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Kurzfassung

Der zunehmende Anteil erneuerbarer Energien auf dem weltweiten Strom-
markt fithrt zu neuen Anforderungen an konventionelle Kraftwerkparks.
Sie miissen flexibler betrieben werden, um auf Lastschwankungen im Netz
reagieren zu konnen. Fin derart flexibler Betrieb erfordert modifzierte
Turbinen und grundlegend neue Technologien. FEine Antwort auf diesen
Trend ist die Entwicklung und Optimierung neuartiger Dichtungstechnolo-
gien, welche einen flexibleren Einsatz von Gasturbinen ermoglichen, aber
trotzdem zu einer weiteren Verbesserung der Gasturbineneffizienz fiihren.
Selbstadaptierende Gleitringdichtungen erscheinen dabei vielversprechend.
Minimale Spalte konnen iiber einen breiten Betriebsbereich eingehalten
werden und eine gefederte Ausfithrung ermoglicht es, dass die Dichtung
axialen Bewegungen des Rotors folgen kann. Druckluft wird in den Spalt
zwischen den relativ zueinander bewegten Gleitflachen gespeist und bildet
einen nur wenige Zehntel Millimeter diinnen und zugleich steifen Schmier-
film. Mit ihm entsteht ein Luftpolster, welches den beriihrungsfreien Be-
trieb der Dichtung gewé&hrleistet. Vor allem die Druckverteilung im Luft-
polster ist von fundamentalem Interesse, da sie die Tragkraft und Steifigkeit
des Films bestimmt. Beide Eigenschaften sollten im Idealfall maximal sein
und keinerlei Schwankungen unterliegen. Daraus folgen zwei Prémissen.
Zum einen muss die Abhéngigkeit der Druckverteilung zu konstruktiven
Gestaltungsaspekten und jeweiligen Betriebsbedingungen verstanden wer-
den. Zum anderen miissen die realen Leistungsdaten der Dichtung bedacht
werden. Fertigungsfehler auf einer der Gleitflachen zum Beispiel bergen das
Risiko einer gegeniiber der Entwurfsabsicht verdnderten Druckverteilung,
was wiederum zu einer Verdnderung des sich einstellenden Luftspalts fiihren
kann. Die Konsequenzen konnen signifikant sein und unter Umsténden zu
Kontakt zwischen den Dichtflachen fithren.

Die vorliegende Dissertationsschrift ist das Resultat der Tétigkeit als
wissenschaftliche Mitarbeiterin am Institut fiir Turbomaschinen und Flu-
gantriebe an der Technischen Universitdt Miinchen. Die Arbeit befasst
sich mit den aerostatischen Eigenschaften einer adaptiven Gleitringdich-
tung fiir den Einsatz in Gasturbinen. Ein Hauptaugenmerk liegt auf dem
in der Dichtung integrierten aerostatischen Luftlager, welches im Rahmen
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einer experimentellen Studie untersucht wird. Im Fokus stehen der Luftver-
brauch, sowie die Druckverteilung und Steifigkeit des im Luftlager aufge-
bauten Luftfilms. Alle drei Eigenschaften werden stets unter variierenden,
reprasentativen Betriebsbedingungen untersucht und bewertet. In einem
zweiten Teil der Arbeit wird zudem der Einfluss potenzieller Fertigungs-
fehler definiert und hinsichtlich der Auswirkung auf die zuvor untersuchten
statischen Eigenschaften der selbstadaptierenden Gleitringrichtung unter-
sucht. Alle Ergebnisse werden diskutiert und hinsichtlich ihrer Signifikanz
bewertet.
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Abstract

During the past years, the share of renewable energies in total electricity
consumption has increased significantly. This makes the supply side of the
grid less predictable than it used to be in the past. Large fluctuations may
occur which are to be compensated by the traditional sources of electricity.
Today’s gas turbines, however, are designed for high performance opera-
tion in a base load regime and their design is not well focused on quickly
changing load requirements. Flexible operation cycles result in high tem-
perature gradients coupled with large axial and radial displacements of
turbine parts and are currently limited by the tight clearance between the
rotor and stator. As a consequence, it is becoming increasingly important
to introduce new sealing technologies to allow a balancing of energy de-
mand peaks by providing flexible operation; advanced seal design concepts
need to be invented, optimized and tested at engine-like conditions. Self-
adaptive gas-lubricated face seals, for instance, have been established and
seem to be promising in order to satisfy the latest requirements to turbo-
machinery. They ensure minimal clearances and can handle a wide range of
operating conditions. The seal is spring-mounted allowing it to follow the
rotor’s axial movements at low gas pressure. Small feed holes are present on
the axially facing seal’s surface injecting high pressure air in the seal/rotor
gap, thereby effectively creating an aerostatic gas bearing between static
and rotating components. The characteristic attribute of this bearing is a
narrow clearance of typically less than 0.1 mm in a complicated geometry.
For design and optimization purposes, accurate and detailed knowledge of
the pressure distribution acting in this clearance is of fundamental interest
as it determines both the load capacity and film stiffness. The seal/rotor
system is thereby subject to highest quality requirements in order to ensure
a safe and permanent seal performance. Precision machinery and methods
are required and manufacturing errors must be avoided as they may cause
the seal to deviate from its predicted performance, potentially causing sig-
nificant damage.

This dissertation thesis is the result of research activities that have been
conducted at the Chair of Turbomachinery and Flight Propulsion at the
Technical University of Munich. The thesis seeks to strengthen the knowl-



edge on the field of film-lubricated and large-diameter face seals that em-
ploy aerostatic thrust bearings. The motivation is to gain confidence about
their applicability to new and demanding operating conditions. Eventually,
a new type of seal is studied experimentally. The results of investigation
are presented, focusing on three main characteristics of the seal. These are
the air consumption, as well as the pressure distribution and stiffness devel-
oped in the air film. All three characteristics are studies under engine-like
conditions. Furthermore, in a second part of the thesis, the impact of po-
tential manufacturing defects on the static characteristics are investigated.
All results are discussed in terms of their significance for manufacturing
accuracy and quality.
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