

Automatisierungstechnik

Markus Schiemann

Entwicklung eines modularen Sicherheitskonzeptes zur Mobilitätsund Produktivitätssteigerung der Mensch-Roboter-Kollaboration im industriellen Einsatz – *SmartSafety*

Entwicklung eines modularen Sicherheitskonzeptes zur Mobilitäts- und Produktivitätssteigerung der Mensch-Roboter-Kollaboration im industriellen Einsatz - *SmartSafety*

Von der Fakultät für Maschinenbau, Elektro- und Energiesysteme der Brandenburgischen Technischen Universität Cottbus-Senftenberg zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

vorgelegt von

Master of Science

Markus Schiemann

geboren am 31.01.1989 in Nürtingen, Deutschland

Vorsitzende: apl. Prof. Dr.-Ing. habil. Dr. paed. Annette Hoppe

Gutachter: Prof. Dr.-Ing. Ulrich Berger Gutachter: Prof. Dr.-Ing. Jörg Krüger

Tag der mündlichen Prüfung: 20.12.2019

Berichte aus dem Lehrstuhl Automatisierungstechnik BTU Cottbus-Senftenberg

Herausgeber: Prof. Dr.-Ing. Ulrich Berger

Markus Schiemann

Entwicklung eines modularen Sicherheitskonzeptes zur Mobilitäts- und Produktivitätssteigerung der Mensch-Roboter-Kollaboration im industriellen Einsatz – *SmartSafety*

> Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Cottbus-Senftenberg, BTU, Diss., 2019

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7210-5 ISSN 1864-5789

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort des Herausgebers

Die Automatisierungstechnik bildet eine Schlüsseltechnologie für die Steigerung der Produktinnovation und die Verbesserung von Wertschöpfungsprozessen. Als Konsequenz einer globalen Wirtschaftsstruktur müssen alle Unternehmensbereiche wie Entwicklung, Produktion und Güterverkehr in einen übergreifenden Kontext gestellt und behandelt werden. Dabei steht die informationstechnische Verknüpfung verbundener Unternehmen und Unternehmensbereiche bei stetig veränderlichen Aufgabenstellungen und Randbedingungen eine besondere Herausforderung dar. Die Automatisierung des betrieblichen und betriebsübergreifenden Informationsflusses sowie die Einbindung des Menschen in allen Phasen des Entwicklungs- und Leistungsprozesses bildet daher die vordringliche Aufgabenstellung für Forschung und Entwicklung. Durch den zielgerichteten, systematischen Einsatz und die ständig aktualisierte Beurteilung und Bewertung automatisierungstechnischer Lösungen wird die schnelle Umsetzung und Einführung hochwertiger und zukunftsweisender Innovationen gesichert.

Ziel der Forschungsarbeiten am Lehrstuhl Automatisierungstechnik der Brandenburgischen Technischen Universität Cottbus-Senftenberg (BTU) ist die kontinuierliche Verbesserung der automatisierungstechnischen Methoden und Verfahren im Hinblick auf fortgeschrittene Produktionsstrukturen. Ein weiterer Schwerpunkt ist die Entwicklung integrierter Fertigungs und Montagesysteme unter Einsatz neuartiger Steuerungstechnik. Dazu werden leistungsfähige Entwurfswerkzeuge der Digitalen Fabrik erprobt und weiterentwickelt. Durch die Bereitstellung modernster Laborausstattung und die Zusammenarbeit mit industriellen und institutionellen Technologieführern wird der Stand der Technik in Wissenschaft und Forschung aktualisiert abgebildet. Nationale und internationale Forschungsarbeiten zu ganzheitlichen Automatisierungskonzepten, den Industrial Life Cycle Automation, runden das Aufgaben- und Leistungsspektrum des Lehrstuhls ab. Die in dieser Buchreihe erscheinenden Bände stammen aus den Forschungsarbeiten des Lehrstuhls Automatisierungstechnik der BTU Cottbus-Senftenberg. In diesen Bänden werden neue Resultate und Erkenntnisse aus Forschung und Entwicklung veröffentlicht. Die Berichte aus dem Lehrstuhl Automatisierungstechnik sollen Forschung, Entwicklung und Anwendung zu automatisierungstechnischen Fragestellungen enger verknüpfen und daraus Potential für zukünftige Innovationen erzeugen.

