Lehrstuhl Füge- und Schweißtechnik

Brandenburgische Technische Universität Cottbus-Senftenberg

Herausgeber: Univ.-Prof. Dr.-Ing. habil. Vesselin Michailov

Michael Piott

Numerische Simulation des Widerstandspunktschweiß- und Widerstandspunktschweißklebeprozesses von Aluminiumlegierungen

Brandenburgische Technische Universität Cottbus - Senftenberg

Numerische Simulation des Widerstandspunktschweiß- und Widerstandspunktschweißklebeprozesses von Aluminiumlegierungen

Von der Fakultät für Maschinenbau, Elektro- und Energiesysteme der Brandenburgischen Technischen Universität Cottbus-Senftenberg zur Erlangung des akademischen Grades eines

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation vorgelegt von

M.Sc.

Michael Piott

geboren am 14.01.1991 in Ellwangen (Jagst)

Vorsitzender: Prof. Dr.-Ing. Holger Seidlitz
Gutachter: Prof. Dr.-Ing. habil. Vesselin Michailov
Gutachter: Prof. Dr.-Ing. Karl Roll
Tag der mündlichen Prüfung: 30.06.2021

Berichte des Lehrstuhls Füge- und Schweißtechnik der BTU Cottbus-Senftenberg

Band 15

Michael Piott

Numerische Simulation des Widerstandspunktschweiß- und Widerstandspunktschweißklebeprozesses von Aluminiumlegierungen

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Cottbus-Senftenberg, BTU, Diss., 2021

Copyright Shaker Verlag 2021 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8320-0 ISSN 1867-4887

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als Doktorand bei der Mercedes-Benz AG im Bereich der digitalen Fabrik im Werk Sindelfingen.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. habil. Vesselin Michailov, Inhaber des Lehrstuhls für Füge und Schweißtechnik der Brandenburgischen Technischen Universität Cottbus-Senftenberg, für die wissenschaftliche Betreuung dieser Arbeit und die wertvollen fachlichen Diskussionen, welche wesentlich zum Gelingen dieser Arbeit beitragen haben.

Herrn Prof. Dr.-Ing. Karl Roll danke ich für das Interesse an der Arbeit und die Übernahme des Mitberichts sowie Herrn Prof. Dr.-Ing. Holger Seidlitz als Vorsitzender der Promotionskommission.

Meinen Kolleginnen und Kollegen bei Daimler möchte ich für die zahlreichen fachlichen, aber auch persönlichen Diskussionen und die Unterstützung bei Experimenten und Simulationen danken. Mein herzlicher Dank gebührt dabei insbesondere Frau Dr.-Ing. Alexandra Werber und Herrn Felix Bauer.

Zudem bedanke ich mich bei Herrn Dr.-Ing. Ralf Ossenbrink, Herrn Dr.-Ing. Leander Schleuß und Herrn Dr.-Ing. Nikolay Doynov vom Lehrstuhl für Fügeund Schweißtechnik für die fachliche Unterstützung und die stets produktiven Diskussionen.

Für ihre unermüdliche Unterstützung, ihr Verständnis während der Erstellung dieser Arbeit und ihre Förderung meines bisherigen Lebensweges danke ich meinen Eltern und meiner Freundin Susanne.

Zusammenfassung

Der zunehmende Einsatz von Leichtbauwerkstoffen im automobilen Karosseriebau, insbesondere von Aluminiumlegierungen, erfordert eine Weiterentwicklung und Anpassung der bestehenden Fügetechnik auf die neuen Werkstoffe. Als wichtiges Fügeverfahren im Karosseriebau hat sich hierbei das Widerstandspunktschweißen bzw. Widerstandspunktschweißkleben für Stahlwerkstoffe bewährt. Die numerische Simulation kann dazu beitragen, den Schweißprozess für neue Werkstoffe zu analysieren und optimieren bei einer Reduzierung von aufwändigen Experimenten.

Die vorliegende Arbeit beschäftigt sich mit der numerischen Simulation des Widerstandspunktschweiß- und Widerstandspunktschweißklebeprozesses von Aluminiumlegierungen. Dabei wird eine Methode zur Modellierung der Schweißprozesse mit dem Ziel einer digitalen Abbildung der Schweißlinsenentstehung aufgebaut und validiert.

Hierzu werden im ersten Schritt die eingesetzten Aluminiumlegierungen AA5182 und AA6014 sowie der eingesetzte Strukturklebstoff experimentell charakterisiert. Anschließend werden die Randbedingungen des Temperaturfeldes untersucht und kalibriert.

Im folgenden Schritt wird der Widerstandspunktschweißprozess mit instrumentierten Schweißversuchen analysiert sowie ein FE-Modell aufgebaut und umfassend validiert. Wesentliches Element des Modells stellt ein neues Kontaktwiderstandsmodell dar, welches das Verhalten des elektrischen Kontaktes unter schweißtypischer Beanspruchung für Aluminiumoberflächen abbilden kann. Zudem wird der Einfluss unterschiedlicher Schweißparameter, Werkstoffe, Oberflächenzustände, Spalte und Elektrodenkühlung auf die Schweißlinsengröße experimentell und numerisch analysiert.

