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SUMMARY

In the last decade, deep learning techniques have revolutionized the research field of
computer vision and reinforced data as the key element for predictive model generation.
Also in the medical domain, image processing solutions are increasingly data-driven.
However, the required quantity and quality of image and corresponding label data is
often a challenge in practice.

This dissertation describes a methodology to leverage the power of state-of-the-art
deep learning algorithms bypassing time-consuming, potentially noise-affected and
in its complexity limited manual data annotation. The main application focus is the
removal of cardiac computed tomography (CT) imaging artifacts. So-called forward
models for virtual artifact introduction are developed by incorporating prior knowledge
about the cardiac anatomy and CT imaging physics. They form the counterpart of the
desired deep-learning-based backward models for image enhancement. Artifact-free
clinical data is transformed by the forward models to produce pairs of artifact-perturbed
image data and underlying artifact parameters which serve as basis for predictive model
training. Estimation of artifact parameters is exclusively performed by convolutional
neural networks (CNNs) as these models exploit the low-level statistics of the underlying
medical images. The learned networks are used to detect, quantify and remove artifacts.

The proposed methodology is applied to two clinical relevant problems: coronary mo-

tion and pacemaker metal artifacts. Due to potential burring and concealing of anatomies
and anomalies in reconstructed CT image volumes, artifact reduction is defined as primary
goal. In the first application, a forward model is developed to retrospectively simulate mo-
tion during the CT acquisition. Pairs of motion-perturbed images and motion parameters
are generated. Based on this data, backward models for motion artifact measurement and
motion compensation are learned.
In the second application, a forward model inserts synthetic pacemaker leads into clinical
data without pacemakers. Based on the resulting pairs of metal-free and metal-affected
sinograms, CNNs are trained for metal removal directly in the projection domain.
Furthermore, the backward model is extended to localize metal positions inside the image
volume. In both applications, generalization capabilities of the learned models are verified
on data with real artifacts and with the aid of human observer ratings. In comparison
to existing model-based approaches for artifact detection and removal, similar or even
higher performances are achieved.

Both applications demonstrate that predictive models trained on synthetic data only
can generalize to real-world problems without the need of additional fine-tuning. The dis-
sertation provides a thorough analysis regarding strengths and challenges of labeled data
synthesis based on findings made in the addressed applications. The ability of high-level
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SUMMARY

label generation, the data- and the time-efficiency are the main benefits compared to tra-
ditional manual annotation. The understanding of the data acquisition physics and the
system processing enables efficient and high quality data generation. The proposed gen-
eral concept of knowledge-driven forward modeling and deep-learning-based predictive
backward modeling is extendable to different imaging modalities and clinical applications.
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