Kurzfassung

Die Mensch-Roboter-Kollaboration wird als ein elementarer Baustein zur Steigerung der Flexibilität und Produktivität moderner Produktionssysteme angesehen. Dieses Ziel soll durch den kombinierten Einsatz sensitiver, mobiler Roboter, sogenannter Leichtbauroboter (LBR), mit dem Menschen erfolgen. Schutzzäune entfallen bei dieser Art der Zusammenarbeit, jedoch muss weiterhin die Sicherheit des Menschen gewährleistet sein. Soll der Mensch seine kognitiven Fähigkeiten nutzen und auf die Mobilität der LBR zurückgreifen, kann er eine Ortsveränderung im Produktionssystem durchführen. Bei einer Ortsveränderung in eine neue Arbeitsumgebung ist jedoch eine zeitaufwendige Wiederinbetriebnahme des MRK-Systems notwendig, die in den meisten Fällen nur durch einen Experten möglich ist.

Diese Arbeit stellt daher ein Sicherheitskonzept für MRK-Systeme vor (*SmartSafety*), um die Mobilität und Produktivität bei Gewährleistung aller Sicherheitsaspekte zu steigern und dabei den Nutzer zu befähigen als zentraler Bestandteil des Systems agieren zu können.

Zu Beginn werden ein Rahmenwerk für das Thema erarbeitet und anhand einer Problembetrachtung die unterschiedlichen Einflussfaktoren auf MRK-Systeme erläutert. Daraus werden die Anforderungen an den Sicherheitsprozess und die dafür zu entwickelnden Komponenten abgeleitet. Darauf aufbauend werden die sicherheitstechnischen Aspekte der Mensch-Roboter-Kollaboration, inklusive des iterativen Inbetriebnahmeprozesses, detailliert beleuchtet. Im Rahmen einer Bewertung in der Praxis eingesetzter MRK-Systeme sowie von Konzepten und Methoden aus der Wissenschaft anhand der abgeleiteten Anforderungen, werden anschließend die Handlungsbedarfe ermittelt. Diese führen zur Entwicklung eines passiven Sicherheitssystems (SmartSkin) und einer durch den Nutzer durchführbaren Wiederinbetriebnahme mittels Softwareunterstützung (SmartAssistant) für MRK-Systeme.

Abschließend wird eine Validierung des Sicherheitskonzeptes anhand zweier Betriebsversuche in der Motorenmontage der Daimler AG vorgestellt. Alle Bestandteile der Wiederinbetriebnahme, sowohl die entwickelte Hard- als auch Software sind durch den internen Arbeitsschutz freigegeben und unterliegen den geltenden Gesetzen, Normen und Richtlinien. Eine Umfrage hinsichtlich der Gebrauchstauglichkeit der einzelnen Module bei Anwendern, Entwicklern und Sicherheitsexperten schließt die Validierung ab.

Das in dieser Arbeit entworfene Sicherheitskonzept für MRK-Systeme stellt einen weiteren Schritt zur größeren Verbreitung dieser Anlagen in der Praxis dar, da erst dadurch ein mobiler, menschzentrierter und wirtschaftlicher Einsatz möglich wird.

Abstract

Human-robot collaboration is seen as an elementary building block for increasing the flexibility and productivity of modern production systems. This goal is to be achieved through the combined use of sensitive, mobile robots, so-called lightweight robots (LWR), with humans. Protective fences are not required for this type of cooperation, but human safety must continue to be guaranteed. If humans are to use their cognitive abilities and fall back on the mobility of the LWR, they can relocate the production system. In case of a change of location into a new working environment, however, a time-consuming recommissioning of the HRC-system is necessary and in most cases only possible by an expert.

