

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Hrsg.: Prof. Dr.-Ing. Dieter Gerling

Daniel Bachinski Pinhal

An Assessment of Wound-Rotor Synchronous Machines with Hairpin Windings for Automotive Traction Drives

Universität der Bundeswehr München

Fakultät für Elektro- und Informationstechnik
Lehrstuhl für Elektrische Antriebstechnik und Aktorik

An Assessment of Wound-Rotor Synchronous Machines with Hairpin Windings for Automotive Traction Drives

Dipl.- Ing. Daniel Bachinski Pinhal

Vollständiger Abdruck der von der Fakultät für Elektro- und Informationstechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Stefan Lindenmeier

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Dieter Gerling

2. Univ.-Prof. Dr.-Ing. Nejila Parspour

Die Dissertation wurde am 14.04.2021 bei der Universität der Bundeswehr München eingereicht und durch die Fakultät für Elektro- und Informationstechnik am 28.09.2021 angenommen. Die mündliche Prüfung fand am 17.11.2021 statt.

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 46

Daniel Bachinski Pinhal

An Assessment of Wound-Rotor Synchronous Machines with Hairpin Windings for Automotive Traction Drives

Shaker Verlag Düren 2022

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: München, Univ. der Bundeswehr, Diss., 2021

Copyright Shaker Verlag 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-8407-8 ISSN 1863-0707

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9

Internet: www.shaker.de • e-mail: info@shaker.de

"For my parents,

Nilza Bachinski Pinhal

and

Nelson Moreira Pinhal"

Abstract

This thesis investigates research gaps identified in the field of electrical machines for automotive traction applications: The wound-rotor synchronous machine as traction machine for full-electric vehicles and the usage of hairpin conductors to build up its armature's windings.

Although the wound-rotor (i.e. current-excited) synchronous machine has been researched, designed and manufactured for decades, its adoption in variable speed drives targeting automotive vehicles is still remarkably limited. Employing a wound-rotor synchronous machine, the field current, and thus, the rotor flux can be tuned to improve performance criteria (e.g. efficiency) for every operating point. This opens the way to more sophisticated motor control strategies in a variable speed drive. In this thesis, it will be shown that the active control of the field current has a notable impact on the optimal motor control strategy and finally on the overall performance of the traction machine. Although this additional degree of freedom clearly increases the complexity of the machine control, it offers an opportunity to develop electric variable speed drives further tailor-fitted to demands of automotive applications (e.g. high efficiency in partial-load operation).

The second key topic covered by this thesis is the usage of hairpin windings in the machine's armature. Using this approach, prefabricated U-shaped conductors (i.e. the hairpins) are shaped by means of bending processes, inserted into the armature's slots and then connected to each other to realize the phase windings. Since these processes are well suitable for mass-production. the usage of hairpin windings is promising means to avoid bottlenecks during manufacturing of electric machines. However, the usage of hairpin windings is also linked to considerable drawbacks. Increasing the number of conductors per slot drastically increases the complexity and manufacturing time of the winding. Hence, hairpin windings are usually characterized by a low number of turns per phase and solid conductors with a large cross-sectional area. Since the armature conductors of a wound-rotor synchronous machine carry time-dependent currents, the ohmic losses in the hairpin windings may increase significantly due to eddy-currents and decrease the overall efficiency of the electric drive. The evaluation of the impact of eddy-current effects in the armature conductors of automotive traction machines is not trivial. Due to the variability of the operating points of traction machines in automotive applications, classical design rules aiming for an optimal conductor size are not applicable. This raises the question if and in what extent does the usage of hairpin windings affect the overall performance of the machine in an electric vehicle.

This thesis will employ analytical and numerical methods to quantify the additional ohmic losses introduced by eddy-current effects. Furthermore, the manufacturing process of hairpin windings and considerations when choosing the EM's winding layout will be clarified. To analyze both key topics of this thesis simultaneously and investigate the interplay between the variability of operating points and the impact of eddy-currents, a machine model will be proposed that is able to capture effects such as eddy-currents and core saturation while still requiring short calculation times. An exemplary wound-rotor synchronous machine will be introduced, analyzed and discussed to demonstrate the usage of the assessment methods proposed.

The analyses' results in this thesis show that a proper choice of the control strategy used to determine the machine's feeding is a key to increase its performance in variable speed drives. A loss minimization control strategy allows achieving high efficiencies even for partial-load operation. When standard driving cycles are employed to characterize driving maneuvers, the impact of eddy-current effects in the machine's performance is notable but still relatively low compared to the impact of other system parameters (e.g. control strategy, recuperation, etc.). This shows that hairpin windings are a reasonable approach to avoid bottlenecks in a large-scale production of electric machines as currently required to satisfy the demands of the automotive market. The analyses' results in this thesis show no evidence that the manufacturing steps and constraints required by hairpin windings impose a general restriction on their application in electric machines for automotive traction drives.

