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Preface to the German Edition

The theory of finite fields is a solid part of algebra and has numerous applications like coding
theory and cryptography to name two of them. It is also part of discrete mathematics,
frequently in conjunction with Latin squares and combinatory designs. If we restrict us to the
field F(2), which is the smallest field with elements 0, 1 only, then this is basic for the
mathematical investigation of electrical circuits in a broad sense.

But we may carry over linear systems theory over characteristic 0 to finite fields, indicating a
somewhat unified representation of both worlds, which on a first glimpse are rather different.
The comparison of mathematical relations in characteristic 0 and p gives a guide line, which
in turn justifies the subtitle of the book. We use without exception textbooks as well as a
variety of contributions of the author to the Proceedings of the Boolean Workshops in the
years 2000 to 2014. These are briefly discussed (almost) chronologically in the following,
because we cite them in the book, but do not give any further remarks.

The works [0], ..., [4] contain the formulation of linear and mostly time-invariant systems
theory and the complete solution of the homogeneous and autonomous equations. While [0],

., [3] exceptionally are formulated in characteristic p = 2, [4] gives for the first time a
treatment for all primes p > 2. In addition, the works [5], [8] are formulated in char p =2, they
contain the Maxwell equation of electrodynamics as well classical mechanics. Thereby, we
use a generalization of the well known numerical Boolean functions over [F(2), which obey a
differential calculus differing from characteristic 0. The arguments of these functions are
assumed to be natural numbers. We mention that there is still almost total agreement with the
result of characteristic 0.

[6], [7] treat the introduction to complex numbers of finite fields in characteristic p > 2 as well
as their application to the formulation of quantum mechanics. As a matter of fact, these works
partly are incomplete and not reasonable. In later works we introduce the terms number
theoretical and algebraic approach in conjunction with quadratic field extensions. Complex
numbers in the sense of the number theoretical approach are given in [9].

The investigation of conic sections may be found in [10]. There distinction is to be made
between the two cases of odd primes and prime powers, namely p* = 1 mod 4 (I) and p* = 3
mod 4 (II), which appear throughout the book. Real functions, like powers, polynomials, and
in particular transcendent functions are subject to [11]. Finally, we give in [12] a real analysis,
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which nicely goes along with the results we know from characteristic 0. Thereby we use a
“set-operation* Ax = 0, which circumvents the term “limes”.

The works [13], [14] contain again complex numbers, but within the algebraic approach as
compare to the number theoretical approach as well as the formulation of the fundamental
theorem of algebra. On this basis, in [14] Clifford-algebras and quaternions are treated, by
which means than Dirac’s theory may be carried over to characteristic p > 2.

In [15] we treat geometric and analytic properties of complex transcendental functions based
on the complex exponential function in our Gaussian plane. The structure and meaning of
these functions is recovered by investigating the multiplicative group of the field under
consideration as wells the subgroups and cosets.

[16] contains classical Lie-groups and -algebras where in advance, manifolds on finite fields
are introduced. This also is essential for [19], where the calculus of differential forms is
worked out on the basis of the Grassmann-algebra. Moreover, in [17] we derive the matrix
exponential function and its inverse which in turn is required for the classical Lie-groups and
-algebras. This is accomplished by using the substitution polynomial, which may be carried
over from characteristic 0.

By introducing rotation matrices in [18], the structure on ball of arbitrary dimension is
explained: We derive the number of points of #n-balls and moreover the number of circles and
rotationally invariant points contained in them. As an aside we obtain the numbers of points
(vector) with real, complex, and vanishing distance from the origin. The later are isotropic
vectors, which are characteristic and natural over finite fields.

One aim of this brief discussion consists of showing that the development is all but linear and
has its origin in the treatment of linear systems theory. Over the years, it spread out to a
variety of disciplines in mathematics. Consequently, we arrive at the following arrangement of
the Chapters.

