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Abstract

Optimization methods are applied to a variety of problems in engineering disciplines. In structural
engineering, however, most constructions have a unique character, and optimization hence remains
only sparingly used. In addition to other approaches, topology optimization carries excellent potential
for the application to structural engineering problems. By providing information on where to place
or remove material within a prescribed design domain, topology optimization can assist engineers
at different levels of the design process. The more practice-oriented works in this field either focus
on generating qualitative design suggestions, which still require manual post-processing, or resort to
simplified calculation models, which inadequately describe the behavior of reinforced concrete.

The main objective of this thesis is to make topology optimization more readily available for practical
application in structural engineering and to fully integrate it into the design process in order to provide
reliable, qualitatively and quantitatively ready-to-use reinforced concrete (RC) concepts. To achieve this
goal, this thesis is divided into two main parts.

The first part focuses on the development of a topology optimization approach tailored to RC design.
This approach is based on combined truss—continuum topology optimization (7C7T0), which couples
continuum- and truss elements in a single analysis model. Trusses are associated with steel, whereas
continua represent the concrete matrix by employing a bilinear material model and hence offer an
appropriate representation of RC. A new Optimality Criteria-based solution strategy is deduced to
improve the usability of TCTO. By employing this new solution strategy, a numerical study is able to
identify the application limits of the most relevant input parameters, which serve as the basis of practical
recommendations for generating accurate optimization results that follow engineering theory. Building
upon these results, TCTO is further advanced to facilitate the consideration of steel fiber- and hybrid
steel fiber—rebar reinforcements as well as robust multi-load optimization by including exclusive load
case combinations.

The second part of the thesis is devoted to the practical application and experimental validation of
the newly devised quantitative optimization methodology at the example of segmental lining longitudinal
joints. The experimental analyses comprise four individual series, which focus on the enhancement of the
joint by employing various reinforcement- and material concepts: low-deformation, welded rebar cages;
steel fibers with and without modification of their orientation; hybrid steel fiber—rebar configurations;
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and hybrid material schemes that combine standard materials and localized, high-performance steel
fiber-reinforced concrete additions in sensitive areas. The results provide several insights into both the
load-bearing behavior of concrete elements under partial area strip loading as well as segmental lining
longitudinal joints, which are transferred into practical design recommendations.
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