Informationstechnik

Klaus-Dieter Thies

Theoretische Fundamente informationstechnischer Systeme

- Elementare Wahrscheinlichkeitsrechnung mit Leistungsanalyse von Computernetzwerken,
- Stochastische Prozesse mit Warteschlangentheorie,
- Informationstheorie und zyklischer Redundanzcode,
- Elementare Statistische Systemtheorie und
- Laplace-Transformation

Berichte aus der Informationstechnik

Klaus-Dieter Thies

Theoretische Fundamente informationstechnischer Systeme

Elementare Wahrscheinlichkeitsrechnung mit Leistungsanalyse von Computernetzwerken, Stochastische Prozesse mit Warteschlangentheorie, Informationstheorie und zyklischer Redundanzcode, Elementare Statistische Systemtheorie und Laplace-Transformation

Shaker Verlag Düren 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Copyright Shaker Verlag 2020 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-7581-6 ISSN 1610-9406

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vordergründige Motivation für das erste Kapitel dieses Buches ist die Leistungsmerkmale von Computer-Netzwerken im Allgemeinen und am Beispiel des klassischen Ethernet mit seiner CSMA/CD-Zugriffsmethode (Carrier Sense Multiple Access with Collisions Detection) im Speziellen wahrscheinlichkeitstheoretisch zugänglich zu machen. Dies liegt insofern auf der Hand, da sich das klassische Ethernet als ein Verbundsystem unabhängiger Computer präsentiert, die zufällig mit gewissen Wahrscheinlichkeiten den Übertragungskanal anfordern. So ist es ein ideales Modell dafür, die Verteilung dieser Anforderungen in seinen verschiedenen Formen zu entwickeln und darzustellen. Dazu gehören die Binomialverteilung, die geometrische Verteilung, die Poisson-Verteilung und die Normalverteilung einschließlich ihrer Erwartungswerte, Varianzen und Streuungen. In diesem Zusammenhang werden neben den ein- und mehrdimensionalen diskreten Zufallsvariablen auch die stetigen Zufallsvariablen untersucht.

Es sind keinerlei Kenntnisse über die Begriffe, Sätze und Methoden der Wahrscheinlichkeitsrechnung erforderlich. Diese werden am Beispiel der Netzwerk-Zugriffsmethode elementar eingeführt. So erscheint das Wesen des klassischen Ethernet im Kontext der Wahrscheinlichkeitsrechnung. Von besonderem Interesse ist hierbei der Nutzungsgrad des Übertragungskanals (Kanaleffizienz), der sich als Funktion der Leitungslänge, der Framegröße und der Kanalkapazität darstellen lässt.

Aufbauend auf den Erkenntnissen der Wahrscheinlichkeitsrechnung schließt sich eine elementare Einführung in die Informationstheorie an. Die Motivation hierfür ist die Kanalkapazität nach Shannon informationstheoretisch einsichtig zu machen. Der Informationsgehalt, die Entropie, abhängige und unabhängige Verbundquellen, zeitkontinuierliche Zufallssignale und deren Verteilungen sind die wesentlichen Bestandteile. Mit dem wohl bedeutendsten Ergebnis der Informationstheorie, der Shannonschen Kanalkapazität, endet dieses Kapitel.

Es folgt eine elementare Einführung in die stochastischen Prozesse. Hier werden die Grundlagen der Warteschlangentheorie behandelt. Dazu gehören die Markov-Ketten mit diskreter Zeit, der Poisson-Prozess, die Exponentialverteilung als Grenzwert der geometrischen Verteilung, der Markov-Prozess mit kontinuierlicher Zeit als Approximation der diskreten Markov-Kette und der Birth and Death-Prozess.

Weil Warteschlangen die essentiellen Datenstrukturen in der Computer-Kommunikation

sind, folgt eine wahrscheinlichkeitstheoretische Bearbeitung der Single-Server-/ und der Multi-Server-Warteschlangensysteme mit unbegrenzten und begrenzten Warteräumen. Von besonderem Interesse sind dabei die exponentialverteilten Ankunfts- und Bedienzeiten der Nachrichten und der Wartezeiten, die ihrerseits einer Erlang-Verteilung genügen.