Abschließend werden die Auswirkungen einer Klebstoffzwischenschicht auf den Schweißprozess (Widerstandspunktschweißkleben) untersucht und das FE-Modell dahingehend erweitert. Hierzu gehört sowohl die Integration eines Klebstoffspaltes als auch die Erweiterung des Kontaktwiderstandsmodells.

Abstract

The increasing use of lightweight materials in automotive body in white shop, especially aluminum alloys, requires further development and adaptation of existing joining technology to the new materials. Resistance spot welding or spot weld bonding for steel materials has proven to be an important joining process in car body constructions. Numerical simulation can help to analyze and optimize the welding process for new materials while reducing the need for extensive experiments.

The present work deals with the numerical simulation of the resistance spot welding process and spot weld bonding process of aluminium alloys. A method for modeling the welding processes with the aim of a digital depiction of the nugget formation is built up and validated.

In a first step, the aluminum alloys AA5182 and AA6014 as well as the used structural adhesive are characterized experimentally. Subsequently, thermal boundary conditions are investigated and calibrated.

In the next step, the resistance spot welding process is analyzed with instrumented experiments and a FE-model is built and validated comprehensively. An essential element of the model is a new contact resistance model, which is able to describe the behavior of the electrical contact under typical welding conditions for aluminum surfaces. Additionally, the influence of different welding parameters, materials, surface conditions, gaps and electrode cooling on the nugget size is analyzed experimentally and numerically.

Finally, the effects of an adhesive on the welding process (spot weld bonding) are investigated and the FE-model is extended. This includes the integration of an adhesive gap as well as the extension of the contact resistance model.

Inhaltsverzeichnis

	Abb	oildungsverzeichnis	III
	Tab	ellenverzeichnis	XVII
	Abk	xürzungs- und Symbolverzeichnis	XIX
1	Einl	eitung	1
2	Star	nd der Kenntnisse	3
	2.1	Widerstandspunktschweißen	3
	2.2	Widerstandspunktschweißkleben	6
	2.3	Werkstofftechnische Grundlagen	7
	2.4	Grundlagen der Modellierung	11
	2.5	Schlussfolgerungen, Zielsetzung und Vorgehensweise $\ .\ .\ .$	28
3	Ver	wendete Werkstoffe, Anlagen und Prüfmethoden	31
	3.1	Werkstoffcharakterisierung	31
	3.2	Schweißanlagen	38
	3.3	Prüfmethoden	39
	3.4	Statistische Versuchsplanung	39
	3.5	Simulationssoftware	40
4	Cha	rakterisierung des Wärmeübergangs	41
	4.1	Aufbau der Wärmeübergangsversuche	41
	4.2	FE-Simulationsmodell	43
	4.9	E	45
	4.3	Ergeomsse der warmeubergangsuntersuchungen	45

5	Wide	erstandspunktschweißen	55
	5.1	Aufbau der Versuche	55
	5.2	FE-Simulationsmodell	59
	5.3	Kontaktwiderstandsmodell	60
	5.4	Validierung des FE-Simulationsmodells	78
	5.5	Einfluss der Elektrodenkühlung	87
	5.6	Einfluss der Schweißparameter und Werkstoffe	95
	5.7	Einfluss des Oberflächenzustandes	102
	5.8	Einfluss eines Spaltes	104
	5.9	Sensitivitätsanalyse	109
	5.10	Zusammenfassung und Schlussfolgerungen	116
6	Wide	erstandspunktschweißkleben	121
	6.1	Aufbau der Versuche	121
	6.2	Einfluss der Klebstoffzwischenschicht	122
	6.3	Erweiterung des FE-Simulationsmodells für Klebstoffzwischen-	
		schichten	126
	6.4	Einfluss der Schweißparameter und Werkstoffe	130
	6.5	Einfluss des Oberflächenzustandes	135
	6.6	Zusammenfassung und Schlussfolgerungen	137
7	Zusa	ammenfassung und Ausblick	141
Lit	eratu	rverzeichnis	145
Eig	gene V	Veröffentlichungen	161
Α	Anha	ang	A-1
	A.1	Untersuchungen zum Wärmeübergang	A-1
	A.2	Untersuchungen zum Widerstandspunktschweißen A	A-19
		A.2.1 Einpuls-Schweißungen	A- 19
		A.2.2 Zweipuls-Schweißungen	A- 23
		A.2.3 Vergleich der 2D- und 3D-Simulation A	4-35
		A.2.4 Sensitivitätsanalyse A	A- 36
	A.3	Untersuchungen zum Widerstandspunktschweißkleben $\ .\ .$. A	4-41
		A.3.1 Einpuls-Schweißungen	4-41
		A.3.2 Zweipuls-Schweißungen	4-45

