Drug Nanoparticle Precipitation by Microfluidic Droplet Generation in Flow-Focusing Devices

Thomas Lorenz

Supervised by: Prof. Dr. rer. nat. Andreas Dietzel

Technische Universität Braunschweig

Drug Nanoparticle Precipitation by Microfluidic Droplet Generation in Flow-Focusing Devices

Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: Dipl.-Ing. Thomas Lorenz aus (Geburtsort): Wolfenbüttel

eingereicht am: 28. Januar 2019 mündliche Prüfung am: 22. März 2019

Vorsitz: Jun.-Prof. Dr. Iordania Constantinou Gutachter: Prof. Dr. rer. nat. Andreas Dietzel Prof. Dr. Heike Bunjes

2019

Schriftenreihe Mikrotechnik herausgegeben von Prof. Dr. rer. nat. Andreas Dietzel

Thomas Lorenz

Drug Nanoparticle Precipitation by Microfluidic Droplet Generation in Flow-Focusing Devices

Shaker Verlag Düren 2019

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Braunschweig, Techn. Univ., Diss., 2019

Copyright Shaker Verlag 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6740-8 ISSN 2568-2040

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Vorwort und Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Mikrotechnik der Technischen Universiät Braunschweig. Das beschriebene Projekt fand im Rahmen des neugegründeten Zentrums für Pharmaverfahrenstechnik der TU Braunschweig statt und war Teil des Verbundprojekts "Neuartige Synthese- und Formulierungsverfahren für schwerlösliche Arzneistoffe und empfindliche Biopharmazeutika" (SynFoBiA), welches finanziell durch das Niedersächsische Ministerium für Wissenschaft und Kultur gefördert wurde.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Andreas Dietzel. Er ermöglichte mir stets ein selbstständiges und eigenverantwortliches Arbeiten, war aber auch jederzeit für Fragen und konstruktive Diskussionen ansprechbar. Durch einen regen fachlichen und überfachlichen Austausch habe ich während meiner Promotionszeit viel dazugelernt.

Meiner Zweitgutachterin, Frau Prof. Bunjes, danke ich für Ihre Tätigkeit als Leiterin des Projektteils 3: "Formulierungen für schwerlösliche Wirkstoffe" des SynFoBiA-Projekts, in dem diese Arbeit angesiedelt war. Ferner danke ich der Vorsitzenden der Prüfungskommission, Frau Jun.-Prof. Iordania Constantinou, für das entgegengebrachte Interesse an meiner Arbeit.

Großer Dank gilt den Mitarbeitern des Projektteils 3 vom SynFoBiA-Projekt, welche mich mit Ihrem Wissen aus den angrenzenden Fachgebieten unterstützten. Insbesonder möchte ich Katrin Göke und Jan Henrik Finke für Ihre Unterstützung bei pharmazeutischen und chemischen Fragestellungen danken sowie Denise Steiner für Ihre Hilfe bei der Partikeltechnik.

Für die großartige Unterstützung bei den Messungen für die Nanopartikelanalyse danke ich Manuela Handt und Bilal Temel sowie Pierre Stolzenburg. Letzterem danke ich zudem für die tolle Zusammenarbeit in dem gemeinsamen Nebenprojekt der mikrofluidischen Synthese metallischer Nanopartikel und den dadurch entstandenen fachlichen und überfachlichen Austausch, der diese Arbeit indirekt beeinflusste.

Weiterhin danke ich meinen Kollegen am IMT sowohl für die Unterstützung bei fachlichen Fragen als auch für das sehr angenehme Arbeitsklima. Insbesondere aus der Mikrofluidikerrunde kamen viele Anregungen zu neuen Ideen, die in diese Arbeit eingeflossen sind.