Weil es in der Computer-Kommunikation oft vorkommt, dass Störungen auf dem Übertragungskanal die ausgesendeten Zeichen beschädigen, wird anschließend gezeigt, wie falsch ankommende Zeichen entweder von Hardware oder von Software aufgespürt werden können. Die Methode benutzt den in der Praxis bevorzugten Polynomcode, der auf der modulo2 Arithmetik basiert und der als zyklischer Redundanzcode oder crc (cyclic redundancy code) bekannt ist.

Das letzte Kapitel enthält eine einführende elementare Darstellung der statistischen Systemtheorie. Es orientiert sich inhaltlich am Standardwerk von Prof. Dr.-Ing. Otto Mildenberger (Grundlagen der statistischen Systemtheorie, 1986) und bearbeitet daraus eine Vielzahl bedeutungsvoller Themen. So erweitert anfänglich das Kapitel die bisher erworbenen Kenntnisse der Wahrscheinlichkeitsrechung und behandelt anschließend die Eigenschaften der Autokorrelation stationärer und auch periodischer Zufallssignale. Weitere Themen sind weißes und bandbegrenztes weißes Rauschen, der Dirac-Impuls und seine Ausblendeigenschaft, die spektrale Leistungsdichte als Fourier-Transformierte der Autokorrelationsfunktion und dies alles im Kontext linearer, zeitinvarianter und kausaler

Systeme (LZI-Systeme). Gezeigt werden zudem das Faltungsintegral bzw. Duhamel-Integral, der Zusammenhang zwischen Sprungantwort, Impulsantwort und Übertragungsfunktion und daran anschließend die Reaktionen am Ausgang der Systeme (Systemreaktionen) wie Mittelwert, Autokorrelationsfunktion und spektrale Leistungsdichte. Eine ausführliche Abhandlung zum grundständigen Wesen der Kreuzkorrelationsfunktion und der spektralen Kreuzleistungsdichte rundet das Thema ab.

Das Kapitel endet mit einer umfänglichen Behandlung der Laplace-Transformation. Liegen kausale Zeitfunktionen vor (f(t)=0 für t <0), dann kann die Fourier-Transformation durch die Laplace-Transformation ersetzt werden. Sie ist erhältlich, wenn man j ω in der Fourier-Transformation durch die komplexe Frequenzvariable s = δ + j ω ersetzt. Man wird dann erfreulicherweise feststellen, dass man mit der Laplace-Transformation wesentlich einfacher rechnen kann als mit der Fourier-Transformation

So beginnt dieser Abschnitt mit der Analyse des Konvergenzbereichs der Laplace-Transformation und der Herleitung einfacher Bildfunktionen. Auch auf den Zusammenhang zwischen Fourier-Transformation und Laplace-Transformation wird hingewiesen. Die Laplace-Transformation ist vor allem zur Berechnung von Systemreaktionen und zur einfacheren Lösung von Differential- und Integralgleichungen im Einsatz. Dabei stellt die Rücktransformation vom Bildbereich in den zeitlichen Originalbereich den schwierigsten Teil bei der Lösung mit der Laplace-Transformation dar. Hierfür wird als wichtigste Methode der Rücktransformation die Partialbruchzerlegung von echt gebrochenen rationalen Funktionen mit einfachen und mehrfachen Nullstellen (Polstellen) behandelt. Hierfür werden einige Ableitungssätze vorgestellt. Der Abschnitt endet mit Differentialgleichungen 1ter, 2ter und n-ter Ordnung.

Der Leser erkennt eine Anzahl von Wissensgebieten, die miteinander in Verbindung treten und die im Zusammenwirken die Leistungsmerkmale informationstechnischer Systeme beschreiben. Dabei werden alle relevanten Sätze und Formeln Wahrscheinlichkeitsrechnung, der Informationstheorie, der stochastischen Prozesse (mit Warteschlangentheorie), der modulo2 Arithmetik, der statistischen Systemtheorie und der Laplace-Transformation nicht einfach genannt, sondern durch gut nachvollziehbare Herleitungen bewiesen und von Beispielen begleitet. Erfreulicherweise sind dafür nur wenige mathematische Kenntnisse aus der Analysis, der Differential- und Integralrechnung und der Matrizen-Rechnung notwendig. Sie werden an den benutzten Stellen kurz und verständlich in Erinnerung gerufen. Überhaupt ist es ein Anliegen des Buches, die Dinge so plausibel wie möglich darzustellen.

