die wohlwollende Förderung und großzügige Unterstützung meiner Arbeit. Bei Herrn Univ.-Prof. Dr.-Ing. Michael Vielhaber, dem Leiter des Lehrstuhls für Konstruktionslehre an der Universität des Saarlandes, bedanke ich mich ebenso herzlich für die Übernahme des Korreferates.

Ein großes Dankeschön verdient auch mein Teamleiter bei der Daimler AG, Herrn Dr.-Ing. Rainer Mäckel, für sein entgegengebrachtes Vertrauen und die mir ermöglichten Freiräume zur Erstellung der Arbeit.

Zu danken habe ich auch allen Mitarbeiterinnen und Mitarbeitern der Daimler AG und des ZeMAs sowie allen Studierenden, die mich bei der Anfertigung der Arbeit unterstützt haben. Namentlich danke ich meinem Zimmerkollegen Herrn Dipl.-Wi.-Ing. Marco Schick (Daimler AG), Herrn Dipl.-Ing. (FH) Adam Hradecky (Daimler AG) und Frau M.Sc. Leonie Schirmer (ZeMA) für die tiefen fachlichen Diskussionen sowie die kritische Durchsicht meiner Dissertation.

Abschließend bedanke ich mich im Besonderen bei meiner Familie. Ohne meine Eltern, die mir die Ausbildung ermöglicht und mich immer uneingeschränkt unterstützt haben, wäre diese Arbeit nie entstanden. Dank meiner Frau Theresa, die mir stets die erforderlichen Freiräume und auch den notwendigen Beistand gegeben hat, konnte ich dieses Werk erfolgreich abschließen.

Ihnen sei diese Arbeit gewidmet.

Ellwangen, im Mai 2018

Johannes Gresser

Kurzzusammenfassung

Abstract

Die vorliegende Arbeit befasst sich mit der Entwicklung und Anwendung einer Methodik zur ganzheitlichen Absicherung der Inbetriebnahme, kurz GADI-Methodik. Der Einsatz dieser Methodik im Umfeld von komplexen mechatronischen Komponenten und Systemen befähigt Unternehmen, ein einwandfrei in Betrieb genommenes Produkt mit voller Funktionsfähigkeit an den Kunden zu übergeben. Dabei werden vier Teilschritte verfolgt:

- Frühzeitige Berücksichtigung von Inbetriebnahmeanforderungen im Produktentstehungsprozess
- Ganzheitliche Toleranzbetrachtung zur Abstimmung der Inbetriebnahmeparameter
- Präventive Versuchsplanung und -durchführung zur Absicherung der Inbetriebnahmeumgebung (Produkt, Prozess und Betriebsmittel)
- 4. Kontinuierliche Überwachung der Inbetriebnahme in der Produktion

Die GADI-Methodik bietet einen durchgängigen Ansatz, der eine systematische Absicherung der Inbetriebnahme entlang des gesamten Produktentstehungsprozesses durch den gezielten Einsatz von qualitätsbasierten und statistischen Methoden zum Inhalt hat. Die Integration einer fachübergreifenden Zusammenarbeit aus allen beteiligten Unternehmensbereichen sowie den involvierten Lieferanten unter der gleichmäßigen Betrachtung von Produkt, Prozess und Betriebsmitteln wird dabei berücksichtigt.

Anwendung findet diese Methodik im Rahmen der Arbeit am System "Umfelderfassung", das die Grundlage für das autonome Fahren darstellt. Dabei eröffnen sich neue Möglichkeiten der Unterstützung zur Absicherung der Inbetriebnahme.

Abstract

The present work deals with the development and application of a methodology for holistic validation of commissioning, in short GADI methodology. The use of this methodology in the field of complex mechatronic components and systems empowers companies to deliver a flawlessly commissioned product with full functionality to the customer. Four sub-steps were followed:

- Early consideration of commissioning requirements in the product development process
- Holistic tolerance consideration for the coordination of commissioning parameters
- Preventive test planning and implementation in order to validate the commissioning environment (product, process and equipment)
- 4. Continuous monitoring of commissioning in production

The GADI methodology presents an integrated approach, which involves systematic validation of commissioning along the entire product development process through the targeted use of quality-based and statistical methods. The integration of interdisciplinary cooperation between all participating company divisions as well as the involved suppliers under the uniform consideration of product, process and equipment is taken into account.