Abbildungsverzeichnis

Prozessschritte	3
Widerstandsverhältnisse nach [6]	4
Linsengeometrie nach $[3, 11] \ldots \ldots \ldots \ldots \ldots \ldots$	5
Schematischer Ablauf des Widerstandspunktschweißklebens	
nach [18]	7
Schematischer Aufbau der Oxidschicht nach $[28,36]$ \ldots .	9
Schematische Kontaktfläche zwischen zwei rauen Aluminium-	
Blechoberflächen	13
Schematischer elektrischer Kontakt zwischen einer rauen und	
einer ebenen Oberfläche nach [70, 71]	14
Verlustwärme an einer Schweißstelle nach $[114]$ \ldots	23
E Modul und Deissenschl von (a) AA5189, (b) AA6014	20
E-Modul and Poissonzani von: (a) $AA5182$; (b) $AA0014$.	32
Warmzugproben: (a) Abmessungen; (b) zerstorte Probe nach	20
C W" II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	32
Gemessene Warmedennungen und ermittelte Warmeausden-	
	33
Warmfliebkurven von: (a) $AA5182$; (b) $AA6014$	34
1 hermo-physikalische werkstoffelgenschaften von: (a) AA5182;	9.0
$(\mathbf{D}) \text{ AA0014} \dots \dots$	30
Thermogravimetrische Messung des Klebstoffs	37
X-Zange der Schweißanlage 1	38
Schematischer Aufbau der Wärmeübergangsversuche	42
Schematische Darstellung der mechanischen (grün) und thermi-	
schen (blau) Randbedingungen in der Wärmeübergangssimula-	
tion	44
Elektrodenkappenabmessungen und Position der Thermoele-	
mente (Maße in mm)	46
	Prozessschritte

4.4	Vergleich der aufgezeichneten und berechneten Temperaturfel-	
	der: (a) AA5182; (b) AA6014	47
4.5	Vergleich der gemessenen und berechneten Blechtemperaturen:	
	(a) AA5182; (b) AA6014	48
4.6	Vergleich der gemessenen und berechneten Elektrodentempera-	
	turen: (a) AA5182; (b) AA6014	49
4.7	Vergleich der gemessenen und berechneten Kühlleistung an	
	einer Elektrode: (a) AA5182; (b) AA6014	50
4.8	Berechnete Wärmeverteilung: (a) AA5182; (b) AA6014	50
4.9	Vergleich der aufgezeichneten und berechneten Temperaturfel-	
	der des Zweiblechversuches	51
4.10	Vergleich der gemessenen und berechneten Temperaturen des	
	Zweiblechversuches: (a) Blechtemperaturen; (b) Elektroden-	
	temperaturen \ldots	52
4.11	Vergleich der dissipierten Wärme des Zweiblechversuches: $({\bf a})$ ge-	
	messene und berechnete Kühlleistung an der unteren Elektrode;	
	(b) berechnete Verlustwärme durch erzwungene und naturliche	
	Konvektion	53
4.12	Berechnete Wärmeverteilung des Zweiblechversuches: (a) abso-	
	lute Wärmemengen; (b) anteilige Wärmemengen	54
5.1	Aufbau der Widerstandspunktschweißversuche (Maße in $mm)$	55
5.2	Verwendete Schweißprogramme: (a) Einpuls-Programm;	
	(b) Zweipuls-Programm	56
5.3	Schematische Darstellung der Schweißanlage 1 mit Instrumen-	
	tierung	57
5.4	Schweißanlage 2 mit Instrumentierung	57
5.5	Schematische Darstellung der Spannungsdifferenz-Messung	58
5.6	Schematische Darstellung der mechanischen (grün), thermischen	
	(blau) und elektrischen (orange) Randbedingungen \hdots	60
5.7	Berechnung von Kontaktwiderständen und der Joule'schen	
	Stromwärmeleistung	63
5.8	Gemessene Schweißparameter der Einpuls-Versuche bei Elek-	
	trodenkraft 5 kN : (a),(c) Schweißstrom und Elektrodenkraft	
	AA5182; (b),(d) Schweißstrom und Elektrodenkraft AA6014	65

5.9	Simulationsergebnisse an der Elektrodenkappe mit AA5182	
	ohne Kontaktwiderstand nach $100ms$ bei Elektrodenkraft $5kN$	
	und Schweißstrom $8 kA$: (a) Potentialfeld; (b) Stromdichtever-	
	teilung \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	66
5.10	Abmessungen der Elektrodenkappen und Spannungsabnahme-	
	stellen von: (a) AA5182; (b) AA6014	67
5.11	Messung der Elektrode-Blech-Widerstände bei Elektrodenkraft	
	5 kN und Schweißstrom $8 kA$: (a) AA5182; (b) AA6014	67
5.12	Messung der Blech-Blech-Widerstände bei Elektrodenkraft $5kN$	
	und Schweißstrom $8 kA$: (a) AA5182; (b) AA6014	68
5.13	Berechnete Kontaktdruck- und Kontakttemperaturverteilung	
	ohne Kontaktwiderstand bei Elektrodenkraft $5kN$ nach $100ms$	
	(a),(c) Elektrode-Blech- und Blech-Blech-Kontakt AA5182;	
	(b),(d) Elektrode-Blech- und Blech-Blech-Kontakt AA6014 $\ .$	69
5.14	Kalibrierte Druck- und Temperaturfunktionen $\Psi(p,T)$ von:	
	(a) AA5182; (b) AA6014	70
5.15	Berechnete Druck-, Temperatur- und Kontaktwiderstandsvertei-	
	lung bei Elektrodenkraft $5 kN$ nach $100 ms$: (a),(c) Elektrode-	
	Blech- und Blech-Blech-Kontakt AA5182; (b),(d) Elektrode-	
	Blech- und Blech-Blech-Kontakt AA6014	71
5.16	Berechnete elektrische Kontakflächen bei Elektrodenkraft 5 $kN\colon$	
	(a) $AA5182$; (b) $AA6014$	72
5.17	Berechnete Kontaktdruck- und Kontakttemperaturverteilung	
	bei Elektrodenkraft $5 kN$ und Schweißstrom $8 kA$:	
	(a),(c) Elektrode-Blech- und Blech-Blech-Kontakt AA5182;	
	$(\mathbf{b}), (\mathbf{d})$ Elektrode-Blech- und Blech-Blech-Kontakt AA6014 .	73
5.18	Gemessene und berechnete Widerstände bei Elektrodenkraft	
	5 kN: (a),(c) Anode-Blech und Kathode-Blech; (b),(d) Anode-	
	Blech und Kathode-Blech AA6014	74
5.19	Gemessene und berechnete Widerstände zwischen den Blechen	
	bei Elektrodenkraft 5 kN : (a) AA5182; (b) AA6014	75
5.20	Gemessene und berechnete Widerstände bei unterschiedlicher	
	Elektrodenkraft und Schweißstrom $8 kA$: (a),(c) Anode-Blech	
	und Kathode-Blech AA5182; (b),(d) Anode-Blech und Kathode-	
	Blech AA6014	76