Klaus-Dieter Thies

Inhalt	
Kapitel 1 Elementare Einführung in die Wahrscheinlichkeitsrechnung und Leistungsmerkmale des klassischen Ethernet	1
1.1 Einleitung	1
1.1.1 Die Binomialverteilung	3
1.1.2 Die maximale Wahrscheinlichkeit von p ₁	8
1.2 Die Erfolgswahrscheinlichkeit bei k Versuchen	11
1.2.1 Die geometrische Verteilung	11
1.3 Die diskrete Zufallsvariable	15
1.3.1 Die Verteilungsfunktion einer diskreten Zufallsvariablen	16
1.4 Die durchschnittliche Anzahl der Versuche; der Erwartungswert	19
1.4.1 Die durchschnittliche Anzahl der Kollisionen; der Erwartungswert	28
1.5 Die Kanaleffizienz bei CSMA/CD	30
1.6 Der Binary Exponential Backoff-Algorithmus	38
1.6.1 Simulation der Zufälligkeit	46
1.7 Die durchschnittliche Anzahl sendender Stationen; der Erwartungswert	48
1.8 Die Poisson-Verteilung selten sendender Stationen und der Erwartungswert	54
1.9 Zusammenfassung der bisherigen Ergebnisse	58
1.10 Varianz und Streuung der diskreten Zufallsvariablen	64
1.10.1 Herleitung der Varianz aus der erzeugenden Funktion	68
1.10.1.1 Varianz und Streuung der geometrisch verteilten Zufallsvariablen	69
1.10.1.2 Varianz und Streuung der binomialverteilten Zufallsvariablen 1.10.1.3 Varianz und Streuung der Poisson-verteilten Zufallsvariablen	71
1.10.1.3 Varianz und Streuung der Poisson-verteilten Zufansvariablen 1.11 Approximation der Binomialverteilung durch die Normalverteilung	74 75
1.11 Approximation der Binoimarvertendig durch die Normarvertendig 1.11.1 Der Erwartungswert und die Varianz einer stetigen Zufallsvariablen	100
1.11.1 Der Erwartungswert und die Varianz einer stengen zuransvariablen $1.11.1.1$ Der Erwartungswert der $N(\mu,\sigma^2)$ -verteilten Zufallsvariablen	100
1.11.1.1 Det Erwartungswert der $N(\mu, \sigma)$ -verteilten Zufallsvariablen 1.11.1.2 Die Varianz und die Streuung der $N(\mu, \sigma^2)$ -verteilten Zufallsvariablen	104
1.11.2 Die Varianz und die Steuding der $N(\mu, \sigma)$ -verteinen Zufansvariablen	107
1.11.3 Der Erwartungswert der N(0,1)-verteilten Zufallsvariablen	110
1.11.4 Die Varianz und die Streuung der N(0,1)-verteilten Zufallsvariablen	111
1.11.5 Die Wendepunkte der N(0,1)-verteilten Zufallsvariablen	112
1.11.6 Die Verteilungsfunktion der normalverteilten Zufallsvariablen	116
1.12 Bedingte Wahrscheinlichkeiten und unabhängige Ereignisse	126
1.12.1 Die vollständige Wahrscheinlichkeit und die Formel von Bayes	131
1.13 Zweidimensionale diskrete Zufallsvariablen	135
1.13.1 Verteilungsfunktion einer diskreten zweidimensionalen Zufallsvariablen	145
1.14 Mehrdimensionale diskrete Zufallsvariablen	148
1.15 Summen und Produkte von zwei- und mehrdimensionalen diskreten Zufallsvariablen	154
1.15.1 Die Kovarianz von zwei- und mehrdimensionalen diskreten Zufallsvariablen	160
1.15.2 Die Verteilungsfunktion einer diskreten mehrdimensionalen Zufallsvariablen	165
Kapitel 2 Grundzüge der Informationstheorie	169
2.1 Der Informationsgehalt (die Formel von Hartley)	169
2.2 Die Entropie (die Formel von Shannon)	173