This work therefore presents a safety concept for HRC-systems (*SmartSafety*) in order to increase mobility and productivity while guaranteeing all safety aspects and enabling the user to act as a central component of the system.

At the beginning, a framework for the topic will be developed and the different influencing factors on HRC-systems will be explained on the basis of a problem analysis. From this, the requirements for the security process and the components to be developed for it are derived. Building on this, the safety aspects of the human-robot collaboration, including the iterative commissioning process, are examined in detail. Within the framework of an evaluation of HRC-systems used in practice as well as of concepts and methods from science on the basis of the derived requirements, the need for action is then determined. These lead to the development of a passive safety system (SmartSkin) and a re-commissioning by the user via software support (SmartAssistant) for HRC-systems.

Finally, a validation of the safety concept on the basis of two operating tests in the engine assembly department of Daimler AG is presented. All components of the recommissioning, both the developed hardware and software are approved by the internal occupational safety and are subject to the applicable laws, standards and guidelines. A survey of users, developers and safety experts regarding the usability of the individual modules completes the validation process.

The safety concept for HRC-systems developed in this thesis represents a further step towards the wider dissemination of these systems in practice, as only then will mobile, human-centered and economical use in practice become possible.

Vorwort des Verfassers

Die Arbeit entstand im Rahmen meiner Tätigkeit bei der Daimler AG in der Abteilung TF/VRT, zuständig für die Entwicklung neuer Verfahrens- und Fügetechnologien.

Für eine hervorragende Betreuung während der gesamten Promotionszeit gilt mein besonderer Dank Herrn Prof. Dr.-Ing. Ulrich Berger, Leiter des Lehrstuhls Automatisierungstechnik an der Brandenburgischen Technischen Universität Cottbus-Senftenberg. Er brachte stets Engagement und eine Vielzahl innovativer und wissenschaftlicher Ideen ein, durch die die Arbeit den finalen Schliff erhielt. Herrn Prof. Dr.-Ing. Jörg Krüger, Leiter des Lehrstuhls für Industrielle Automatisierungstechnik an der-Technischen Universität Berlin, danke ich für die Mühen des Korreferates und der aufmerksamen Durchsicht der Arbeit.

Herzlich danken möchte ich auch meinen Kollegen bei der Daimler AG für die permanente Forderung und Förderung. Herrn Dr.-Ing. Matthias Reichenbach, danke ich für die Initiierung des Themas. Für die kreative und konstruktive Zusammenarbeit, ebenso wie für die akademischen Ratschläge und die methodisch wertvolle Kritik bin ich speziell Herrn Dipl.-Ing. Matthias Schreiber, Herrn Dr.-Ing. Jan Hodapp, Herrn Dr.-Ing. Mayur Andulkar und Herrn Marcus Kipp dankbar. Herzlich danken möchte ich auch allen Studenten, die die von mir betreuten Aufgaben annahmen und mit viel Energie bearbeiteten.

Mein besonderer Dank gilt meiner Familie, die mein Lebensmittelpunkt ist und den wesentlichen Rückhalt für das Anfertigen dieser Arbeit gab. Meinen Eltern danke ich für die bedingungslose und uneingeschränkte Unterstützung und Förderung meiner Ausbildung. Für Eva Maria sei gesagt: "Dankbarkeit ist das Gedächtnis des Herzens".