5.21	Aufteilung der berechneten Gesamtwiderstände zwischen Anode	
	und Blech bei Elektrodenkraft $5kN$ und Schweißstrom $8kA$:	
	(a) AA5182; (b) AA6014	77
5.22	Aufteilung der berechneten Gesamtwiderstände zwischen den	
	Blechen bei Elektrodenkraft $5 kN$ und Schweißstrom $8 kA$:	
	(a) AA5182; (b) AA6014	78
5.23	Gemessene Elektrodenkraft und Strom eines exemplarischen	
	Zweipulsversuches	79
5.24	Position der Spannungsabnehmer und Thermoelemente	79
5.25	Gemessene und berechnete Widerstände: (a) Anode-Blech;	
	(b) Blech-Blech	81
5.26	Berechnete elektrische Kontaktflächen	81
5.27	Joule'sche Stromwärme: (a) Anode-Blech; (b) Blech-Blech .	82
5.28	Berechnete plastische Verformungsenergie	83
5.29	Gemessene und berechnete Temperaturen: (a) Elektrode;	
	(b) Blech	84
5.30	Gemessene und berechnete Schweißlinse	84
5.31	Gemessene und berechnete Verlustwärme durch erzwungenen	
	Konvektion	85
5.32	Gemessene und berechnete Elektrodenbewegung	86
5.33	Gemessene Widerstände bei unterschiedlicher Kühlwasserdurch-	
	flussmenge: (a) Anode-Blech; (b) Blech-Blech	87
5.34	Gemessene Elektrodentemperaturen bei unterschiedlicher Kühl-	
	wasserdurchflussmenge	88
5.35	Gemessene Verlustwärme durch erzwungene Konvektion bei	
	unterschiedlicher Kühlwasserdurchflussmenge $\ .\ .\ .\ .$.	88
5.36	Gemessene Elektrodenbewegungen bei unterschiedlicher Kühl-	
	was serdurchflussmenge	89
5.37	Berechnete Elektrodenzustände bei unterschiedlicher Kühlrand-	
	bedingung: (a) Temperatur; (b) Energiezunahme beide Elek-	
	troden \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	91
5.38	Berechnete Blechzustände bei unterschiedlicher Kühlrandbe-	
	dingung: (a) Temperatur; (b) Energiezunahme beide Bleche	91
5.39	Berechnete Verlustwärme durch erzwungene Konvektion am	
	Kühlwasser bei unterschiedlichen Kühlrandbedingungen $\ . \ .$	92

5.40	Berechnete Verlustwärme an den Blechen und Elektroden durch natürliche Konvektion und Strahlung zur Umgebungsluft bei	
	unterschiedlichen Kühlrandbedingungen	93
5.41	Berechnete Anteile der in Blechen, Elektroden und Kühlwasser	
	gespeicherten bzw. abgeführten Wärme/Energie von der Ge-	
	samtenergie bei unterschiedlichen Kühlrandbedingungen $\ . \ .$	94
5.42	Berechnete Elektrodenbewegung bei unterschiedlichen Kühl-	
	randbedingungen	94
5.43	Gemessene und berechnete Linsen- und Punktdurchmesser mit	
	AA5182 bei unterschiedlichen Schweißparametern $.$	97
5.44	Gemessene und berechnete Linsen- und Punktdurchmesser mit	
	AA6014 bei unterschiedlichen Schweißparametern $.$	98
5.45	Vergleich der Versuchsergebnisse unterschiedlicher Blechkombi-	
	nationen mit einer Elektrodenkraft von $5 kN$: (a) Widerstand	
	Blech-Blech; (b) Elektrodenkraft	99
5.46	Gemessene und berechnete Widerstände bei einer Elektroden-	
	kraft von $5 kN$ und Hauptschweißstrom $40 kA$: (a) Anode-Blech;	
	(b) Kathode-Blech; (c) Blech-Blech	100
5.47	Gemessene und berechnete Schweißlinse bei einer Elektroden-	
	kraft von $5 kN$ und Hauptschweißstrom $40 kA$	101
5.48	Gemessene und berechnete Linsen- und Punktdurchmesser mit	
	der Blechkombination AA6014+AA5182 bei unterschiedlichen	
	Schweißparametern	101
5.49	Gemessene Schweißparameter bei unterschiedlicher Blechober-	
	fläche: (a) AA5182; (b) AA6014	103
5.50	Gemessene und berechnete Widerstände bei unterschiedlicher	
	Blechoberfläche: (a),(c) Anode-Blech und Blech-Blech AA5182;	
	(b),(d) Anode-Blech und Blech-Blech AA6014	104
5.51	Aufbau der Spaltversuche: (a) Schematischer Versuchsaufbau;	
	(b) Blech mit appliziertem Klebeband	105
5.52	Schematischer Aufbau der Simulation mit Spalt	106
5.53	Gemessene Schweißparameter bei unterschiedlichem Spalt	106
5.54	Einfluss unterschiedlicher Spalte auf: (a),(b) gemessene und be-	
	rechnete Widerstände zwischen Anode-Blech und Blech-Blech;	
	(c),(d) berechnete Kontaktflächen und Kraftverluste zwischen	
	Anode-Blech und Blech-Blech	108