Danken möchte ich zudem den vielen fleißigen Studenten, die im Rahmen von studentischen Arbeiten und als Hilfswissenschaftler an diesem Projekt mitgearbeitet haben. Durch die hohe Eigeninitiative und Kreativität sowie das mitgebrachte Wissen aus unterschiedlichen Fachrichtungen, wurden Teile dieser Arbeit maßgeblich beeinflusst.

Zum Schluss möchte ich noch meiner Familie danken, dass sie mich während der gesamten Zeit meiner Promotion begleitet und unterschtützt hat und mir zu jeder Zeit Rückhalt geboten hat. Insbesondere danke ich meiner Frau Luise, die mich bei all meinen Entscheidungen unterstützt, sowie meinen Kindern Jonte und Martje dafür, dass sie jeden meiner Tage bereichern.

Abstract

Many of today's discovered active pharmaceutical ingredients (APIs) exhibit poor water-solubility. Orally administered substances that cannot be dissolved inside the organism will leave the body again without any of the desired effects resulting in an erratic performance and low bioavailability inside the organism and the targeted cells. Particle precipitation in microfluidic generated droplets is a promising approach to prepare highly monodisperse nanoparticles. If the particle size is reduced, its specific surface area (SSA) which is defined as the total surface area of a material per volume increases. High SSA of API particles result in increased dissolution rates inside the body and therefore in a higher bioavailability and the desired effects.

In this work a microfluidic system was developed for the emulsification of drug loaded droplets in a surrounding aqueous phase and subsequent nanoparticle precipitation. Fenofibrate, a poorly water-soluble API, was selected as model substance. Planar flow-focusing devices made of glass were studied and improved to enable stable generation of micrometer sized oil-in-water (O/W) droplets in a first step. Furthermore, the influence of operating flow-rates and pressures on the droplet formation regimes and the droplet size was evaluated. It was then found that organic solvent had to be used as disperse phase fluid to allow subsequent precipitation of nanoparticles. Wetting of channel walls became an issue due to almost similar contact angles of the continuous and disperse phase. Therefore, 3D flow-focusing devices were fabricated from glass after developing a two-step glass etching process. This allowed stable emulsification of fenofibrate loaded, sub-micron ethyl acetate droplets and subsequent precipitation of fenofibrate nanoparticles. The particles were studied concerning their shape, internal structure, and stability.

Several alternative compound and compositions were investigated within the devices. Six organic oils were tested for emulsification in planar flow-focusing devices. 3D flow-focusing was performed with four alternative solvents, which were selected due to their low toxicity. Fenofibrate particle precipitation was also performed with these solvents. The preparation method was also studied using griseofulvin as an alternative API.

Kurzfassung

Sehr viele neuentdeckte pharmazeutische Wirkstoffe weisen eine schlechte Wasserlöslichkeit auf. Nach oraler Verabreichung werden sie deshalb nahezu unverändert wieder ausgeschieden. In der wässrigen Umgebung des Organismus können sie nicht absorbiert werden und die gewünschte Wirkung bleibt aus oder findet nur in sehr geringem, nicht vorhersehbarem Maße statt. Durch Verkleinerung der Partikel wird deren spezifische Oberfläche, also das Verhältnis von Oberfläche zu Volumen, vergrößert. Dies führt zu gesteigerten Auflösungs- und Absorptionsraten innerhalb des Körpers und somit zu höherer Bioverfügbarkeit. Hierdurch können die Wirkstoffe ihre gewünschte Wirkung voll entfalten.

