



Berichte aus dem Institut für Elektrische Energiewandlung

### **Marcel Maier**

Betrieb einer elektrisch erregten Synchronmaschine mittels kontaktloser, induktiver Energieübertragung auf den Rotor



Band 11



Betrieb einer elektrisch erregten Synchronmaschine mittels kontaktloser, induktiver Energieübertragung auf den Rotor

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor–Ingenieurs (Dr.–Ing.) genehmigte Abhandlung

> Vorgelegt von Marcel Maier aus Heidelberg

Hauptberichterin:Prof. Dr.–Ing. Nejila ParspourMitberichter:Prof. Dr.-Ing. Dr. h. c. Ralph Kennel

Tag der mündlichen Prüfung: 16.12.2019

Institut für Elektrische Energiewandlung der Universität Stuttgart

2020

Berichte aus dem Institut für Elektrische Energiewandlung

Band 11

**Marcel Maier** 

Betrieb einer elektrisch erregten Synchronmaschine mittels kontaktloser, induktiver Energieübertragung auf den Rotor

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Düren 2020

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2019

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7381-2 ISSN 2196-9213

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

### Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Akademischer Mitarbeiter am Institut für Elektrische Energiewandlung der Universität Stuttgart.

Besonderen Dank möchte ich meiner Hauptberichterin Frau Prof. Dr.-Ing. Nejila Parspour aussprechen, die mich währen meiner gesamten Zeit am Institut unterstützt und gefördert hat.

Zudem danke ich Herr Prof. Dr.-Ing. Dr. h. c. Ralph Kennel für die Übernahme des Mitberichts und das entgegengebrachte Interesse an der Arbeit.

Für die Hilfsbereitschaft und Unterstützung, die fachlichen Gespräche und Ratschläge, sowie für das äußerst angenehme Arbeitsklima und die gemeinsamen Aktivitäten auch außerhalb der Arbeitszeit danke ich meinen Kolleginnen und Kollegen am Institut.

Bei der Entwicklung der Prototypen der kontaktlosen Energieübertragungsstrecke waren die Mitarbeiter der Institutswerkstatt wesentlicher Bestandteil. Mein Dank gilt insbesondere dem Werkstattleiter Hermann Kattner.

Ebenfalls möchte ich der Vector Stiftung, insbesondere den Herren Hinderer, Litschel und Schelling danken, die mein Projekt finanziell unterstützt und damit ermöglicht haben.

Den von mir in wissenschaftlichen Arbeiten betreuten Studierenden und den wissenschaftlichen Hilfskräften danke ich für ihr Engagement. Ihre wertvollen Beiträge haben maßgeblich zum Gelingen dieser Arbeit beigetragen. Besonders möchte ich hier Michael Hagl, Patrick Kleemann, Stefan Klinke, David Maier und Oliver Zawadzki nennen.

Ein besonderer Dank gilt meiner Frau Veronika, meinen beiden Kindern und meiner Familie, die immer an mich geglaubt haben und mir die notwendige Unterstützung entgegengebracht haben.

Stuttgart, im April 2020

Marcel Maier

### Inhaltsverzeichnis

| Ab | Abkürzungsverzeichnis IX |                                                                  |     |  |  |  |  |  |  |
|----|--------------------------|------------------------------------------------------------------|-----|--|--|--|--|--|--|
| Sy | Symbolverzeichnis XI     |                                                                  |     |  |  |  |  |  |  |
| Zu | Zusammenfassung XIX      |                                                                  |     |  |  |  |  |  |  |
| Ab | strac                    |                                                                  | XXI |  |  |  |  |  |  |
| 1. | Einle                    | itung                                                            | 1   |  |  |  |  |  |  |
| 2. | Die                      | lektrisch erregte Synchronmaschine                               | 5   |  |  |  |  |  |  |
|    | 2.1.                     | Die EESM im Automotive-Bereich                                   | 6   |  |  |  |  |  |  |
|    |                          | 2.1.1. Continental und Renault                                   | 6   |  |  |  |  |  |  |
|    |                          | 2.1.2. ESKAM                                                     | 6   |  |  |  |  |  |  |
|    | 2.2.                     | Kontaktlose rotierende Energieübertragungsstrecken für EESMn .   | 7   |  |  |  |  |  |  |
|    |                          | 2.2.1. BRUSA                                                     | 7   |  |  |  |  |  |  |
| 3. | Theo                     | retische Grundlagen                                              | 9   |  |  |  |  |  |  |
|    | 3.1.                     | Induktivität                                                     | 9   |  |  |  |  |  |  |
|    | 3.2.                     | Der Transformator                                                | 10  |  |  |  |  |  |  |
|    | 3.3.                     | Die elektrisch erregte Synchronmaschine                          | 12  |  |  |  |  |  |  |
|    |                          | 3.3.1. Grundwellenmodell der EESM                                | 13  |  |  |  |  |  |  |
|    |                          | 3.3.2. Elektrisches Ersatzschaltbild                             | 14  |  |  |  |  |  |  |
|    |                          | 3.3.3. Wirkungsgradoptimierter Betrieb der EESM                  | 15  |  |  |  |  |  |  |
|    | 3.4.                     | Kontaktlose Energieübertragung                                   | 19  |  |  |  |  |  |  |
|    |                          | 3.4.1. Gegeninduktivität und Koppelfaktor                        | 19  |  |  |  |  |  |  |
|    |                          | 3.4.2. Blindleistungskompensation                                | 19  |  |  |  |  |  |  |
|    |                          | 3.4.3. Wicklungsgüte und Wirkungsgrad                            | 20  |  |  |  |  |  |  |
|    |                          | 3.4.4. Wirbelstromverluste in der Schirmung                      | 21  |  |  |  |  |  |  |
| 4. | Syst                     | emauslegung und Betrieb der kontaktlosen Energieübertra-         |     |  |  |  |  |  |  |
|    | gun                      | sstrecke                                                         | 23  |  |  |  |  |  |  |
|    | 4.1.                     | Anforderungen und Randbedingungen                                | 23  |  |  |  |  |  |  |
|    | 4.2.                     | Ubertragungsverhalten sekundärseitig parallel kompensierter Sys- |     |  |  |  |  |  |  |
|    |                          | teme                                                             | 24  |  |  |  |  |  |  |
|    |                          | 4.2.1. 1s2p-System                                               | 25  |  |  |  |  |  |  |
|    |                          | 4.2.2. 1p2p-System                                               | 29  |  |  |  |  |  |  |