5.55	Gemessene und berechnete Linsen- und Punktdurchmesser mit	
	AA5182 bei unterschiedlicher Spalthöhe	108
5.56	Maximal temperaturfeld bei Elementkantenlänge $0,4mm$	110
5.57	Einfluss der Elementkantenlänge (EKL) auf: (a) Maximaltem-	
	peraturen in der Fügeebene; (b) zeitlicher Temperaturverlauf	
	am Mittelpunkt der Fügeebene	110
5.58	Einfluss der Zeitschrittweite auf: (a) Maximaltemperaturen in	
	der Fügeebene; (b) zeitlicher Temperaturverlauf am Mittel-	
	punkt der Fügeebene	111
5.59	Linsendurchmesser abhängig von den Haupteinflussfaktoren bei	
	mittlerem Stufenwert der anderen Einflüsse: (a) Leitfähigkeit;	
	(b) Fließkurven	114
5.60	Beeinflussung des Linsendurchmessers durch Wechselwirkungen:	
	(a) Leitfähigkeit und Spalt; (b) Fließkurven und Spalt	116
61	(a) aufgetragene Klebstoffraune: (b) ausgehärtete Klebstoff-	
0.1	schicht nach dem Schweißprozess	122
6.2	Gemessene Elektrodenkraft mit und ohne Klebstoffzwischen-	
0.2	schicht: (a) AA5182: (b) AA6014	122
6.3	Gemessene Widerstände mit und ohne Klebstoffzwischenschicht:	
	(a),(c) Anode-Blech und Blech-Blech AA5182; (b),(d) Anode-	
	Blech und Blech-Blech AA6014	123
6.4	Exemplarische Schliffbilder mit und ohne Klebstoffzwischen-	
	schicht: (a) AA5182; (b) AA6014	124
6.5	Gemessene Elektrodenbewegung mit und ohne Klebstoffzwischen-	
	schicht: (a) AA5182; (b) AA6014	124
6.6	Schematische Darstellung der Auswirkungen einer Klebstoff-	
	schicht	125
6.7	Exemplarisches Schliffbild mit Klebstoffspalt	126
6.8	Schematischer Aufbau der Simulation des Widerstandspunkt-	
	schweißklebens	127
6.9	Modellierung des Klebstofffaktors $K(T)$	128
6.10	Einpuls-Schweißversuche mit Klebstoffzwischenschicht:	
	(a),(b) gemessene Elektrodenkraft; $(c)-(f)$ gemessene und be-	
	rechnete Widerstände	129

6.11	Gemessene Spalthöhen der Zweipuls-Schweißversuche mit Kleb- stoff	131
6.12	Gemessene und berechnete Linsen- und Punktdurchmesser mit AA5182 bei unterschiedlichen Schweißparametern mit Kleb- stoffzwischenschicht	131
6.13	Gemessene und berechnete Linsen- und Punktdurchmesser mit AA6014 bei unterschiedlichen Schweißparametern mit Kleb- stoffzwischenschicht	132
6.14	Schweißversuche der Blechkombination AA6014+AA5182 mit Klebstoffzwischenschicht: (a) gemessene Elektrodenkraft; (b)-(d) gemessene und berechnete Widerstände	133
6.15	Gemessene und berechnete Schweißlinse der Blechkombination AA6014+AA5182 mit Klebstoffzwischenschicht	134
6.16	Gemessene und berechnete Linsen- und Punktdurchmesser mit der Blechkombination AA6014+AA5182 bei unterschiedlichen Schweißparametern mit Klebstoffzwischenschicht	134
6.17	Einfluss des Oberflächenzustandes bei Schweißversuchen auf: (a) gemessene Elektrodenkraft; (b),(c) gemessene und berech- nete Widerstände	136
6.18	Einfluss des Oberflächenzustandes auf die Linsengeometrie bei Schweißversuchen mit AA6014	137
A.1	Ergebnisse Experiment und Simulation von Versuch WÜ02: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be- rechnete Wärmeverteilung	A-3
A.2	Ergebnisse Experiment und Simulation von Versuch WÜ03: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-4