Chapter 1 gives elements of algebra and number theory necessary for what follows and
moreover supports those readers which not acquainted with these topics. Chapter 2 we have
entitled as Algebraic Analysis, because the contents of definitions and investigation of in our
sense transcendental functions is dominated by algebraic methods. First we treat complex
functions and then come to the special case of real functions. The set-operation Ax = 0
mentioned above then yields a differential and integral calculus as we know from charac-
teristic 0. The Sections on sequences and series as well as complex integration [20] are not
published yet. In our case the division between real and complex analysis seems some what
weaker, because it is more or less a matter of definition whether an even field is interpreted as
real or complex.

Chapter 3 contains usual topics of linear algebra, i.e. vectors, matrices, linear systems of
equations, eigenvalue problems, Jordan canonical form, and the derivation of the matrix
exponential function and its inverse. The Chapter ends with a Section on tensor algebra and -
analysis. It is noted that in the textbook literature there exist some examples for using instead
of the fields R, C in conjunction with vector spaces, more generally a K-vector space is
assumed. Usually this ends, if complex numbers for vectors and matrices come into play.
Hence, our work gives a certain unification.
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Chapter 4 deals with geometry, i.e. conic sections, balls, and »-balls and hyperboloids in the
frame of Euclidean geometry, where we briefly also treat pseudo-Euclidean geometry. The
Section on spinors gives an example for symplectic geometry. Within the Section on
differential geometry we treat elementary theories of curves and surfaces. The last two
Sections are not published yet [21], [22], too.

Chapter 5 contains classical Lie-groups and -algebras, Clifford algebras, and the Grassmann
algebra and its application to differential forms.

Chapter 6 gives an application of finite fields to linear systems theory, where at the beginning
of the Chapter we show briefly the corresponding theories in characteristic 0 in the continuum
and time-discrete case for better comparison. In characteristic p we rely on the works of
[Gossel] and [Wunsch], for which the idea of unification also plays a role. By transforming
the system matrix of the state space equations to its Jordan canonical form, we obtain
complete solution of the homogeneous and autonomous case. Moreover, we see close
analogies to characteristic 0.

Finally, Chapter 7 deals with the formulation of elementary theories of physics, namely
mechanics, electrodynamics, and quantum mechanics, all in the classical and special relativistic
case.

Now we come to some general aspects of the book. In Chapter 1 to 6 we use throughout a
mathematical oriented style, i.e. we give definitions, formulate theorems and prove them,
which makes sense in view of the number of assertions as well as the number of terms to be
introduced. In Chapter 7 we regret to do so, in physics it is not as pronounced. All Chapters
are given uniformly in characteristic p. Discarding the new Sections with respect to the
publications we have added numerous definitions, specifications, and supplements. Moreover,
Chapters 2, 4, 6 contain a variety of figures, where we choose one out of ¢! possible orderings
of the numbers of finite fields. They are supposed to represent certain results in a more
pictorial way, which for a skilled physicist may be allowed. In conjunction to some figures,
we also give elementary graph theoretical interpretations.

In addition, Chapter 6 and 7 may be viewed as test cases: We intend to show that prominent
and well known theories in characteristic may be formulated over finite fields. This does not
say that for instance classical mechanics in characteristic p is physically useful. On the other
hand, the Maxwell equations yield a reasoning for transversal waves, which per se could be an
interesting object of investigation. Possibly, quantum mechanics over finite fields may have
relations to quantum computing.

Finally we remark that the average size of a Chapter is about 70 pages. On the contrary, for
each topic there exist textbooks with up to several hundred pages. From this sight we can not
in a first step map all what we know in characteristic 0 to finite fields. One may also think of
the fact that the huge area of differential equations here is almost neglected.