|    |      | 4.2.3.   | Auswahl der Betriebsbereiche                              | 33 |
|----|------|----------|-----------------------------------------------------------|----|
|    | 4.3. | Einflus  | s der Verluste auf das Übertragungsverhalten              | 34 |
|    | 4.4. | Aufbau   | und Komponenten der Übertragungssysteme                   | 34 |
|    |      | 4.4.1.   | Brückengleichrichter und Lastwiderstand                   | 35 |
|    |      | 4.4.2.   | Tiefsetzsteller zur Stromregelung                         | 35 |
|    |      | 4.4.3.   | Halbbrücke für die Primärseite des 1s2p-                  |    |
|    |      |          | Übertragungssystems                                       | 36 |
|    |      | 4.4.4.   | Roverschaltung für die Primärseite des 1p2p-              |    |
|    |      |          | Übertragungssystem                                        | 37 |
|    | 4.5. | Berech   | nung der Bauteilparameter                                 | 39 |
|    |      | 4.5.1.   | Berechnung der Induktivitäten für das 1s2p-System         | 40 |
|    |      | 4.5.2.   | Bestimmung der Induktivitäten für das 1p2p-System         | 41 |
|    |      |          |                                                           |    |
| 5. | Kons | struktio | on, Berechnung und Aufbau                                 | 43 |
|    | 5.1. | Konstru  | uktion                                                    | 43 |
|    |      | 5.1.1.   | Klärung der Aufgabenstellung                              | 43 |
|    |      | 5.1.2.   | Konzeption                                                | 44 |
|    |      | 5.1.3.   | Entwurf                                                   | 50 |
|    |      | 5.1.4.   | Ausarbeitung                                              | 54 |
|    | 5.2. | Berech   | nung                                                      | 59 |
|    |      | 5.2.1.   | Prototyp ohne ausgeprägte Flussführung                    | 60 |
|    |      | 5.2.2.   | Bauraum und Kosten optimierter Prototyp                   | 62 |
|    |      | 5.2.3.   | Mechanisch optimierter Prototyp                           | 66 |
|    |      | 5.2.4.   | Einfluss der Frequenz und des Schirmungsmaterials auf     |    |
|    |      |          | Wirbelstromverluste                                       | 70 |
|    | 5.3. | Aufbau   | 1 des Systems                                             | 75 |
|    |      | 5.3.1.   | Aufbau des Prototyps mit nicht geschlossener Flussführung | 75 |
|    |      | 5.3.2.   | Aufbau des, hinsichtlich Kosten und Bauraums optimier-    |    |
|    |      |          | ten Prototyps                                             | 75 |
|    |      | 5.3.3.   | Aufbau des mechanisch optimierten Prototyps               | 76 |
| 6  | Inho | triobna  | hme und Vermessung des Gesentsystems                      | 83 |
| 0. | 61   | Priifsta | nd und Komponenten                                        | 83 |
|    | 0.1. | 611      | Lastmaschine und Prüfstandsautomatisierung                | 84 |
|    |      | 612      | Regelrechengerät                                          | 84 |
|    |      | 613      | Leistungselektronik                                       | 85 |
|    |      | 614      | FFSM mit Schleifringen                                    | 85 |
|    | 62   | Vermes   | ssung der FFSM                                            | 87 |
|    | 5.2. | 621      | Induktivitäten                                            | 87 |
|    |      | 622      | Drehmoment                                                | 80 |
|    | 63   | Vermes   | ssung des kontaktlosen Energieühertragungssystems         | 01 |
|    | 0.5. | 631      | Prototyn ohne ausgenrägte Flussführung                    | 01 |
|    |      | 632      | Bauraum und Kosten ontimierter Prototyn                   | 02 |
|    |      | 0.5.2.   |                                                           | 74 |