A.3	Ergebnisse Experiment und Simulation von Versuch WÜ04:	
	(a) Temperatur felder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-5
A.4	Ergebnisse Experiment und Simulation von Versuch WÜ05:	
	(a) Temperatur felder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-6
A.5	Ergebnisse Experiment und Simulation von Versuch WÜ06:	
	(a) Temperaturfelder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-7
A.6	Ergebnisse Experiment und Simulation von Versuch WÜ08:	
	(a) Temperaturfelder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-8
A.7	Ergebnisse Experiment und Simulation von Versuch WÜ09:	
	(a) Temperaturfelder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-9
A.8	Ergebnisse Experiment und Simulation von Versuch WÜ10:	
	(a) Temperaturfelder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-10
A.9	Ergebnisse Experiment und Simulation von Versuch WÜ11:	
	(a) Temperaturfelder; (b) Temperaturen der Thermoelemente	
	auf dem Blech; (c) Temperaturen der Thermoelemente auf den	
	Elektroden; (d) Kühlleistung der unteren Elektrode; (e) be-	
	rechnete Wärmeverteilung	A-11

A.10 Ergebnisse Experiment und Simulation von Versuch WÜ12:	
 (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung 	A-12
 A.11 Ergebnisse Experiment und Simulation von Versuch WÜ13: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung	A-13
 A.12 Ergebnisse Experiment und Simulation von Versuch WÜ14: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung	A-14
 A.13 Ergebnisse Experiment und Simulation von Versuch WÜ15: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung 	A-15
 A.14 Ergebnisse Experiment und Simulation von Versuch WÜ16: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung	A-16
 A.15 Ergebnisse Experiment und Simulation von Versuch WÜ17: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung 	A-17
 A.16 Ergebnisse Experiment und Simulation von Versuch WÜ18: (a) Temperaturfelder; (b) Temperaturen der Thermoelemente auf dem Blech; (c) Temperaturen der Thermoelemente auf den Elektroden; (d) Kühlleistung der unteren Elektrode; (e) berechnete Wärmeverteilung	A-18

A.17 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $3 k N$	A-19
A.18 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $7 kN$	A-20
A.19 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA6014+AA6014 mit der statischen	
Elektrodenkraft $3 kN$	A-21
A.20 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA6014+AA6014 mit der statischen	
Elektrodenkraft $7 kN$	A-22
A.21 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $3 kN$	A-23
A.22 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $4 kN$	A-24
A.23 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $5 kN \dots \dots$	A-25
A.24 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft 6 kN	A-26
A.25 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft 7 kN	A-27
A.26 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit der statischen	
Elektrodenkraft $8 kN \dots \dots$	A-28
A.27 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft $3 kN$	A-29
A.28 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft $4kN$	A-30

A.29 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft $5 kN$	A-30
$\rm A.30$ Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft 6 kN	A-31
A.31 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft 7 kN	A-31
A.32 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit der statischen	
Elektrodenkraft $8 kN$	A-31
A.33 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA5182 mit der statischen	
Elektrodenkraft $3 kN$	A-32
A.34 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA5182 mit der statischen	
Elektrodenkraft $5 kN \dots \dots$	A-33
A.35 Schweißparameter und Widerstände der Zweipuls-Schweißversu-	
che der Blechkombination AA 6014+AA5182 mit der statischen	
Elektrodenkraft 7 kN	A-34
A.36Vergleich der berechneten Kontakt drücke und Kontakttempe	
raturen der 2D- und 3D-Simulation: $(a),(c)$ Elektrode-Blech-	
Kontakt; (b),(d) Blech-Blech-Kontakt $\ldots \ldots \ldots \ldots$	A-35
A.37 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit Klebstoff bei	
der statischen Elektrodenkraft $3kN$ $\hfill N$ $\hfill N$	A-41
A.38 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA5182+AA5182 mit Klebstoff bei	
der statischen Elektrodenkraft 7 kN	A-42
A.39 Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit Klebstoff bei	
der statischen Elektrodenkraft $3kN$	A-43
${\rm A.40}$ Schweißparameter und Widerstände der Einpuls-Schweißversu-	
che der Blechkombination AA 6014+AA6014 mit Klebstoff bei	
der statischen Elektrodenkraft 7 kN	A-44

A.41 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft $3 kN$
A.42 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft $4 kN$
A.43 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft 5 kN
A.44 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft 6 kN
A.45 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft 7 kN
A.46 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA5182+AA5182 mit Klebstoff
bei der statischen Elektrodenkraft 8 kN $\hfill N$ $\hfill M$
A.47 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft $3kN$ $\hfill N$ \hfill
A.48 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft 4 kN
A.49 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft 5 kN
A.50 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft 6 kN
A.51 Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft 7 kN
$\rm A.52$ Schweißparameter und Widerstände der Zweipuls-Schweißver-
suche der Blechkombination AA6014+AA6014 mit Klebstoff
bei der statischen Elektrodenkraft $8 kN$