The application of this methodology will be discussed on the system "environmental detection" which is the basis for autonomous driving. This opens up new possibilities of support to ensure commissioning.

Inhaltsverzeichnis

Inhaltsverzeichnis

Content

Inl	naltsv	erzeich/	nis	I	
Fo	rmel	zeichen	und Abkürzungsverzeichnis	IV	
1	Einl	eitung		1	
	1.1	Ausgar	ngssituation und Problemstellung	3	
	1.2		zung und Fokus der Arbeit		
	1.3	Aufbau	und Vorgehensweise der Arbeit	5	
2 Theoretische Grundlagen zum Verständnis der Inbetriebnahme					
	2.1	Mecha	tronische Komponenten und Systeme	7	
	2.2	Das au	tonome Fahren als Zielvorgabe		
		2.2.1	Die Automatisierungsgrade des autonomen Fahrens		
		2.2.2	Komponenten und Systeme für das hochautomatisierte Fahren .		
	2.3	Die Inb	etriebnahme als Wertschöpfungsprozess	17	
		2.3.1	Die Montage in der Fahrzeugproduktion	17	
		2.3.2	Der Bereich Bandende und die Rolle der Inbetriebnahme	19	
		2.3.3	Die Kalibrierung von Sensoren als Inbetriebnahmeprozess	22	
	2.4	Einsatz	z von Qualitätsmethoden im Produktentstehungsprozess	26	
		2.4.1	Der Produktentstehungsprozess	26	
		2.4.2	Berücksichtigung der Qualität im Produktentstehungsprozess	28	
		2.4.3	Qualitätsmethoden im Produktentstehungsprozess	29	
3	Anfo	orderun	gen an eine Methodik für eine ganzheitliche Absicherung		
	der	Inbetrie	bnahme	32	
	3.1	Potenti	al zur Effizienzsteigerung der Inbetriebnahme	32	
	3.2		ng und Formulierung der Anforderungen an eine Methodik zur		
			eitlichen Absicherung der Inbetriebnahme	35	
4	Ctor	•	echnik in Forschung und Industrie		
4				40	
	4.1		rende Vorgehensmodelle für eine ganzheitliche Absicherung der		
			ebnahme		
		4.1.1	Vorgehensmodell nach Müller	40	
		4.1.2	Vorgehensmodell nach Advanced Product Quality Planning		
			(APQP)		
		4.1.3	Vorgehensmodell nach DIN EN 9103		
		4.1.4	Das Aachener Qualitätsmanagement Modell (AQM)		
		4.1.5	Vorgehensmodell zur Reifegradabsicherung nach VDA		
		4.1.6	Vorgehensmodell nach DIN IEC 61508 / ISO 26262		
	4.2	Veralei	chende Finordnung der bestehenden Ansätze und deren Defizit	52	