|                      | 6.4.                                    | 6.3.3.<br>Vermes<br>6.4.1. | M<br>ssur<br>W | echa<br>1g de<br>irku1 | nisc<br>er iE<br>ngsg | h op<br>ESM<br>grad | tim<br>1 .<br> | ier<br> | ter ]<br> | Prc | oto | tyj<br> | р.<br><br> |  |  | <br> |  |  |  |  | • | • |  |  |  | 92<br>104<br>104 |
|----------------------|-----------------------------------------|----------------------------|----------------|------------------------|-----------------------|---------------------|----------------|---------|-----------|-----|-----|---------|------------|--|--|------|--|--|--|--|---|---|--|--|--|------------------|
| 7.                   | 7. Zusammenfassung und Ausblick         |                            |                |                        |                       |                     |                |         | 109       |     |     |         |            |  |  |      |  |  |  |  |   |   |  |  |  |                  |
| Α.                   | A. Datenblatt der EESM vom Hersteller 1 |                            |                |                        |                       |                     |                |         | 113       |     |     |         |            |  |  |      |  |  |  |  |   |   |  |  |  |                  |
| Literaturverzeichnis |                                         |                            |                |                        |                       |                     |                | 115     |           |     |     |         |            |  |  |      |  |  |  |  |   |   |  |  |  |                  |

# Abkürzungsverzeichnis

| Abkürzung | Beschreibung                                           |
|-----------|--------------------------------------------------------|
| 1p2p      | primärseitige Parallelkompensation und sekundärseiti-  |
|           | ge Parallelkompensation                                |
| 1p2s      | primärseitige Parallelkompensation und sekundärseiti-  |
|           | ge Serienkompensation                                  |
| 1s2p      | primärseitige Serienkompensation und sekundärseitige   |
|           | Parallelkompensation                                   |
| 1s2s      | primärseitige Serienkompensation und sekundärseitige   |
|           | Serienkompensation                                     |
| 1010      | ULTEM 1010 Kunstharz der Firma Stratasys Inc.          |
| 9085      | ULTEM 9085 Kunstharz der Firma Stratasys Inc.          |
| ABS       | Acrylnitril-Butadien-Styrol (thermoplastischer Kunst-  |
|           | stoff)                                                 |
| ASM       | Asynchronmaschine                                      |
| BGR       | Brückengleichrichter                                   |
| CAD       | computer-aided design; deutsch: rechnergestützter Ent- |
|           | wurf                                                   |
| CET       | Contactless Energy Transfer                            |
| CPLD      | Complex Programmable Logic Device                      |
| EESM      | Elektrisch erregte Synchronmaschine                    |
| EMV       | Elektromagnetische Verträglichkeit                     |
| ESB       | Ersatzschaltbild                                       |
| ESKAM     | Skalierbare Module aus Antrieb und Achse für die       |
|           | Elektromobilität                                       |
| FDM       | Fused Deposition Modeling; deutsch: Schmelzschich-     |
|           | tung                                                   |
| FEM       | Finite-Elemente-Methode                                |
| GFK       | Glasfaserverstärkter Kunststoff                        |

#### Abkürzung Beschreibung

| HF-Litze<br>HSM | Hochfrequenzlitze<br>Hybriderregte Synchronmaschine                                  |
|-----------------|--------------------------------------------------------------------------------------|
| iEESM           | Induktiv versorgte, elektrisch erregte Synchronmaschi-                               |
| IEW             | Institut für Elektrische Energiewandlung                                             |
| KFZ             | Kraftfahrzeug                                                                        |
| LE              | Leistungselektronik                                                                  |
| MMPA<br>MOSFET  | Maximales Moment pro Ampere<br>Metal Oxid Semiconductor Field Effect Transistor      |
| PC              | Polycarbonat (thermoplastischer Kunststoff)                                          |
| PLA<br>PMSM     | Polylactid (thermoplastischer Kunststoff)<br>Permanentmagneterregte Synchronmaschine |
|                 |                                                                                      |
| RRG             | Regelrechengerät                                                                     |