A.53 Schweißparameter und Widerstände der Zweipuls-Schweißver-	
suche der Blechkombination AA6014+AA5182 mit Klebstoff	
bei der statischen Elektrodenkraft $3kN$ $\hfill N$ \hfill	j 4
A.54 Schweißparameter und Widerstände der Zweipuls-Schweißver-	
suche der Blechkombination AA6014+AA5182 mit Klebstoff	
bei der statischen Elektrodenkraft 5 kN	55
A.55 Schweißparameter und Widerstände der Zweipuls-Schweißver-	
suche der Blechkombination AA6014+AA5182 mit Klebstoff	
bei der statischen Elektrodenkraft 7 kN	66

Tabellenverzeichnis

2.1	Ausgewählte Eigenschaften von Reinaluminium und Aluminium-	
	oxid $\mathrm{Al_2O_3}$ bei Raum temperatur mit Daten aus $[28,3740]$.	9
3.1	Chemische Zusammensetzung der untersuchten Aluminium-	
	werkstoffe AA5182 und AA6014 (Angaben in Gewichts-%)	31
3.2	Eigenschaften von CuCr1Zr bei Raumtemperatur $[142]$	38
4.1	Anfangs- und Umgebungstemperaturen	46
4.2	Kalibrierte Wärmeübergangskoeffizienten	46
5.1	Übersicht der Schweißparameter zur Kalibrierung des Kontakt-	
	widerstands modells	64
5.2	Kalibrierte Parameter des Kontaktwiderstandsmodell s $\ .\ .\ .$	70
5.3	Basiskontaktwiderstände AA5182 (Blechdicke $1,5mm)$	78
5.4	Untersuchte werkstoffspezifische und geometrische Faktoren .	112
5.5	Coefficients of Importance (CoI)	113
5.6	Coefficient of Importance (CoI) der wichtigsten Wechselwir-	
	kungen	115
A.1	Übersicht über die durchgeführten Wärmeübergangsversuche	
	und -simulationen $\hfill \ldots \hfill \ldots \$	A-2
A.2	Simulationsplan mit den berechneten Linsendurchmesser n $\ .$.	A-36
A.3	Regressionskoeffizienten	A-40

Abkürzungsverzeichnis

Abkürzung Bedeutung

Al	Aluminium
bzw.	beziehungsweise
CoI	Coefficient of Importance
Cu	Kupfer
\mathbf{Cr}	Chrom
DIN	Deutsches Institut für Normung e.V.
DoE	Design of Experiments (statistische Versuchsplanung)
DVS	Deutscher Verband für Schweißen und verwandte
	Verfahren e.V.
EKL	Elementkantenlänge
EN	Europäische Norm
exp.	experimentell
Fe	Eisen
\mathbf{FE}	Finite-Elemente
FEM	Finite-Elemente Methode
Н	Wasserstoff
ISO	International Organization for Standardization
Mg	Magnesium
KTL	kathodische Tauchlackierung
Mn	Mangan
Na	Natrium
Ο	Sauerstoff
sim.	simuliert
Si	Silizium
Ti	Titan
u.a.	unter anderem
V	Vanadium

Abkürzung	Bedeutung
-----------	-----------

vgl.	vergleiche
z.B.	zum Beispiel
Zn	Zink
Zr	Zirkonium
2D	zweidimensional
3D	dreidimensional

Symbolverzeichnis

Symbol	Beschreibung	Einheit
A	Fläche	mm^2
A_S	scheinbare Kontaktfläche	mm^2
A_t	tragende Kontaktfläche	mm^2
a	Temperaturleitzahl	$\frac{mm^2}{s}$
a_K	Kontaktradius	mm
c	Wärmekapazität	$\frac{J}{kq K}$
c_W	Wärmekapazität von Wasser	$\frac{J}{kq K}$
d_n	Linsendurchmesser	mm
d_{eo}, d_{eu}	Durchmesser Elektrodeneindruck oben / unten	mm
E	Elastizitätsmodul	MPa
e_o, e_u	Elektrodene indrucktiefe oben / unten	mm
F	Kraft	kN
F_N	Normalkraft	kN
F_S	statische Elektrodenkraft	kN
f(T)	Temperaturfunktion	-
g(p)	Druckfunktion	-
H	Härte	HB
Ι	Stromstärke	kA
I_S	Schweißstromstärke	kA
I_V	Vorwärmstromstärke	kA