II Inhaltsverzeichnis

5			g einer Methodik für eine ganzheitlichen Absicherung der hme von mechatronischen Komponenten und Systemen	56
	5.1	"	ADI"-Methodik für eine ganzheitliche Absicherung der	
		Inbetri	ebnahme	56
	5.2	Frühze	eitige Berücksichtigung von Inbetriebnahmeanforderungen im	
		Produk	ktentstehungsprozess	61
		5.2.1	Ableitung von System-, Komponenten- und	
			Inbetriebnahmemerkmalen durch eine QFD-Kaskade	62
		5.2.2	Auswahl eines geeigneten Inbetriebnahmekonzepts und	
			Ableitung von Betriebsmittelmerkmalen	64
	5.3	Ganzh	eitliche Toleranzbetrachtung zur Abstimmung der	
		Inbetrie	ebnahmeparameter	66
		5.3.1	Kontinuierliche Berücksichtigung von Key Characteristics	67
		5.3.2	Erstellung eines Key Characteristic Flowdowns im Zuge der	
			QFD-Kaskade	68
		5.3.3	Ganzheitliche Toleranzbetrachtung auf Basis des	
			KC-Flowdowns	70
	5.4	Präver	ntive Versuchsplanung und -durchführung zur Absicherung der	
		Inbetrie	ebnahmeumgebung	78
		5.4.1	Fehlerkategorien der Inbetriebnahmezustände	78
		5.4.2	Vorgehen zur präventiven Versuchsplanung und -durchführung	80
		5.4.3	Produkt	82
		5.4.4	Prozess	85
		5.4.5	Betriebsmittel	92
	5.5	Kontini	uierliche Überwachung der Inbetriebnahme in der Produktion	97
		5.5.1	Modell zur kontinuierlichen Überwachung der Inbetriebnahme	98
		5.5.2	Qualitätsregelkarten zur Fehlererfassung	100
		5.5.3	Multiple lineare Regression zur Ursachenanalyse	102
		5.5.4	Prozessänderungsmanagement	112
6	Pral	rtischer	Einsatz der GADI-Methodik am Beispiel des autonomen	
Ū			Emous der GAST methodik din Selopiel des dateriorien	. 114
	6.1		rung in das Anwendungsbeispiel des autonomen Fahrens	
	0.1	6.1.1	Vorstellung und Ziele des Systems "Umfelderfassung" für das	
		0.1.1	hochautomatisierte Fahren	115
		6.1.2	Herausforderungen in der Inbetriebnahme von Komponenten	113
		0.1.2	zur Umfelderfassung	116
	6.2	Frühze	eitige Berücksichtigung der Inbetriebnahmeanforderungen	
	٥.٢	6.2.1	Festlegung der Inbetriebnahmemerkmale im Zuge der	20
		0.2.1	QFD-Kaskade	120
		6.2.2	Auswahl des Inbetriebnahmekonzepts und Ableitung der	20
		J.L.L	Betriebsmittelmerkmale	. 123

	6.3	Ganzhe	eitliche Toleranzbetrachtung am System Umfelderfassung	127
		6.3.1	Bestimmung der Key Characteristics	128
		6.3.2	Erstellung des KC Flowdowns	129
		6.3.3	Ganzheitliche Toleranzbetrachtung	130
	6.4	Präven	tive Versuchsplanung und -durchführung zur Absicherung von	
		Produk	t, Prozess und Betriebsmittel	136
		6.4.1	Definition von Maßnahmen und Erstellung des Versuchsplans.	137
		6.4.2	Versuchsdurchführung zur Absicherung von Produkt, Prozess	
			und Betriebsmittel	141
		6.4.3	Absicherungsuntersuchungen anhand von Kundenfahrzeugen	
			vor Produktionsstart	
	6.5	Kontinu	uierliche Überwachung der Inbetriebnahme	149
		6.5.1	Fehlererfassung während des Inbetriebnahmeprozesses	150
		6.5.2	Multiple lineare Regressionsanalyse zur Ermittlung der	
			Betriebsmitteleinflüsse	
	6.6		reprogramme zur Umsetzung der GADI-Methodik	154
		6.6.1	GADI-Plattform zur Absicherung, Dokumentation und	
			Überwachung	
		6.6.2	Einsatz weiterer Software zur Simulation und Datenanalyse	157
	6.7		-Nachher-Vergleich zur Verdeutlichung der Fortschritte,	
			ch die GADI-Methodik erzielt wurde	158
	6.8	•	ch der zuvor erarbeiteten Anforderungen an den Möglichkeiten	
		der GA	DI-Methodik	159
7	Zusa	amment	fassung und Ausblick	165
	7.1	Zusam	menfassung	165
	7.2	Ausblic	k	167
8	Lite	raturver	zeichnis	171
	8.1	Veröffe	entlichte Quellen	171
	8.2	Unverö	iffentlichte Quellen	183
Ar	hang			184