## Symbolverzeichnis

| Symbol                       | Einheit               | Beschreibung                                                                        |
|------------------------------|-----------------------|-------------------------------------------------------------------------------------|
| В                            | Т                     | Betrag der magnetischen Flussdichte                                                 |
| $\vec{B}$                    | Т                     | magnetische Flussdichte                                                             |
| $B_2$                        | S                     | Betrag der sekundärseitigen Suszeptanz                                              |
| $C_{\mathrm{A}}$             | F                     | Eingangsseitige Zwischenkreiskapazität eines TSS                                    |
| $C_{\rm B}$                  | F                     | Ausgangsseitige Zwischenkreiskapazität eines TSS                                    |
| $C_{\rm DC1}$                | F                     | Primärseitige Zwischenkreiskapazität                                                |
| $C_{1,p}$                    | F                     | Parallel-Kompensations-Kondensator der Primärseite                                  |
| $C_{1,s}$                    | F                     | Seriell-Kompensations-Kondensator der Primärseite                                   |
| $C_{1a,s}$                   | F                     | anteiliger Kondensator von $C_{1,s}$                                                |
| $C_{1\mathrm{b},\mathrm{s}}$ | F                     | anteiliger Kondensator von $C_{1,s}$                                                |
| $C_{1c,s}$                   | F                     | anteiliger Kondensator von $C_{1,s}$                                                |
| $C_{2,p}$                    | F                     | Parallel-Kompensations-Kondensator der Sekundärsei-                                 |
|                              |                       | te                                                                                  |
| J                            | $^{\rm A}/_{\rm m^2}$ | Betrag der elektrischen Stromdichte                                                 |
| e                            | -                     | Eulersche Zahl                                                                      |
| $F_{ m f}$                   | _                     | Füllfaktor                                                                          |
| f                            | $^{1}/_{s}$           | elektrische Frequenz                                                                |
| $f_{\rm d}$                  | $^{1}/_{s}$           | Designfrequenz                                                                      |
| $\underline{H}_{11}$         | Ω                     | Zweitor H-Parameter                                                                 |
| $\underline{H}_{12}$         | _                     | Zweitor H-Parameter                                                                 |
| $\underline{H}_{21}$         | -                     | Zweitor H-Parameter                                                                 |
| $\underline{H}_{22}$         | S                     | Zweitor H-Parameter                                                                 |
| Ι                            | А                     | Effektivwert eines elektrischen Stroms                                              |
| i                            | А                     | Momentanwert eines elektrischen Stroms                                              |
| $i_1$                        | А                     | Momentanwert des primärseitigen Spulenstroms                                        |
| $i_2$                        | А                     | Momentanwert des sekundärseitigen Spulenstroms                                      |
| $i'_2$                       | А                     | Momentanwer des auf die Primärseite übersetzten se-<br>kundärseitigen Spulenstromes |
| $I_1$                        | А                     | Effektivwert des Stroms im Primärkreis                                              |

| Symbol                 | Einheit | Beschreibung                                                          |
|------------------------|---------|-----------------------------------------------------------------------|
| $\underline{I}_1$      | А       | Strom im Primärkreis in komplexer Schreibweise                        |
| I <sub>1,DC</sub>      | А       | Effektivwert des Stroms im Primärkreis vor dem Wech-<br>selrichter    |
| <i>i</i> <sub>1d</sub> | А       | Anteil des Statorstromraumzeigers in d-Richtung                       |
| $i_{1q}$               | А       | Anteil des Statorstromraumzeigers in q-Richtung                       |
| $I_2$                  | А       | Effektivwert des Stroms im Sekundärkreis                              |
| $\underline{I}_2$      | А       | Strom im Sekundärkreis in komplexer Schreibweise                      |
| $I_{2,\mathrm{DC}}$    | А       | Effektivwert des Stroms im Sekundärkreis nach dem Gleichrichter       |
| ia                     | А       | Strom im Strang a                                                     |
| $I_{\rm B}$            | А       | Bezugsstrom                                                           |
| i <sub>b</sub>         | А       | Strom im Strang b                                                     |
| i <sub>c</sub>         | А       | Strom im Strang c                                                     |
| $\hat{i}_1$            | А       | Scheitelwert des elektrischen Stromes in den Strängen des Stators     |
| $I_{\rm E}$            | А       | Effektivwert des Erregerstroms der EESM                               |
| $i'_{\rm E}$           | А       | Statorseitig übersetzter Momentanwert des Erreger-<br>stroms der EESM |
| $i_{\rm E}$            | А       | Momentanwert des Erregerstroms der EESM                               |
| <u>I</u>               | А       | Strom in komplexer Schreibweise                                       |
| $\underline{I}_{L_1}$  | А       | Strom durch $L_1$ in komplexer Schreibweise                           |
| $I_{L_2}$              | А       | Effektivwert des Stroms durch $L_2$                                   |
| $\underline{I}_{L_2}$  | А       | Strom durch $L_2$ in komplexer Schreibweise                           |
| $I_{L_{DR1}}$          | А       | Effektivwert des Stroms durch L <sub>DR1</sub>                        |
| $I_{\rm W}$            | А       | Wirbelstrom                                                           |
| j                      | -       | imaginäre Einheit                                                     |
| k                      | -       | Koppelfaktor                                                          |
| $k_{1,2}^{\#}$         | -       | Verkopplungsfaktor $L_1$ auf $L_2$                                    |
| $k_{2,1}^{\#}$         | -       | Verkopplungsfaktor $L_2$ auf $L_1$                                    |
| Ĺ                      | Н       | Induktivität                                                          |
| $L_1$                  | Н       | Gesamtinduktivität der Primärspule                                    |
| $L_1$                  | Н       | Induktivität der Primärseite des CET-Systems                          |
| L <sub>h1</sub>        | Н       | Hauptinduktivität der Primärspule                                     |
| $L_{\sigma 1}$         | Н       | Streuinduktivität der Primärspule                                     |
| $L_{12}$               | Н       | Koppelinduktivität der Primär- auf die Sekundärseite                  |