Markus Schiemann

Bempflingen, im Dezember 2019

Inhaltsverzeichnis

				Seite
Ab	bilduı	ngsverz	eichnis	XIII
Та	bellen	verzeic	hnis	XVII
Ab	kürzu	ıngsverz	zeichnis	XIX
Ve	rzeich	nis der	Formelzeichen und Symbole	XXI
1	Einle	eitung		1
	1.1	Motiva	ation und Herausforderungen	1
	1.2		ge der Arbeit und Hypothese	
	1.3	Aufbai	ı der Arbeit	3
2	Prol	olembet	rachtung und Anforderungsanalyse	5
	2.1		itliche Definitionen und Begriffe	
		2.1.1	Die Wandlungsfähigkeit und ihre Elemente	
		2.1.2	Zusammenarbeit von Mensch und Roboter im industriellen Umfeld.	
	2.2		sforderungen bei Mobilität und Produktivität von Mensch-Roboter- oration-Systemen	14
		2.2.1	Sicherheit	15
		2.2.2	Wirtschaftlichkeit	16
		2.2.3	Programmierung	19
		2.2.4	(Wieder-) Inbetriebnahme	20
		2.2.5	Ergonomie	21
	2.3	Anford indust	derungsanalyse für Mensch-Roboter-Kollaboration-Systeme im riellen Montageumfeld	22
	2.4	Zusam	menfassung der Anforderungen	24
3	Stan	ıd der T	echnik und der Wissenschaft	27
	3.1	Einsat	zpotentiale der Mensch-Roboter-Kollaboration	27
		3.1.1	Arten der Zusammenarbeit	28
		3.1.2	Vor-und Nachteile der Mensch-Roboter-Kollaboration	30

	3.2	Sicherl	neit bei der Mensch-Roboter-Kollaboration	30
		3.2.1	Gesetzliche und normative Vorgaben	32
		3.2.2	Bestehende Forschungsansätze und Technologien für die Kontaktbetrachtung zwischen Mensch und Roboter	42
		3.2.3	Zusammenfassung und Bewertung der Sicherheitssysteme	49
	3.3	Inbetri	ebnahme	52
		3.3.1	Konformitätsbewertungsverfahren	52
		3.3.2	Risiko- und Gefährdungsbeurteilung	55
		3.3.3	Arbeitsfreigabesystem	56
		3.3.4	Semantische Technologien	57
		3.3.5	Bestehende Forschungsansätze und Technologien der Inbetriebnahme	60
		3.3.6	Zusammenfassung und Bewertung der Inbetriebnahmekonzepte	61
	3.4	Zusam	menfassung und Fazit	63
4	Konz	zeptualis	sierung	65
	4.1	Annahi	men für das Konzept	65
	4.2	Konzep	ot von SmartSafety für die Mensch-Roboter-Kollaboration	66
5	Ent	wicklung	g der Systemmodule	69
	5.1	Entwic	klung eines passiven Sicherheitsmoduls	69
		5.1.1	Kollisionsprozess	69
		5.1.2	Technische Spezifikationen des Leichtbauroboters	73
		5.1.3	Aufbau des Kollisionsprüfstandes und Durchführung des Messprozesse	s76
		5.1.4	Durchführung der Kollisionstests	78
		5.1.5	Auswertung der Kraft- und Druckmessungen	82
		5.1.6	Entwicklung eines Tests zur Ermittlung der Wärmeübertragung	84
		5.1.7	Entwicklung eines geeigneten Materials	85
	5.2		nzsystem SmartAssistant zur Wiederinbetriebnahme von Mensch-Roboto oration-Systemen	
		5.2.1	Ontologien – Ein Überblick	94
		5.2.2	Verwaltungsschale	95
		5.2.3	Modularität	98
		5.2.4	Ontologie für die Mensch-Roboter-Kollaboration	100