2.3 Die Entropie unabhängiger Verbundzeichen

2.4 Die Entropie abhängiger Verbundzeichen	183
2.5 Informationsfluss und Kanalkapazität	204
2.6 Kontinuierliche Nachrichtenquellen und zufällige Signale	215
2.6.1 Die differentielle Entropie und Transinformation	219
2.6.2 Gleichmäßig verteilte Zufallssignale	225
2.6.3 Normalverteilte Zufallssignale	228
2.6.4 Die Kanalkapazität nach Shannon	231
Kapitel 3	
Stochastische Prozesse	234
3.1 Einführung	234
3.2 Markov-Ketten	234
3.2.1 Die Berechnung der Zustands- und Übergangswahrscheinlichkeit	237
3.2.2 Stationäre Verteilung	243
3.2.3 Die Berechnung der Ankunftswahrscheinlichkeiten	247
3.2.4 Die Berechnung der Übergangszeiten	250
3.3 Prozesse mit kontinuierlicher Zeit	259
3.3.1 Der Poisson-Prozess	262
3.3.2 Die Exponentialverteilung als Grenzwert der geometrischen Verteilung	267
3.4 Markov-Prozess	277
3.4.1 Der Birth- and Death-Prozess	278
3.4.2 Die M/M/1-Warteschlange	282
3.4.2.1 Die durchschnittliche Anzahl von Nachrichten im System	284
3.4.2.2 Die durchschnittliche Anzahl von Nachrichten in der Warteschlange	285
3.4.2.3 Die durchschnittliche Aufenthaltszeit einer Nachricht im System	286
3.4.2.4 Die durchschnittliche Aufenthaltszeit einer Nachricht in der Warteschlange	286
3.4.2.5 Die Formeln von Little	287
3.4.2.6 Die Gamma-Funktion und die Erlang-Verteilung	290
3.4.2.6.1 Die Verteilung der Zufallsvariablen T = Wartezeit im	
Warteschlangensystem	293
3.4.2.6.2 Die Verteilung der Zufallsvariablen T_s = Wartezeit in der	
Warteschlange	298
3.4.3 Die M/M/1/k-Warteschlange	302
3.4.3.1 Die mittlere Anzahl von Nachrichten im System	303
3.4.3.2 Die mittlere Anzahl von Nachrichten in der Warteschlange	305
3.4.3.3 Die mittlere Aufenthaltszeit einer Nachricht im System	307
3.4.3.4 Die mittlere Aufenthaltszeit einer Nachricht in der Warteschlange	308
3.4.4 Die M/M/s-Multiserver-Warteschlange	310
3.4.4.1 Die mittlere Anzahl von Nachrichten E(L _s) in der Warteschlange	315
3.4.4.2 Die mittlere Aufenthaltszeit einer Nachricht E(T _S) in der Warteschlange	316
3.4.4.3 Die mittlere Aufenthaltszeit einer Nachricht E(T) im System	317
3.4.4.4 Die mittlere Anzahl von Nachrichten E(L) im System	317
3.4.4.5 Die Erlang'sche C-Formel	318
$3.4.4.6$ Die Verteilung der Zufallsvariablen T_s = Wartezeit in der	
Warteschlange	321
3.4.4.7 Die Verteilung der Zufallsvariablen T = Aufenthaltszeit im	
M/M/s-Warteschlangensystem	328
3.4.5 Die M/M/s/k-Multiserver-Warteschlange	335
3.4.5.1 Die mittlere Anzahl von Nachrichten E(L _S) in der Warteschlange	336
3.4.5.2 Die mittlere Anzahl von Nachrichten E(L) im System	338