| Symbol              | Einheit | Beschreibung                                                                   |
|---------------------|---------|--------------------------------------------------------------------------------|
| $L_{1a}$            | Н       | anteilige Induktivität von $L_1$                                               |
| $L_{1b}$            | Н       | anteilige Induktivität von $L_1$                                               |
| $L_2$               | Н       | Gesamtinduktivität der Sekundärspule                                           |
| $L_2$               | Н       | Induktivität der Sekundärseite des CET-Systems                                 |
| $L_{21}$            | Н       | Koppelinduktivität der Sekundär- auf die Primärseite                           |
| $L_{\rm h2}$        | Н       | Hauptinduktivität der Sekundärspule                                            |
| $L_{\sigma 2}$      | Н       | Streuinduktivität der Sekundärspule                                            |
| $L_{\rm h2}^\prime$ | Н       | Primärseitig übersetzte Hauptinduktivität der Sekundärspule                    |
| $L'_{\sigma 2}$     | Η       | Primärseitig übersetzte Streuinduktivität der Sekundärspule                    |
| $L_{\rm abs}$       | Н       | Absolute Induktivität                                                          |
| $L_{\rm d}$         | Н       | Längs-Induktivität                                                             |
| $L_{\rm hd,diff}$   | Н       | Differentielle Längs-Hauptfeldinduktivität                                     |
| $L_{\rm d,abs}$     | Н       | Absolute Längs-Induktivität                                                    |
| $L_{\rm d,diff}$    | Н       | Differentielle Längs-Induktivität                                              |
| $L_{\rm dE}$        | Η       | Längs-Koppelinduktivität zwischen der Stator- und Rotorwicklung                |
| $L_{\rm dE,abs}$    | Н       | Absolute Längs-Koppelinduktivität zwischen der Stator- und Rotorwicklung       |
| $L_{\rm dE, diff}$  | Η       | Differentielle Längs-Koppelinduktivität zwischen der Rotor- und Statorwicklung |
| $L_{ m diff}$       | Н       | Differentielle Induktivität                                                    |
| $L_{\rm dq,diff}$   | Н       | Differentielle Koppelinduktivität zwischen der Längs-<br>und Quer-Achse        |
| $L_{\rm DR1}$       | Н       | Primärseitige Drosselspule                                                     |
| $L_{\rm E}$         | Н       | Erregerinduktivität bei der EESM                                               |
| $L_{\rm E,diff}'$   | Н       | Differentielle primärseitig übersetzte Erreger-<br>Induktivität der EESM       |
| $L_{\rm E,abs}$     | Н       | Absolute Erreger-Induktivität der EESM                                         |
| $L_{\rm E,diff}$    | Н       | Differentielle Erreger-Induktivität der EESM                                   |
| $L_{\rm hE,diff}$   | Н       | Differentielle Erreger-Hauptfeldinduktivität der EESM                          |
| $L_{q}$             | Н       | Quer-Induktivität                                                              |
| $L_{\rm hq,diff}$   | Н       | Differentielle Quer-Hauptfeldinduktivität                                      |
| $L_{q,abs}$         | Н       | Absolute Quer-Induktivität                                                     |
| $L_{\rm q,diff}$    | Н       | Differentielle Quer-Induktivität                                               |

| Symbol                   | Einheit            | Beschreibung                                                                       |
|--------------------------|--------------------|------------------------------------------------------------------------------------|
| $L_{\sigma d}$           | Н                  | Streuinduktivität der Längs-Induktivität                                           |
| $L_{\sigma \mathrm{E}}$  | Н                  | Streuinduktivität der Erregerwicklung                                              |
| $L'_{\sigma \mathrm{F}}$ | Н                  | Primärseitig übersetzte Streuinduktivität der Erreger-                             |
| 012                      |                    | wicklung                                                                           |
| $L_{\sigma q}$           | Н                  | Streuinduktivität der Quer-Induktivität                                            |
| $L_{aa}$                 | Н                  | Eigeninduktivität des Stranges a                                                   |
| $L_{\rm bb}$             | Н                  | Eigeninduktivität des Stranges b                                                   |
| $L_{\rm cc}$             | Н                  | Eigeninduktivität des Stranges c                                                   |
| М                        | Н                  | Gegeninduktivität zwischen Primär- und Sekundärseite                               |
| $M_{12}$                 | Н                  | Gegeninduktivität zwischen Primär- und Sekundärseite                               |
| $M_{21}$                 | Н                  | Gegeninduktivität zwischen Primär- und Sekundärseite                               |
| $M_{\rm I,RV}$           | -                  | Stromübertragungsfunktion unter Berücksichtigung des Verlustwiderstandes           |
| $M_{\mathrm{I}}$         | -                  | Stromübertragungsfunktion                                                          |
| $M_{\rm i}$              | N m                | inneres Drehmoment                                                                 |
| $M_{\rm mech}$           | N m                | mechanisches Drehmoment                                                            |
| $M_{ m U}$               | -                  | Spannungsübertragungsfunktion                                                      |
| $M_{\rm Y}$              | $\frac{1}{\Omega}$ | Transadmittanz                                                                     |
| Ν                        | -                  | Windungszahl                                                                       |
| $N_1$                    | -                  | Windungszahl von $L_1$                                                             |
| $N_2$                    | -                  | Windungszahl von $L_2$                                                             |
| n                        | $^{1}/_{min}$      | Drehzahl                                                                           |
| n <sub>N</sub>           | $^{1}/_{min}$      | Nenndrehzahl                                                                       |
| n <sub>mech</sub>        | $^{1}/_{min}$      | mechanische Drehzahl                                                               |
| Р                        | W                  | Leistung                                                                           |
| $P_{2,\mathrm{DC}}$      | W                  | elektrische sekundärseitige Nennleistung nach Gleich-<br>richter                   |
| P <sub>mech</sub>        | W                  | mechanische Leistung                                                               |
| $P_{\rm N}$              | W                  | Nennleistung                                                                       |
| $P_{\rm V}$              | W                  | Verlustleistung                                                                    |
| $P_{\rm V,Wir}$          | W                  | Verlustleistung in den in magnetischen Materialien auf-<br>grund von Wirbelströmen |
| Q                        | -                  | Spulengüte                                                                         |
| $Q_{\mathrm{L}_1}$       | -                  | Spulengüte der Primärspule                                                         |

