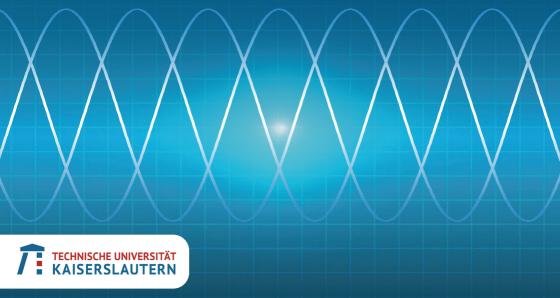


Forschungsberichte


Lehrstuhl für Energiesysteme und Energiemanagement

Hrsg.: Prof. Dr.-Ing. Wolfram H. Wellßow

Helge Pluntke

Designkriterien für Elektrizitätsübertragungsnetze mit hohem Anteil erneuerbarer Erzeugung

Band 13

Designkriterien für Elektrizitätsübertragungsnetze mit hohem Anteil erneuerbarer Erzeugung

vom

Fachbereich für Elektrotechnik und Informationstechnik der Technischen Universität Kaiserslautern zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation

von

Dipl.-Ing Helge Wolfgang Pluntke geb. in Schönebeck (Elbe)

Tag der mündlichen Prüfung: 9. Juli 2021

Dekan des Fachbereichs: Prof. Dr. rer. nat Marco Rahm

Prüfungskommission:

Vorsitz: Prof. Dr. habil. Ping Zhang

1. Berichterstattender: Prof. Dr.-Ing. Wolfram H. Wellßow

2. Berichterstattender: Prof. Dr.-Ing. Albert Moser

D386

Forschungsberichte des Lehrstuhls für Energiesysteme und Energiemanagement

Band 13

Helge Pluntke

Designkriterien für Elektrizitätsübertragungsnetze mit hohem Anteil erneuerbarer Erzeugung

D 386 (Diss. Technische Universität Kaiserslautern)

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kaiserslautern, TU, Diss., 2021

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8191-6 ISSN 2366-4967

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit am Lehrstuhl für Energiesysteme und Energiemanagement der Technischen Universität Kaiserslautern und wurde während meiner anschließenden Beschäftigung als Projektleiter Netzstrategie der e-netz Südhessen AG in Darmstadt zu Ende geführt.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. Wolfram H. Wellßow, für die exzellente Betreuung dieser Arbeit und die damit verbundenen hilfreichen Diskussionen, Anregungen und Hinweise. Herrn Prof. Dr.-Ing. Albert Moser danke ich für die bereitwillige Übernahme des Koreferats und seine äußerst hilfreichen Anmerkungen zu dieser Arbeit. Frau Prof. Dr. habil. Zhang danke ich für die Wahrnehmung des Vorsitzes der Prüfungskommission.

Weiterhin danke ich meinen Kollegen an der TU Kaiserslautern für die stets vertrauensvolle und motivierende Zusammenarbeit beim Aufbau des Lehrstuhls und seiner erfolgreichen Etablierung in den Bereichen Forschung und Lehre. Ebenso danke ich meinen Kollegen von der e-netz Südhessen AG und insbesondere meinem Vorgesetzten Dr.-Ing. Markus Brandl für die wertvollen Anregungen und Hinweise, die sich aus vielen Gesprächen abseits des Tagesgeschäfts für diese Arbeit ergeben haben.

Die Idee zu dieser Arbeit entstand in Folge der VDE ETG-Studie "Energiespeicher für die Energiewende" als lehrstuhlinternes Forschungsprojekt. Die angewandten Modelle und Verfahren wurden im Rahmen zahlreicher studentischer Arbeiten entwickelt. Für ihren unglaublichen Fleiß und ihre Kreativität möchte ich mich ausdrücklich bei Robert Epp, Christoph Berg und Armel Touembou Weme (Netzmodell), Lena Kuhn (Szenario 2050), Jan Reiff (Kraftwerkseinsatzplanung), Maximilian Heilmann und Marc Heck (Betriebsmitteldimensionierung) sowie Florian Diel und Robin Mautes (automatisierte Netzplanung) ganz herzlich bedanken.