3.4.5.3 Die mittlere Aufenthaltszeit einer Nachricht E(T _S) in der Warteschlange	339
3.4.5.4 Die mittlere Aufenthaltszeit einer Nachricht E(T) im System	339
3.4.5.5 Die Verteilung der Zufallsvariablen T _s = Wartezeit in der	
Warteschlange	342
3.4.5.5.1 Die Wartezeitverteilung in der Warteschlange des M/M/1/k-Systems	348
3.4.5.6 Die Verteilung der Zufallsvariablen T = Aufenthaltszeit im	
M/M/s/k-Warteschlangensystem	351
3.4.5.6.1 Die Verteilung der Zufallsvariablen T = Aufenthaltszeit im	
M/M/1/k-Warteschlangensystem	353
3.4.6 Warteschlangen für Quellen mit endlicher Anzahl von Nachrichten	355
3.4.6.1 Die mittlere Anzahl E(L) von Nachrichten im System	359
3.4.6.2 Die mittlere Anzahl E(L _S) von Nachrichten in der Warteschlange	359
3.4.6.3 Die mittlere Aufenthaltszeit E(T) einer Nachricht im System	360
3.4.6.4 Die mittlere Aufenthaltszeit E(T _s) einer Nachricht in der Warteschlange	360
(3)	
Kapitel 4	
Zyklischer Redundanzcode (CRC) mit Fehlererkennung	363
g	
4.1 Einleitung	363
4.2 Cyclic Redundancy Code (CRC)	364
4.3 Die modulo m Rechnung	365
4.3.1 Die Arithmetik im Galois-Feld GF(2)	366
4.4 Fehlererkennung mit der Polynomcodemethode	367
4.5 Zyklische Eigenschaften	369
4.6 Modulo2 Division und Hardware	370
4.7 Modulo2 Division und Software	376
4.7.1 frame check sequence-Berechnung für 1 Oktet	377
4.7.2 frame check sequence-Berechnung für n Oktets	380
1.7.2 name theek sequence betermang far it oktets	300
Kapitel 5	
Grundzüge der statistischen Systemtheorie	
v	
5.1 Funktion einer Zufallsgröße und ihr Erwartungswert	382
5.2 Der Korrelationskoeffizient	384
5.3 Die Autokorrelationsfunktion	391
5.3.1 Beispiele für Autokorrelationsfunktionen	395
5.3.2 Die Autokorrelationsfunktion des weißen Rauschens	406
5.4 Der Dirac-Impuls	408
5.4.1 Die Ausblendeigenschaft des Dirac-Impulses	410
5.5 Die spektrale Leistungsdichte als Fourier-Transformierte	412
der Autokorrelationsfunktion	
5.5.1 Beispiel 1: Die e-Funktion und ihr Spektrum	413
5.5.2 Beispiel 2: Der Dirac-Impuls und die zugehörige Spektralfunktion	
(weißes Rauschen)	416
5.5.3 Beispiel 3: Die sinc-Funktion und ihr Spektrum	417
5.5.4 Beispiel 4: Der Rechteckimpuls und die zugehörige Spektralfunktion	418
5.6 Die Autokorrelationsfunktionen periodischer Signale (z.B. Cosinusschwingung)	420
5.6.1 Die spektrale Leistungsdichte der Cosinusfunktion	423
5.7 Lineare zeitinvariante Systeme (LZI-Systeme)	425
5.7.1 Das Faltungsintegral	429
5.7.2 Die Übertragungsfunktion und ihr Zusammenwirken mit der Impulsantwort	436
	150

5.7.3 Mittelwert und Autokorrelationsfunktion der Systemreaktionen	439
5.8 Grundständiges zur Kreuzkorrelationsfunktion	455
5.8.1 Die Kreuzkorrelationsfunktion im eingeschwungenen Zustand	460
5.8.2 Die spektrale Kreuzleistungsdichte	462
5.9 Die Laplace-Transformation	466
5.9.1 Basiseigenschaften und Transformations-Gleichungen	466
5.9.2 Herleitung einfacher Bildfunktionen und der Konvergenzbereich	468
5.9.3 Rücktransformation in den Originalbereich	473
5.9.4 Die Methode der Partialbruchzerlegung	474
5.9.4.1 Bildfunktionen mit einfachen Polstellen	475
5.9.4.1.1 Der Ableitungssatz für die Originalfunktion	480
5.9.4.2 Der Heavisidesche Entwicklungssatz für einfache Polstellen	482
5.9.4.3 Bildfunktionen mit mehrfachen Polstellen	485
5.9.4.3.1 Der Ableitungssatz für die Bildfunktion	485
5.9.4.4 Die Methode des Koeffizientenvergleichs	491
5.9.5 Die Laplace-Transformation zur Lösung gewöhnlicher Differentialgleichungen	493
5.9.5.1 Die Differentialgleichung 1ter Ordnung und ihre Lösung	493
5.9.5.1.1 Der Faltungssatz zur Lösung von Differentialgleichungen	495
5.9.5.2 Die Differentialgleichung 2ter Ordnung und ihre Lösung	497
5.9.5.3 Die Differentialgleichung n-ter Ordnung und ihre Lösung	502
6. Anhang (Tabellen der Fourier- und Laplace-Ttransformierten)	508
7. Personen- und Sachregister	513