| Symbol              | Einheit     | Beschreibung                                                                                       |
|---------------------|-------------|----------------------------------------------------------------------------------------------------|
| $Q_{\mathrm{L}_2}$  | _           | Spulengüte der Sekundärspule                                                                       |
| $Q_{\rm M1}$        | -           | gesteuertes Schaltelement                                                                          |
| $Q_{ m M2}$         | -           | gesteuertes Schaltelement                                                                          |
| $Q_{\rm M3}$        | -           | gesteuertes Schaltelement                                                                          |
| $Q_{ m M4}$         | -           | gesteuertes Schaltelement                                                                          |
| $Q_{\rm TS1}$       | -           | gesteuertes Schaltelement                                                                          |
| $Q_{TS2}$           | -           | gesteuertes Schaltelement                                                                          |
| R                   | Ω           | elektrischer Widerstand                                                                            |
| $R_1$               | Ω           | Statorwiderstand eines Stranges                                                                    |
| $R_2$               | Ω           | Rotorwiderstand                                                                                    |
| $R'_2$              | Ω           | äquivalenter Lastwiderstand der Sekundärseite vor dem Gleichrichter, übersetzt auf die Primärseite |
| $R_2$               | Ω           | äquivalenter Lastwiderstand der Sekundärseite vor dem Gleichrichter                                |
| $R_{2,\mathrm{DC}}$ | Ω           | äquivalenter Lastwiderstand der Sekundärseite nach dem Gleichrichter                               |
| $R_{2,c}$           | Ω           | charakteristischer Widerstand vor Gleichrichter                                                    |
| $R_{\rm E}$         | Ω           | Erregerwiderstand der EESM                                                                         |
| $R'_{\rm E}$        | Ω           | Auf die Statorseite übersetzter Widerstand der Rotor-<br>wicklung                                  |
| $R_{L1}$            | Ω           | Widerstand der Primärspule                                                                         |
| $R_{L2}$            | Ω           | Widerstand der Sekundärspule                                                                       |
| $R'_{1,2}$          | Ω           | primärseitig übersetzter Widerstand der Sekundärspule                                              |
| $R_{\text{ESR},L}$  | Ω           | Serienwiderstand der Induktivität L                                                                |
| $R_{\rm M,eff}$     | Ω           | Für Wirbelströme effektiver Widerstand im Material                                                 |
| $R_{\rm m,1\sigma}$ | $^{1}/_{H}$ | primärseitiger magnetischer Streuwiderstand                                                        |
| $R_{\rm m,2\sigma}$ | $^{1}/_{H}$ | sekundärseitiger magnetischer Streuwiderstand                                                      |
| $R_{\rm m,h}$       | $^{1}/_{H}$ | magnetischer Hauptwiderstand                                                                       |
| R <sub>V</sub>      | Ω           | Verlustwiderstand                                                                                  |
| Т                   | S           | Periodendauer                                                                                      |
| T <sub>aus</sub>    | s           | Ausschaltdauer eines Leistungshalbleiters                                                          |
| $T_{\rm ein}$       | S           | Einschaltdauer eines Leistungshalbleiters                                                          |
| t                   | S           | Zeit                                                                                               |
| и                   | V           | Momentanwert einer elektrischen Spannung                                                           |
| $\underline{U}_1$   | V           | Spannung im Primärkreis in komplexer Schreibweise                                                  |