\mathbf{Symbol}	Beschreibung	$\mathbf{Einheit}$
K	Klebstofffaktor	-
k	Wärmeleitfähigkeit	$\frac{W}{m K}$
L	Lorenz-Zahl	$\frac{W\Omega}{K^2}$
l	Länge	mm
n	Exponent	-
P	Leistung	W
p	Druck	MPa
p_o, p_u	Linseneindringtiefe oben / unten	mm
p_0	Referenzdruck	MPa
p_k	Korrekturdruck	MPa
Q	Wärme	J
Q_B	Verlustwärme durch Ableitung in die Bleche	J
Q_E	Verlustwärme durch Ableitung in die Elektroden	J
Q_j	Joule'sche Stromwärme	J
Q_K	Verlustwärme durch Ableitung zum Kühlwasser	J
Q_L	Verlustwärme durch Konvektion und Strahlung	J
Q_W	Wirkwärmemenge	J
$q_{j,kontakt}$	Joule'sche Stromwärmeleistung am Kontakt	W
$q_{2,A}$	durch natürliche Konvektion und Strahlung	$\frac{W}{m^2}$
	übertragener Wärmestrom	
$q_{2,F}$	durch erzwungene Konvektion übertragener	$\frac{W}{m^2}$
	Wärmestrom	
$q_{2,Konvektion}$	Konvektionswärmestrom	$\frac{W}{m^2}$
$q_{2,Strahlung}$	Strahlungswärmestrom	$\frac{W}{m^2}$
$q_{2,j,kontakt}$	Joule'sche Wärmeleistung am Kontakt	$\frac{W}{mm^2}$
$q_{3,j,mat}$	Joule'sche Wärmeleistung im Material	$\frac{W}{mm^3}$
$q_{3,p}$	Wärmeleistung durch plastische	$\frac{W}{mm^3}$
	Verformungsarbeit	
R	elektrischer Widerstand	Ω
R_a	Arithmetischer Mittenrauwert	μm
R_E	Engewiderstand	Ω
R_F	Filmwiderstand	Ω
R_K	Kontaktwiderstand	Ω
R_S	Stoffwiderstand eines stromdurchflossenen Leiters	Ω

\mathbf{Symbol}	Beschreibung	Einheit
R_q	quadratische Rauheit	μm
R^2	Bestimmtheitsmaß	-
$R_{i,red}^2$	um den Faktor i reduziertes Bestimmtheitsmaß	-
r	spezifischer Kontaktwiderstand	Ωmm^2
r_0	Basiskontaktwiderstand	Ωmm^2
$r_{0,K}$	klebstoffspezifischer Basiskontaktwiderstand	Ωmm^2
T	Temperatur	$^{\circ}C$
T_0	Referenz- bzw. Umgebungstemperatur	$^{\circ}C$
T_{lim}	Halbwertstemperatur	$^{\circ}C$
T_S	Schmelztemperatur	$^{\circ}C$
$T_{W,ab}$	Temperatur des abfließenden Kühlwassers	$^{\circ}C$
$T_{W,zu}$	Temperatur des zufließenden Kühlwassers	$^{\circ}C$
ΔT	Temperaturdifferenz	$^{\circ}C$
t	Zeit	s
t_o, t_u	Blechdicke oben / unten	mm
U	elektrische Spannungsdifferenz	V
u_z	Verschiebung in z-Richtung	mm
\dot{V}	Durchflussgeschwindigkeit	$\frac{l}{min}$
x	Spalt zwischen den Blechen	mm

Griechische Symbole

α	Wärmeausdehnungskoeffizient	$\frac{1}{K}$
α_A	Wärmeübergangskoeffizient für natürliche	$\frac{W}{m^2 K}$
	Konvektion und Stahlung zur Umgebungsluft	
α_F	Wärmeübergangskoeffizient für erzwungene	$\frac{W}{m^2 K}$
	Konvektion am Kühlwasser	
α_K	Wärmeübergangskoeffizient für Konvektion	$\frac{W}{m^2 K}$
α_S	Wärmeübergangskoeffizient für Wärmestrahlung	$\frac{W}{m^2 K}$
ε	Dehnung	-
ε_p	Druckexponent	-
ε_S	Emissionskoeffizient	-
ε_T	Temperaturexponent	-
$\dot{\bar{\varepsilon}}_{pl}$	plastische Vergleichsdehnrate	$\frac{1}{s}$

Symbol	Beschreibung	Einheit
η	Dichte der in Kontakt stehenden	$\frac{1}{mm^2}$
	Rauhigkeitsspitzen	
$\dot{\lambda}$	Proportionalitätsfaktor	$\frac{1}{MPa.s}$
ν	Querkontraktions- bzw. Poissonzahl	-
Π_A, Π_B	Peltier-Koeffizienten der Stoffe A und B	V
ho	Dichte	$\frac{g}{cm^3}$
$ ho_{contact}$	spezifischer Widerstand	Ωmm
$ ho_{contaminant}$	Verschmutzungsterm	Ωmm
$ ho_e$	spezifischer Stoffwiderstand	Ωmm
$ ho_{e,1}, ho_{e,2}$	spezifische Stoffwiderstände der Kontaktpartner	Ωmm
$ ho_{e,F}$	flächenabhängiger Widerstand der Fremdschicht	Ωmm^2
$ ho_W$	Dichte von Wasser	$\frac{g}{cm^3}$
σ_F	Fließspannung	MPa
σ_{SB}	Strahlungszahl	$\frac{W}{m^2 K^4}$
$\bar{\sigma}$	Vergleichsspannung	MPa
$\bar{\sigma}_{vm}$	Vergleichsspannung nach Von Mises	MPa
Φ	elektrisches Potential	V

Vektoren

a	Beschleunigung
b	Massenkraftdichte
E_e	elektrische Feldstärke
j	Stromdichte

Matrizen und Tensoren

- C Steifigkeitstensor
- I Einheitstensor
- $oldsymbol{S}$ Spannungsdeviator
- ε Verzerrungstensor
- σ Cauchy'scher Spannungstensor