Nicht zuletzt danke ich meinen Eltern und Großeltern, die mich auf meinem Lebensweg stets unterstützt und den Grundstein für meinen Werdegang gelegt haben. Mein größter Dank gilt jedoch meiner Frau Dana, die mich auf dem langen Weg zur Promotion mit unglaublich viel Verständnis unterstützt und mir stets den Rücken freigehalten hat. Meiner Tochter Anna danke ich dafür, dass sie unsere Zukunft bereichert und die Zeit nicht langweilig werden lässt.

Inhaltsverzeichnis

1	Ei	nleitu	ng	1
	1.1	Ene	ergiepolitische Rahmenbedingungen in Deutschland und Europa	1
	1.2	Da	s deutsche Höchstspannungsnetz	2
	1.3	2.1	Aufbau und Aufgaben	2
	1.3	2.2	Treiber des Netzausbaus	4
	1.3	2.3	Anforderungen an den Netzausbau	5
	1.3	De	signkriterien für Übertragungsnetze	6
	1.3	3.1	Einordnung in den Planungsprozess	6
	1.3	3.2	Motivation und Ziel der Arbeit	7
	1.3	3.3	Aufbau der Arbeit	8
2	Me	ethod	lischer Ansatz	11
	2.1	Bes	schreibung des Gesamtprozesses	11
	2.2	Vei	fahren zur Kraftwerks- und Speichereinsatzplanung	16
	2.	2.1	Energiewirtschaftliche Grundlagen	16
	2.:	2.2	Speichereinsatzplanung	20
	2.:	2.3	Vorläufige Kraftwerkseinsatzplanung	29
	2.:	2.4	Finale Kraftwerkseinsatzplanung	31
	2.3	Vei	fahren zur Zielnetzplanung	35
	2.3	3.1	Eigenschaften des Netzausbauproblems	35
	2.3	3.2	Mögliche Lösungsverfahren	37
	2.3	3.3	Bewertung der Lösungsverfahren	40
	2.3	3.4	Automatisierter Netzplanungsprozess	44
	2.3	3.5	Erstellung von Ausbauplanreihen	54
3	Αι	usgar	gssituation der Netzplanung	57
	3.1	Ene	ergiewirtschaftliches Szenario	57
	3.	1.1	Eigenschaften	57
	3.	1.2	Bruttostromverbrauch und Lastverlauf	58

	3.1.3	Dargebotsabhängige Brutto-EE-Stromerzeugung und -Einspeiseverlauf	60
	3.1.4	Kraftwerks- und Speichereinsatz	62
	3.2 Vo	rbereitung der Netzberechnung	64
	3.2.1	Beschreibung des Startnetzmodells	64
	3.2.2	Regionalisierung der Lastverläufe	66
	3.2.3	Regionalisierung der EE-Einspeiseverläufe	67
	3.3 Re	sultierende Engpässe im Startnetzmodell	68
1	Dimens	sionierung der Netzbetriebsmittel	70
	4.1 Dre	ehstromfreileitungen	70
	4.1.1	Vorteile gegenüber anderen Übertragungstechnologien	70
	4.1.2	Stand der Technik und Entwicklungspotential	70
	4.1.3	Investitions- und Betriebskosten	72
	4.1.4	Auslegung des Drehstromfreileitungs-Typs	72
	4.2 Ho	chspannungsgleichstromübertragung	74
	4.2.1	Vorteile gegenüber der Drehstromhochspannungsübertragung	74
	4.2.2	Stand der Technik und Entwicklungspotential	74
	4.2.3	Investitions- und Betriebskosten	77
	4.2.4	Auslegung der HGÜ-Typen	78
	4.3 Ga	sisolierte Leitungen	81
	4.3.1	Vorteile gegenüber klassischer Drehstromübertragung	81
	4.3.2	Stand der Technik und Entwicklungspotential	81
	4.3.3	Investitions- und Betriebskosten	82
	4.3.4	Auslegung der GIL-Typen	83
	4.4 Tra	nsformatoren und Schaltfelder	84
5	Ergebr	isse der Zielnetzplanung	85
	5.1 Vo	rbemerkung	85
	5.2 Ho	mogene Ausbaupläne aus automatisierter Netzplanung	85
	5.2.1	Ausbauplan AC OHL 380kV	85