		5.2.5	Anwendungsbeispiel SmartAssistant	103
		5.2.6	Werkzeuge zur Realisierung von SmartAssistant	104
		5.2.7	Nutzerseitige Benutzeroberfläche	105
		5.2.8	Systemverarbeitung in SmartAssistant	109
	5.3	Zusam	menfassung der entwickelten Systemmodule	112
6	Vali	dierung	des Sicherheitskonzeptes SmartSafety	113
	6.1	Validie	erungsziele und Durchführung der Betriebsversuche	113
		6.1.1	Betriebsversuch 1	116
		6.1.2	Betriebsversuch 2	118
	6.2	Usabil	ity-Studie zu <i>SmartSafety</i>	120
	6.3	Zusam	nmenfassung und Bewertung der Validierung	123
7	Zusa	ammenf	assung und Ausblick	127
	7.1	Zusam	menfassung der Ergebnisse und Diskussion	127
	7.2	Ausbli	ck	128
8	Lite	raturvei	rzeichnis	129
9	Anh	ang		155
	9.1	Beguta	achtete Veröffentlichungen des Autors	155
	9.2	Besteh	nende Applikationen und praxisnahe Forschungsansätze	158
	9.3	Biome	chanische Grenzwerte unterschiedlicher Körperregionen	164
	9.4	Usabil	ity-Studie	166

Abbildungsverzeichnis

		Seite
Abbildung 1-1:	Struktur und methodischer Aufbau der Arbeit	3
Abbildung 2-1:	Stufen der Veränderungsfähigkeit von Produktionen	5
Abbildung 2-2:	Unterschied von Flexibilität und Wandlungsfähigkeit	6
Abbildung 2-3:	Wandlungsbefähiger	7
Abbildung 2-4:	Kontakthäufigkeit und Expertise einzelner Benutzergruppen	11
Abbildung 2-5:	Herausforderungen der Mensch-Roboter-Kollaboration	15
Abbildung 2-6:	Gründe für den Einsatz von Mensch-Roboter-Kooperation	16
Abbildung 2-7:	Ökonomisches Prinzip	17
Abbildung 2-8:	Wiederinbetriebnahme im Lebenszyklus eines Produktionssystems	21
Abbildung 3-1:	Definition der Zusammenarbeitsgrade von Mensch und Roboter	28
Abbildung 3-2:	Direkte Mensch-Roboter-Kollaboration	29
Abbildung 3-3:	Übersicht relevanter Gesetze und Normen	32
Abbildung 3-4:	Prozess der Risikominderung	34
Abbildung 3-5:	Körpermodell	38
Abbildung 3-6:	Transienter und quasi-statischer Kraft- / Druckverlauf	39
Abbildung 3-7:	Funktionsweise Fujifilm-Prescale-Druckmessfolien	40
Abbildung 3-8:	Datenverarbeitung der Druckmesssysteme	41
Abbildung 3-9:	Sicherheitszonen – Mensch-Roboter-Kooperation	43
Abbildung 3-10:	Haptische Wahrnehmung durch multimodale Roboterhaut	44
Abbildung 3-11:	3D-Druckteile der Soft Skin	45
Abbildung 3-12:	Werkzeughaltevorrichtung	46
Abbildung 3-13:	Gelenkschlüssel	47
Abbildung 3-14:	Endeffektor-Airbag	48
Abbildung 3-15:	Ableitung des Handlungsbedarfs aus der Bewertungbestehender Applikationen und praxisnaher Forschungsansätze passiver Sicherheitsmodule	51
Abbildung 3-16:	Trennung zwischen Hersteller- und Betreiberpflichten	52
Abbildung 3-17:	Unterlagen der technischen Dokumentation von Maschinen	53
Abbildung 3-18:	Zusammensetzung der Risikobeurteilung	55
Abbildung 3-19:	Bestimmung des Performance Levels	56