Im Rahmen dieser Arbeit wurde ein Mikrofluidiksystem entwickelt, welches die Emulgierung wirkstoffbeladener Tropfen innerhalb einer wässrigen Phase ermöglicht. Anschließend findet eine Fällungsreaktion des Wirkstoffs zu Nanopartikeln statt. Das schlecht wasserlösliche Fenofibrat wurde als Modellwirkstoff verwendet. Planare Flow-Focusing-Systeme wurden aus Glas hergestellt und anschließend hinsichtlich ihrer Möglichkeiten zur Herstellung von Öl-in-Wasser-Emulsionen untersucht und optimiert. Der Einfluss der vorgegeben Flussraten und angelegten Drücke auf die Tropfenbildungsregime und auf die resultierende Tropfengröße wurde betrachtet. Es stellte sich heraus, dass organische Lösungsmittel als disperse Phase verwendet werden müssen, um die angestrebte Fällungsreaktion von Wirkstoffpartikeln zu ermöglichen. Aus diesem Grund wurden 3D-Flow-Focusing-Systeme und für deren Fertigung ein zweistufiger Glas-Ätzprozess entwickelt. Diese Systeme ermöglichten eine stabile Emulgierung mit Fenofibrate beladener Ethylacetat-Tropfen mit Durchmessern unterhalb eines Mikrometers. Durch die anschließende Fällungsreaktion entstanden Fenofibrat-Nanopartikel, welche hinsichtlich ihrer Form, internen Struktur und Stabilität untersucht wurden.

Alternative Chemikalien und Zusammenstellungen wurden mit den Emulgiersystemen untersucht. Sechs organische Öle wurden in planaren Flow-Focusing-Systemen getestet. Vier weitere Lösungsmittel mit sehr geringer Toxizität wurden mit den 3D-Flow-Focusing-Systeme verwendet, um Fenofibrat-Partikel herzustellen. Griseofulvin wurde als alternativer Wirkstoff getestet.

Contents

1	Intr	roduction		
	1.1	Prepa	ration of Poorly Water-Soluble Drugs	
	1.2	Nanop	particle Preparation by Microfluidic Emulsification	
2	Fun	dament	tals 7	
	2.1	Emuls	ions	
		2.1.1	Droplet Sizes of Emulsions	
		2.1.2	Breakdown Processes	
		2.1.3	Surfactants	
		2.1.4	Emulsions for Pharmaceutical Applications 11	
		2.1.5	Diffusion and Solubility of Droplets	
	2.2	Micro	- and Nanoparticles	
		2.2.1	Crystallization & Precipitation	
		2.2.2	Suspensions	
		2.2.3	Particle Dissolution	
		2.2.4	Poorly Water-Soluble APIs 17	
	2.3	Micro	fluidics	
		2.3.1	Two-Phase Flows	
		2.3.2	Interfacial Tension	
		2.3.3	Dimensionless Numbers 21	
3 State of Current Research		urrent Research 23		
	3.1	Micro	fluidic Emulsification Systems	
		3.1.1	T-Junctions	
		3.1.2	Flow-Focusing 25	
		3.1.3	3D Flow-Focusing	
		3.1.4	Droplet Formation Regimes	
		3.1.5	Materials for Microfluidic Emulsification Devices 32	
	3.2	Micro	fluidic Preparation of Particles	
		3.2.1	Particle Formation in Microfluidic Droplets	
		3.2.2	Microfluidic Antisolvent Precipitation 34	