| Symbol                       | Einheit | Beschreibung                                                                           |
|------------------------------|---------|----------------------------------------------------------------------------------------|
| $U_1$                        | V       | Effektivwert der Spannung im Primärkreis                                               |
| $u_1$                        | V       | Momentanwert der primärseitigen Spannung                                               |
| $\hat{u}_1$                  | V       | Scheitelwert der Spannung im Stator                                                    |
| $U_{1,\mathrm{DC}}$          | V       | Effektivwert der Spannung im Primärkreis vor dem Wechselrichter                        |
| $u_{1d}$                     | V       | Anteil des Statorspannungsraumzeigers in d-Richtung                                    |
| $u_{1q}$                     | V       | Anteil des Statorspannungsraumzeigers in q-Richtung                                    |
| $\underline{U}_2$            | V       | Spannung im Sekundärkreis in komplexer Schreibweise                                    |
| $\underline{U}_{2}^{\prime}$ | V       | primärseitig übersetzte Spannung über der Sekundär-<br>spule in komplexer Schreibweise |
| $u'_2$                       | V       | primärseitig übersetzte Spannung über der Sekundärspule                                |
| <i>u</i> <sub>2</sub>        | V       | Momentanwert der sekundärseitigen Spannung                                             |
| $U_{2,\mathrm{DC}}$          | V       | Effektivwert der Spannung im Sekundärkreis nach dem Gleichrichter                      |
| <i>u</i> <sub>a</sub>        | V       | Spannung im Strang a                                                                   |
| $u_{\rm b}$                  | V       | Spannung im Strang b                                                                   |
| <i>u</i> <sub>c</sub>        | V       | Spannung im Strang c                                                                   |
| $u'_{\rm E}$                 | V       | Auf die Statorseite übersetzter Momentanwert der Erregerspannung                       |
| $u_{\rm E}$                  | V       | Momentanwert der Erregerspannung                                                       |
| $U_{\rm i}$                  | V       | Effektivwert der induzierten Spannung                                                  |
| $\underline{U}_{L_1}$        | V       | Spannung über $L_1$ in komplexer Schreibweise                                          |
| $U_{L_2}$                    | V       | Effektivwert der Spannung über L <sub>2</sub>                                          |
| $\underline{U}_{L_2}$        | V       | Spannung über $L_2$ in komplexer Schreibweise                                          |
| $U_{\rm V}$                  | V       | Niedervolt Versorgungsspannung                                                         |
| $U_{\mathrm{A}}$             | V       | Eingangsspannung des Tiefsetzstellers                                                  |
| $U_{\rm B}$                  | V       | Ausgangsspannung des Tiefsetzstellers                                                  |
| ü                            | -       | Übersetzungsverhältnis                                                                 |
| $X_1$                        | Ω       | Betrag der primärseitigen Reaktanz                                                     |
| $X_{\rm L}$                  | Ω       | Betrag der Reaktanz einer Induktivität L                                               |
| $\underline{Y}_{11}$         | S       | Zweitor Y-Parameter                                                                    |
| $\underline{Y}_{12}$         | S       | Zweitor Y-Parameter                                                                    |
| $\underline{Y}_{21}$         | S       | Zweitor Y-Parameter                                                                    |

| Symbol                 | Einheit           | Beschreibung                                                 |
|------------------------|-------------------|--------------------------------------------------------------|
| Y <sub>22</sub>        | S                 | Zweitor Y-Parameter                                          |
| $\underline{Y}_{IN}$   | S                 | Eingangsadmittanz in komplexer Schreibweise                  |
| Z <sub>IN</sub>        | Ω                 | Betrag der Eingangsimpedanz                                  |
| $\underline{Z}_{IN}$   | Ω                 | Eingangsimpedanz in komplexer Schreibweise                   |
| <i>z</i> <sub>p</sub>  | -                 | Polpaarzahl                                                  |
| d.                     | m                 | Materialdicke                                                |
| $\delta$               | m                 | Findringtiefe des magnetischen Feldes                        |
| ncet                   | _                 | Wirkungsgrad der CET-Strecke                                 |
| n "                    | _                 | Modellhasierter Gesamtwirkungsgrad der FFSM                  |
| n n                    | _                 | Gemessener Gesamtwirkungsgrad der EESM                       |
| n n                    | _                 | Wirkungsgrad                                                 |
| ĸ                      | S/m               | elektrische Leitfähigkeit                                    |
| Ala                    | н                 | primärseitiger magnetischer Streuleitwert                    |
| $\Lambda_{2\sigma}$    | Н                 | sekundärseitiger magnetischer Streuleitwert                  |
| $\Lambda_{\rm h}$      | Н                 | magnetischer Hauptleitwert                                   |
| u.                     | Vs/Am             | Permeabilität eines Werkstoffes                              |
| $\mu_0$                | Vs/Am             | Permeabilität des Vakuums                                    |
| $\mu_{\rm r}$          | _                 | relative Permeabilität                                       |
| $\pi$                  | _                 | Kreiszahl                                                    |
| $\Phi$                 | Vs                | magnetischer Fluss                                           |
| $\Phi_1$               | Wb                | magnetisch verkoppelter Fluss der Primärspule                |
| $arPsi_{ m lh}$        | Wb                | magnetischer Hauptfluss der Primärspule                      |
| ${\it \Phi}_{1\sigma}$ | Wb                | magnetischer Streufluss der Primärspule                      |
| $\Phi_{1\sigma}$       | Wb                | magnetischer Streufluss, verursacht durch die Primärspule    |
| $\Phi_2$               | Wb                | magnetisch verkoppelter Fluss der Sekundärspule              |
| $arPsi_{2	ext{h}}$     | Wb                | magnetischer Hauptfluss der Sekundärspule                    |
| $\Phi_{2\sigma}$       | Wb                | magnetischer Streufluss, verursacht durch die Sekundär-spule |
| $arPsi_{ m h}$         | Wb                | magnetisch verkoppelter Hauptfluss                           |
| $\omega_{ m d}$        | <sup>rad</sup> /s | Designfrequenz                                               |
| $\omega_{ m r0}$       | <sup>rad</sup> /s | Resonanzfrequenz                                             |
| $\omega_{ m r}$        | <sup>rad</sup> /s | Resonanzfrequenz                                             |
| ω                      | <sup>rad</sup> /s | Kreisfrequenz                                                |