Abbildung 3-20:	bestehender Applikationen und praxisnaher Forschungsansätze von Inbetriebnahmen	62
Abbildung 4-1:	Konzept von SmartSafety	67
Abbildung 5-1:	Zwei-Körper-Modell	70
Abbildung 5-2:	Traglast-Schwerpunkt	74
Abbildung 5-3:	Roboterachsen und Arbeitsbereich am Beispiel eines Kuka iiwa	75
Abbildung 5-4:	Versuchsaufbau des Kollisionstests	77
Abbildung 5-5:	Bedienung und Programmierung des Robotersystems	79
Abbildung 5-6:	Kritische Kontaktflächen	80
Abbildung 5-7:	Trajektorien der Stoßversuche mit den Kontaktflächen	81
Abbildung 5-8:	Kritische Kollisionspositionen	84
Abbildung 5-9:	Bewertung von 3D-Druck-Materialien	86
Abbildung 5-10:	Unterschiede im Aufbau 3D-gedruckter Strukturen	87
Abbildung 5-11:	3D-gedruckte Schuhsohle	88
Abbildung 5-12:	Kraftverläufe bei unterschiedlichen Robotergeschwindigkeiten	89
Abbildung 5-13:	Eindrücktiefen bei unterschiedlichen Robotergeschwindigkeiten	90
Abbildung 5-14:	Transiente Kräfte unterschiedlicher Materialien	91
Abbildung 5-15:	Quasi-statische Kräfte unterschiedlicher Kräfte	91
Abbildung 5-16:	Quasi-statische Drücke unterschiedlicher Materialien	92
Abbildung 5-17:	Einkleidung des Leichtbauroboters – SmartSkin	92
Abbildung 5-18:	Temperaturverläufe – EPU 41	93
Abbildung 5-19:	Oberflächenkomponenten von SmartAssistant	94
Abbildung 5-20:	Semantische Verknüpfung eines Familienstammbaums	95
Abbildung 5-21:	Modell einer Verwaltungsschale	96
Abbildung 5-22:	Semiotisches Dreieck	97
Abbildung 5-23:	SPARQL-Endpoint eines Fusekiservers	97
Abbildung 5-24:	Modulare MRK-Verwaltung	99
Abbildung 5-25:	Baukastenprinzip der MRK-Verwaltung	101
Abbildung 5-26:	Ausschnitt der MRK-Safety-Ontologie	103
Abbildung 5-27:	Modell eines MVC-Patterns	104
Abbildung 5-28:	SmartAssistant – Systematischer Aufbau	105
Abbildung 5-29:	SmartAssistant – Startbildschirm	106
Abbildung 5-30:	SmartAssistant - LocMap	107

Abbildung 5-31:	SmartAssistant - SuperMarket	108
Abbildung 5-32:	Stufen des FingerTip	109
Abbildung 5-33:	OntoPROD - Aufbau	110
Abbildung 5-34:	Kommunikation zwischen Fuseki Triplestore und SmartAssistant	111
Abbildung 6-1:	Qualifikationsniveaus der einzelnen Benutzergruppen – Betriebsversuch 1	114
Abbildung 6-2:	Qualifikationsniveaus der einzelnen Benutzergruppen – Betriebsversuch 2	114
Abbildung 6-3:	Validierung von SmartSafety – Vormontage Kettenkastendeckel	116
Abbildung 6-4:	Dauer der Durchführung des SmartAssistant – Betriebsversuch 1	117
Abbildung 6-5:	Schraubreihenfolge und Verfahrwege – Kettenkastendeckel	118
Abbildung 6-6:	Validierung von SmartSafety – Integrierter Starter-Generator (ISG)	118
Abbildung 6-7:	Dauer der Durchführung des SmartAssistant – Betriebsversuch 2	119
Abbildung 6-8:	Schraubreihenfolge und Verfahrwege – Integrierter Starter-Generator ISG	120
Abbildung 6-9:	Ergebnisse der Usability-Studie	122
Abbildung 6-10:	Nutzer beim Montieren eines Kettenkastendeckels mit SPA	122
Abbildung 6-11:	Bewertung von SmartSafety	125
Abbildung 9-1:	Ableitung des Handlungsbedarfs aus der Bewertungbestehender Applikationen und praxisnaher Forschungsansätze $(1/2)$	158
Abbildung 9-2:	Ableitung des Handlungsbedarfs aus der Bewertungbestehender Applikationen und praxisnaher Forschungsansätze (2/2)	159
Abbildung 9-3:	Beschreibung bestehender Applikationen undpraxisnaher Forschungsansätze (1/4)	160
Abbildung 9-4:	Beschreibung bestehender Applikationen undpraxisnaher Forschungsansätze (2/4)	161
Abbildung 9-5:	Beschreibung bestehender Applikationen undpraxisnaher Forschungsansätze (3/4)	162
Abbildung 9-6:	Beschreibung bestehender Applikationen undpraxisnaher Forschungsansätze (4/4)	163
Abbildung 9-7:	Biomechanische Grenzwerte (1/2)	164
Abbildung 9-8:	Biomechanische Grenzwerte (2/2)	165
Abbildung 9-9:	Usability-Studie zum Sicherheitskonzept SmartSafety	166