	5.2.2	Ausbauplan DC_OHL_4GW	88
	5.2.3	Ausbauplan DC_OHL_6GW	90
	5.2.4	Ausbauplan DC_CBL_4GW	92
	5.2.5	Ausbauplan DC_CBL_6GW	94
	5.2.6	Ausbauplan GIL_4GW	97
	5.2.7	Ausbauplan GIL_6GW	99
	5.2.8	Vergleich der homogenen Ausbaupläne	101
5.	.3 Krit	ische Würdigung der automatisierten Netzplanung	108
	5.3.1	Einfluss des Betrachtungsgebiets auf das Planungsergebnis	108
	5.3.2	Einfluss der PSO-Aktualisierungsvorschrift auf das Planungsergebnis	110
	5.3.3	Einfluss der Zubaureihenfolge auf das Planungsergebnis	111
	5.3.4	Einfluss der Test-NFF auf das Planungsergebnis	111
5.	.4 Hor	nogene Ausbaupläne aus manueller Überarbeitung	112
	5.4.1	Vorgehensweise	112
	5.4.2	Ausbauplan AC_OHL_380kV*	114
	5.4.3	Ausbauplan DC_OHL_6GW*	116
	5.4.4	Ausbauplan DC_CBL_6GW*	118
	5.4.5	Gesamtkosten	119
	5.4.6	Fazit	121
5.	.5 Het	erogene Ausbauplanreihen	121
	5.5.1	Vorbemerkung	121
	5.5.2	Ausbauplanreihe DC_OHL_6GW*	122
	5.5.3	Ausbauplanreihe DC_CBL_6GW*	124
6	Ableitur	ng von Designkriterien	127
7	Zusamr	menfassung	132
8	Literatu	rverzeichnis	136
9	Abbildu	ngsverzeichnis	151
10	Tabelle	nverzeichnis	154

11	l Forme	Izeichen und Nebenzeichen	156
12	2 Abkürz	zungsverzeichnis	159
13	B Extend	ded Abstract	162
	13.1	Introduction	162
	13.2	Methodological Approach	163
	13.3	Initial Situation for Transmission System Planning	164
	13.4	Dimensioning of Network Components	165
	13.5	Expansion Planning Results	165
	13.6	Design Criteria	166
14	Anhan	g	167
	14.1	Ausgangssituation der Netzplanung	167
	14.1.1	Herleitung der Bruttostromverbräuche	167
	14.1.2	Herleitung der EE-Anteile	169
	14.1.3	Herleitung der EE-Mixe	174
	14.1.4	Herleitung des konventionellen Kraftwerks- und Speicherparks	185
	14.1.5	Technische Details des Kraftwerks- und Speicherparks	186
	14.1.6	Brennstoff- und CO ₂ -Preise	186
	14.1.7	Szenario auf einen Blick	187
	14.1.8	Detailbeschreibung des Startnetzmodells	189
	14.1.9	Liste der Startnetzmaßnahmen	190
	14.1.1	0 Karte der Bevölkerungsdichte Europas auf NUTS-2-Ebene	193
	14.1.1	1 Karte des Onshore-Windpotentials Europas auf NUTS-2-Ebene	194
	14.1.1	2 Karte des Photovoltaik-Potentials Europas auf NUTS-2-Ebene	195
	14.1.1	3 Detailbeschreibung des Ausgangszustands im Startnetzmodell	196
	14.2	Dimensionierung der Netzbetriebsmittel	197
	14.2.1	Teilinvestitionskosten der DHÜ- und HGÜ-Freileitungstypen	197
	14.2.2	Entwicklung der VSC-Investitionskostenfunktion	198
	14.2.3	Teilinvestitionskosten HGÜ-Kabeltypen	199

	14.2.4	Kostenbestandteile der GIL	. 201
	14.2.5	Dimensionierung der Transformatoren und Schaltfelder	. 202
	14.2.6	Technische Daten des Leitungstyps AC_OHL_380kV	. 204
	14.2.7	Technische Daten des Leitungstyps DC_OHL_4GW	. 205
	14.2.8	Technische Daten des Leitungstyps DC_OHL_6GW	. 206
	14.2.9	Technische Daten des Leitungstyps DC_CBL_4GW	. 207
	14.2.10	Technische Daten des Leitungstyps DC_CBL_6GW	. 208
	14.2.11	Technische Daten des Leitungstyps GIL_4GW	. 209
	14.2.12	Technische Daten des Leitungstyps GIL_6GW	. 210
1	4.3 ⊦	leterogene Ausbaupläne	. 211
	14.3.1	Ausbauplanreihe DC_OHL_6GW*	. 211
	14.3.2	Ausbauplanreihe DC_CBL_6GW*	. 222
15	Lebens	lauf	. 233