| Symbol                  | Einheit           | Beschreibung                                                                                   |
|-------------------------|-------------------|------------------------------------------------------------------------------------------------|
| $\omega_{r1}$           | <sup>rad</sup> /s | Resonanzfrequenz                                                                               |
| $\omega_{r2}$           | <sup>rad</sup> /s | Resonanzfrequenz                                                                               |
| $\omega_{r1,r2}$        | <sup>rad</sup> /s | Resonanzfrequenzen $\omega_{r1}$ und $\omega_{r2}$                                             |
| $\Psi_{1d}$             | Wb                | Anteil der magnetischen Statorflussverkettung in d-Rich-tung                                   |
| $\Psi_{1q}$             | Wb                | Anteil der magnetischen Statorflussverkettung in q-Rich-tung                                   |
| $\Psi_{\rm E}^\prime$   | Wb                | Gesamte Auf die Statorseite übersetzte magnetische Flussverkettung im Erregerstrang des Rotors |
| $\Psi_{\rm E}$          | Wb                | Magnetische Flussverkettung in der Erregerwicklung                                             |
| Ψ                       | V s               | Flussverkettung                                                                                |
| $\Psi_{\rm a}$          | Wb                | gesamte magnetische Flussverkettung in Strang a                                                |
| $\Psi_{\rm b}$          | Wb                | gesamte magnetische Flussverkettung in Strang b                                                |
| $\Psi_{\rm c}$          | Wb                | gesamte magnetische Flussverkettung in Strang c                                                |
| ω                       | 1/                | elektrische Winkelgeschwindigkeit                                                              |
| $\omega_{\mathrm{F}_2}$ | <sup>1</sup> /s   | $elektrische Winkelgeschwindigkeit \ des \ rotorflussfesten \\ F_2\text{-}Koordinatensystems$  |

### Zusammenfassung

In dieser Arbeit wird eine rotierende induktive kontaktlose Energieübertragungsstrecke zur Übertragung von Energie auf den Rotor einer elektrisch erregten Synchronmaschine entworfen, aufgebaut und in Betrieb genommen.

Zunächst werden die Theorie und der Betrieb der elektrisch erregten Synchronmaschine betrachtet und daraus Anforderungen für die rotierende Energieübertragungsstrecke abgeleitet. Für den Betrieb der elektrisch erregten Synchronmaschine werden aus den auf Messdaten basierenden Maschinenparametern wirkungsgradoptimale Stromverteilungen für alle Arbeitspunkte bestimmt und als Kennfelder in der Regelung hinterlegt. Außerdem werden die theoretischen Grundlagen der kontaktlosen induktiven Energieübertragung und die in der Schirmung auftretenden Wirbelstromverluste in Abhängigkeit der Frequenz und der Materialparameter betrachtet.

Weiterhin werden die elektrischen Parameter des kontaktlosen induktiven Energieübertragungssystems berechnet. Dabei wird berücksichtigt, dass das System ohne Stromsensor auf der Sekundärseite arbeiten soll. Aufgrund der induktiven Last werden ausschließlich sekundärseitig parallel kompensierte Systeme untersucht. Die Komponenten werden so ausgelegt, dass eine konstante Übertragungsfunktion vorliegt und der sekundärseitige Strom von der Primärseite aus geregelt werden kann.

Für den mechanischen Aufbau des Systems wird zunächst der mögliche Einbauraum in einer elektrisch erregten Synchronmaschine untersucht und eine geeignete Geometrie für die Übertragungsstrecke festgelegt. Auf Basis dieser Geometrie wird der Magnetkreis der Energieübertragungsstrecke ausgelegt und mittels 2Dund 3D-FEM berechnet.

Anhand von Messungen an Prototypen werden die Theorie, die Systemauslegung und die Berechnungen verifiziert. Dazu werden verschiedene Prototypen der kontaktlosen Energieübertragungsstrecke aufgebaut und im Stillstand vermessen. Abschließend wird ein rotierender Prototyp an die elektrisch erregte Synchronmaschine angekoppelt, um das Gesamtsystem auf dem Prüfstand zu vermessen und zu verifizieren.

### Abstract

In this work, a rotating inductive contactless energy transfer path to transfer energy onto the rotor of an electrical excited synchronous machine is designed, constructed and put into operation.

Firstly, the theory and operation of electrical excited synchronous machines are considered and requirements for the rotating energy transfer system are derived. For the operation of the electrical excited synchronous machine, efficiency-optimal current distributions for every operating point are determined from measurements based machine parameters and stored in form of a data grid in the control system. In addition, the theoretical principles of contactless inductive energy transfer and frequency and material dependent eddy current losses occurring in the shielding are considered.

Furthermore, the electrical parameters of the contactless inductive energy transfer system are calculated, considering that the system works without a current sensor on the secondary side. Due to the inductive load, only secondary side parallel compensated systems are investigated. The system is designed to reach a constant transfer function and give the possibility to control the secondary side current from the primary side.

For the mechanical design of the system, initially the potential assembly space in an electrical excited synchronous machine is examined and a suitable geometry for the transfer path is determined. Based on this geometry, the magnetic circuit of the energy transfer path is designed and calculated using 2D and 3D FEM.

Measurements on prototypes verify the theory, the system design and the calculations. For this purpose, various prototypes of the contactless energy transfer path are set up and measured at a standstill. Finally, a rotating prototype is attached to the electrical excited synchronous machine in order to measure and verify the entire system on the test bench.