4 Materials & Methods			k Methods	37		
	4.1 Experimental Setup					
		4.1.1	Fluid Supply	38		
		4.1.2	Chip-to-World Interface	41		
		4.1.3	Optical Observation	42		
		4.1.4	Dynamic Light Scattering	44		
	4.2	Fabric	ation of Glass Flow-Focusing Devices	44		
		4.2.1	Wet-Chemical Etching of Glass	45		
		4.2.2	Etching of Small Structures	47		
		4.2.3	Fluid Ports	52		
		4.2.4	System Enclosure	54		
		4.2.5	Two-Step Glass Etching	58		
	4.3	Compo	ounds and Composition	61		
		4.3.1	Active Pharmaceutical Ingredients	62		
		4.3.2	Continuous Phase Fluids	63		
		4.3.3	Disperse Phase Fluids	63		
		4.3.4	Surfactants for API nanoparticles	66		
5	Plar	nar Flow-Focusing Results 69				
	5.1	Planar	Flow-Focusing Considerations	70		
	5.2	Planar	Flow-Focusing Geometries	70		
		5.2.1	Flow Rates in Planar Flow-Focusing	72		
		5.2.2	Channel Width in Planar Flow-Focusing	72		
		5.2.3	Constriction Length in Planar Flow-Focusing	73		
		5.2.4	Etch Depth for Planar Flow-Focusing	73		
		5.2.5	Regimes in Planar Flow-Focusing	74		
	5.3	Altern	ative Compounds and Compositions	76		
		5.3.1	Emulsification of Organic Oils	76		
		5.3.2	Emulsification of Ethyl Acetate	77		
6	3D	Flow-Fo	ocusing Results	79		
	6.1	3D Flo	ow-Focusing Considerations	80		
	6.2	Contro	bl Parameter Adjustments	80		
	6.3	3.3 3D Flow-Focusing Geometry				
		6.3.1	Smallest Channel Dimensions	85		
		6.3.2	Continuous Phase Channel Dimensions	85		
		6.3.3	Constriction Length	86		
		6.3.4	Final 3D Flow-Focusing Geometry	87		

	6.4	Regimes in 3D Flow-Focusing Devices	87
	6.5	Droplet Sizes in 3D Flow-Focusing	88
	6.6	3D Flow-Focusing for Efficient and Stable Particle Precipitation	91
		6.6.1 Particle Filters	91
		6.6.2 On-Chip Concentration	93
	6.7	Alternative Compounds and Compositions	96
		6.7.1 Alternative API	96
		6.7.2 Alternative Solvents	97
7	Dru	g Nanoparticles	103
	7.1	Drug Nanoparticle Measurements	104
		7.1.1 Scanning Electron Microscopy	104
		7.1.2 Differential Scanning Calorimetry	107
		7.1.3 Transmission Electron Microscopy and Selected Area	
		Diffraction	108
		7.1.4 Molecular Structure of Fenofibrate Nanoparticles	109
	7.2	Nanosuspension Stability	110
8	Con	clusion and Outlook	113
	8.1	Conclusion	113
	8.2	Outlook	115
9	Bibl	iography	117
	9.1	List of References	117
	9.2	List of Own Publications	136
	9.3	Supervised Student Projects	139
Ar	pend	lix	141
•	Α	Process Plan for 3D Flow-Focusing Devices	141

List of Acronyms

Notation	Description		
API	Active pharmaceutical ingredient		
BCS	Biopharmaceutics Classification System		
CAN	Ceric ammonium nitrate		
CNC	Computerized numerical control		
CP	Continuous phase		
DAQ	Data acquisition		
DCM	Dichloromethane		
DI water	De-ionized water		
DLS	Dynamic light scattering		
DMSO	Dimethyl sulfoxide		
DP	Disperse phase		
DRIE	Deep reactive-ion etching		
DSC	Differential scanning calorimetry		
EA	Ethyl acetate		
EPR	Electro-pneumatic regulator		
fs-laser	Femtosecond laser		
GMP	Good manufacturing practice		
H_2O	Water		
H_3PO_4	Phosphoric acid		
$HClO_4$	Perchloric acid		
HF	Hydrogen fluoride		
HMDS	Hexamethyldisiloxane		
HPLC	High-pressure liquid chromatography		
HTS	High throughput screening		
I_2	Iodine		
ICH	International Conference on Harmonisation		
IMT	Institut für Mikrotechnik		
	Institute of Microtechnology		