The preconditions for reading this book are little: With the fourth or fifth semester of a
bachelor study in physics/mathematics the book may be read, lectures on analysis and linear
algebra are elementary. A variety of things, like trigonometric functions are usually a matter of
high school knowledge, but indeed one has to get used to our functions. The book is readable
also by theoretical physicists or theoretically interested engineers.
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At last I like to thank in chronological ordering: Thanks to Prof. Dr. D. Bochmann for
encouraging me to publish the work [0] at the 4™ International Workshop on Boolean
Problems in 2000 and to continue this work further. Thanks to Prof. Dr. W. Borho for the
idea, to employ the Jordan canonical form to resolve the structure of the solution of the
homogeneous state equations in systems theory. He also suggested to generalize these works
such that they are valid for all primes and prime powers. Finally, I thank Prof. Dr. B.
Steinbach for his generosity, that I could present my work in a predominantly Boolean
community. Also thanks to him for his question at the last workshop in 2012, if it would be
possible to comprise all my works in a systematic manner. This is may be judged by the editor
and the reader.

Braunschweig, Spring 2014

Wolf-Michael Wendler
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Preface to the English Edition

This edition mainly is a translation into English as compared to the German edition, but has
gained some pages too. These arise by including in Chapter 5 an additional Section 5 on
elements of graph theory. This is felt adequate because in Chapter 7 on systems theory graph
theoretical considerations are valuable with respect to the various state graphs given. Also this
Section contains in Subsection 5.2 polyhedrons and in particular the planar graphs of the
Platonic solids. We come to them in Chapter 6, Section 4. In addition we treat rudimentary in
Subsection 5.3 elements of algebraic graph theory, which is used also in [Wendler,] with
respect to the hypercycles of M. Eigen.

Chapter 6 is new and is concerned with the orders of classical matrix Lie-groups. It is inserted
such that the old Chapters 6, 7 now become Chapters 7 and 8. As preliminaries in Section 1
some supplements to groups are given, while in Section 2 the results for the number of points
of balls and hyperboloids are generalized such that we are dealing now with m-dimensional
balls and n-dimensional hyperboloids. Section 3 gives the order of the general linear group
GL(n; F(q)), for which H. Weyl suggested the name “Her All-embracing Majesty” [Grove].
This Section also gives a reordering of the factors for the order, such that the formulae of the
orders of the classical Lie-groups may be rewritten and reproved by using our results in
Chapter 4, Subsection and Chapter 6, Section 2.

Section 4 of Chapter 6 contains the orders of the orthogonal groups O(#; F(g)) and SO(n; F(g)).
In Subsection 4.2 the 3-dimensional case is investigated in particular over F(3). Thereby, we
rediscover the octahedron group and its isomorphic counterpart, i.e. the group of the cube, as
well as the tetrahedron subgroup. Platonic solids are tightly connected to quaternions, where
the latter are investigated in Section 4, Chapter 5.

Section 5 treats the unitary groups U(n; F(g)) and SU(n; F(g)), where we investigate in Sub-
section 5.2 again the 3-dimensional case. Unitary matrices of format (3, 3), (4, 4) play an
important role in elementary particle physics. Besides we resolve the little obstacle that (3, 3)-
matrices must contain at least one zero entry, which is also the case for (3, 3)- rotation matri-
ces over [F(4) [Wendler,], where we recovered the icosahedron group.

The last Section 6 contains the orders of the Euclidean group of motions E(»), the generalized
orthogonal group O(m, n; F(4)), and the symplectic group Sp(2n; F(q)).
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Of course as compared to the German edition there are a variety of minor changes, clari-
fications, and supplements. We wish to mention only one of them, because it gives a
somewhat different sight and is found in the course of working out the book “Mathematics
and Codons” [Wendler;]: Despite the fact that we use linear state equations in the scope of
systems theory in Chapter 7, their solutions show self-reproducing behaviour as well as period
doubling, which both usually are obtained in characteristic 0 by non-linear equations. The rea-
son lays in the fact that over finite fields the term non-linear is considerably different than in
char 0. An example for powers of the elements of F(25) is given in Chapter 2, Subsection 1.1.

Braunschweig, Autumn 2020

Wolf-Michael Wendler
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