Tabellenverzeichnis

		Seite
Гabelle 2-1:	Unterschiede von Industrierobotern und Leichtbaurobotern	8
Гabelle 2-2:	Zusammenfassung der Anforderungen an SmartSafety	25
Гabelle 3-1:	Vor- und Nachteile der Mensch-Roboter-Kollaboration	30
Гabelle 3-2:	Zusammenfassung der Anforderungen an SmartSkin	50
Гabelle 3-3:	Zusammenfassung der Anforderungen an SmartAssistant	61
Гabelle 6-1:	Tätigkeiten bei der Wiederinbetriebnahme des MRK-Systems	115
Гabelle 6-2:	Fragen zur Beurteilung der Gebrauchstauglichkeit	121

Abkürzungsverzeichnis

API	Application Programming Interface
BAuA	Bundesanstalt für Arbeitsschutz und Arbeitsmedizin
BetrS	ichVBetriebssicherheitsverordnung
BG	Berufsgenossenschaft
BGHM	1Berufsgenossenschaft Holz und Metall
BSD	Berkeley Software Distribution
CAD	Computer-Aided Design
CIRC	
CLIP	
CPS	Cyber-physisches System
DGUV	Deutsche Gesetzliche Unfallversicherung
DIN	Deutsches Institut für Normung
EPU	Elastomeric Polyurethane
FTS	Fahrerloses Transportsystem
GMS	
GS	
GUI	Graphical User Interface
IBN	Inbetriebnahme
IFA	Institut für Arbeitsschutz
iiwa	intelligent industrial work assistant (Produkt der KUKA AG)
LABS	Lackbenetzungsstörende Substanzen
LIN	Linear
LLW	Super Low Pressure
MA	
MRL	
MRK	
MVC	Model-View-Controler
OEM	Original Equipment Manufacturer
OPC-U	JAOpen Plattform Communications-Unified Architecture
OWL	Web Ontology Language
PDS	Power Distribution Sensor

ProdSG	Produktsicherheitsgesetz
	Permanent Safety Monitoring
PTP	Point-to-point
RDF	
	Rapid Entire Body Assessment
RMS	Reconfigurable Manufacturing System
SPA	
SPARQL	Simple Protocol and RDF Query Language
SPL	Spline
SPS	
SQL	Structured Query Language
	Terse RDF Triple Language
	Uniform Resource Locator
W3C	World Wide Web Consortium
W-IBN	Wiederinbetriebnahme
WLAN	Wireless Local Area Network
XML	Extensible Markup Language

Verzeichnis der Formelzeichen und Symbole

A	$[m^2]$	Fläche
a	$[m/s^2]$	Beschleunigung
e		Stoßzahl, Restitutionskoeffizient
F	[N]	Kraft
I	$[m^4]$	Flächenträgheitsmoment
J	[kg*m2]	Massenträgheitsmoment
K	$[N/m^2]$	Kompressionsmodul
m_{H}	[kg]	effektive Masse einer Körperregion
$m_{R} \\$	[kg]	effektive Masse des Roboters
p	[kg*m/s]	Impuls
v_{Rel}	[m/s]	Relativgeschwindigkeit (richtungsabhängig)