Notation	Description
IPhT	Institut für Pharmazeutische Technologie
	Department of Pharmaceutics
IUPAC	International Union of Pure and Applied Chemistry
KI	Potassium iodide
LSM	Laser scanning microscope
MCT	Medium-chain triglyceride
MEMS	Microelectromechanical systems
MST Kongress	MikroSystemTechnik Kongress
N ₂	Nitrogen
O/W	Oil-in-water
O/W/O	Oil-in-water-in-oil
O_2	Oxygen
PCL	Polycaprolactone
PDE	Permitted daily exposure
PDMS	Poly(dimethylsiloxane)
PEG	Polyethylene glycol
PEG-PLGA	Poly(ethylene glycol)-b-poly(lactide-co-glycolide)
PI	Polyimide
PMMA	Poly(methyl methacrylate)
PTFE	Polytetrafluoroethylene
PVZ	Zentrum für Pharmaverfahrenstechnik
	Center of Pharmaceutical Engineering
SAD	Selective area diffraction
SAXS	Small-angle X-ray scattering
SDS	Sodium dodecyl sulfate
SEM	Scanning electron microscope
SPhERe	Symposium on Pharmaceutical Engineering Research
SSA	Specific surface area
SynFoBiA	Neuartige Synthese- und Formulierungsverfahren für
	schwerlösliche Arzneistoffe und empfindliche Biophar-
	mazeutika
	Novel Synthesis and Formulation Methods for Poorly
	Soluble Drugs and Sensitive Biopharmaceuticals
μTAS	Micro total analysis systems
TEM	Transmission electron microscopy

Notation	Description
TU Braunschweig	Technische Universität Braunschweig
	Technical University Braunschweig
W/O	Water-in-oil
W/O/W	Water-in-oil-in-water
XRD	X-ray diffraction

List of Symbols

\mathbf{Symbol}	\mathbf{Unit}	Description
A	m^2	Area
C	$ m gkg^{-1}$	Concentration
C_s	$ m gkg^{-1}$	Saturation solubility
Ca	_	Capillary number
CV	%	Coefficient of variance
D	${ m m}^2{ m s}^{-1}$	Diffusion coefficient
d_m	m	Mean diameter
G	J	Gibbs free energy
H	m	Height of the channel
h	m	Thickness of the diffusion layer
H_c	m	Height of the continuous phase channel
H_d	m	Height of the disperse phase channel
H_e	m	Etching depth
H_o	m	Height of the constriction channel
L	m	Characteristic length
L_o	m	Length of the constriction channel
P	Pa	Pressure
P_c	Pa	Pressure applied to the continuous phase fluid
P_d	Pa	Pressure applied to the disperse phase fluid
P_o	Pa	Pressure applied to the product outlet
Q_c	${ m m}^3{ m s}^{-1}$	Volumetric flow rate of the continuous phase fluid
Q_d	${ m m}^3{ m s}^{-1}$	Volumetric flow rate of the disperse phase fluid
r	m	Radius
Re	_	Reynolds number
S	m^2	Surface area
s	m	Proximity distance
T	Κ	Temperature
t	s	Time

\mathbf{Symbol}	\mathbf{Unit}	Description
t_R	m	Thickness of the resist
u	${ m ms^{-1}}$	Fluid velocity
V	m^3	Volume
W_c	m	Width of the continuous phase channel
W_d	m	Width of the disperse phase channel
W_e	m	Width after etching
W_m	m	Width of the masking layer
W_{min}	m	Minimal attainable structure width
W_o	m	Width of the constriction channel
Wout	m	Width of the outlet channel
λ	_	Viscosity ratio
λ_L	m	Wavelenth
μ	Pas	Dynamic viscosity
μ_c	Pas	Dynamic viscosity of the continuous phase fluid
μ_d	Pas	Dynamic viscosity of the disperse phase fluid
φ	_	Flow rate ratio
ρ	${ m kg}{ m m}^{-3}$	Density of the fluid
σ	$ m Nm^{-1}$	Interfacial tension
σ_{la}	${ m Nm^{-1}}$	Interfacial tension of the liquid/gas interface
σ_{sq}	${ m Nm^{-1}}$	Interfacial tension of the solid/gas interface
σ_{sl}	${ m Nm^{-1}}$	Interfacial tension of the solid/liquid interface
θ	0	Contact angle