Although this thesis focuses on wound-rotor synchronous machines with hairpin windings, multiple methods and workflows developed can be transferred to similar analyses in adjacent areas of investigation. Although the method for creation of computational fast machine models cannot be applied to other machine types directly, it can be adapted for this purpose. Moreover, methods for calculation of eddy-currents inside hairpins and driving cycle simulations as described in this thesis are applicable independently of the electrical machine type investigated. In addition, the calculation of the optimal feeding (i.e. the optimal control strategy) of the wound-rotor synchronous machine is equally valid for designs employing wound armature windings made of wire.

Acknowledgments

The following thesis is a result of my work while employed at the Bundeswehr University Munich and at the FEAAM GmbH in Neubiberg, Germany. At this point I would like to express my gratitude to multiple parties that supported me during the research and writing of this thesis.

First, I would like to thank God for having the opportunities and choices in life that many people in the world, including early friends of mine, unfortunately did not and may never have. Although I strongly believe that it is up to each individual to shape its own future, there are things beyond a person's control. The writing of this thesis was done in 2020 and 2021 during the COVID-19 pandemic, making it clear how privileged I am and that I should not take health, financial stability and working resources – essential while working on such a thesis – for granted. I would also like to thank my parents and my girlfriend, Melanie, for giving me the emotional and mental support I could rely on in the last years.

During my time at the Bundeswehr University Munich and at the FEAAM GmbH I had the privilege to know and work with extraordinary people. I thank Prof. Dieter Gerling for giving me the opportunity to perform work in his institute and for all his support during my research. Furthermore, I would like to express my gratitude to Prof. Nejila Parspour for her willingness to take over the role of the second supervisor of this thesis. A major portion of my research work occurred in conjunction with a public funded grant in the joint research project "Automatisierte und robuste Produktionssysteme für E-Traktionsantriebe" (Reference Number 01MX15011G) for which Prof. Gerling's institute performed the grant application work and formalities prior to my employment. In this context, I would also like to thank the project partners I worked with during this project, especially the Institute for "Factory Automation and Production Systems", for the collaboration. Additionally, I thank the German "Federal Ministry for Economic Affairs and Energy" and "DLR Project Management Agency" for the financial support and project organization respectively.

Finally, I thank all my current and former colleagues for all the scientific discussions, and motivational support during the last years. Citing each one individually would lead to an oversized acknowledgements section. Yet, I would like to explicitly thank Matthias Pohl, the colleague sitting in front of me in the office for four years, for multiple technical discussions on the whiteboard (Irgendwann werden wir auch die "Grundlagen" verstehen) and Markus Stokmaier for his support with Python programming. I also thank Andreas Greifelt, CEO of the FEAAM GmbH, for giving me the opportunity to finalize the writing of this thesis whenever the project workload situation allowed it. Finally, thanks again to Matthias Pohl and Kilian Rehorik for proof-reading this thesis.

Unterhaching, April 2021

Daniel Bachinski Pinhal

Table of Contents

List of Ab	breviations	V
List of Ma	thematical Symbols	V II
1 Intro	duction and Motivation	1
1.1	Hybrid Electric Vehicles	3
1.1.1	Categorization of Hybrid Electric Vehicles	3
1.1.2	Market Acceptance of Hybrid Electric Vehicles	5
1.2	Full-Electric Vehicles	6
1.2.1	Fuel-Cell Electric Vehicles	6
1.2.2	Battery-Electric Vehicles	7
1.2.3	Technological Trends of Full-Electric Vehicles	8
1.2.4	Common Drivetrain Architectures for Full-Electric Vehicles	13
1.3	Motivation	16
1.3.1	Wound-Rotor Synchronous Machines for Automotive Traction	16
1.3.2	Hairpin Windings for Automotive Traction Machines	17
1.4	Structure of this Thesis	18
2 Mach	ines for Automotive Traction	19
2.1	Operating Points of Traction Machines in Automotive Vehicles	20
2.1.1	Longitudinal Vehicle Model	20
2.1.2	Driving Cycle Analysis	22
2.1.3	Performance Demands on the Traction Machine	26
2.2	Structure of Inverter-Driven AC-Electric Drives	29
2.2.1	Rotating Reference Frame	30
2.3	Characteristic Curves	36
2.3.1	Determination of the Torque-Speed Curve	37
2.3.2	Additional Characteristic Curves	41
2.4	Performance Maps	42
2.5	Assessment of Automotive Traction Machines	44
2.5.1	Assessment of Torque-Speed Envelopes	44

	2.5.2	Assessment of Performance Maps	49
3	Torqu	e-Optimal Control of Wound-Rotor Synchronous Machines	53
	3.1	Equational Machine Model	54
	3.2	Calculation of Torque-Optimal Control	56
	3.2.1	Torque-Optimal Control in the Base Speed Region	56
	3.2.2	General Considerations for Field-Weakening Operation	61
	3.2.3	Field-Weakening Operation Modes with Constant Rotor Flux	63
	3.2.4	Field-Weakening Operation with Adjustable Rotor Flux	68
	3.3	Possible Parameter Combination Scenarios	70
	3.4	Comparison to Numerical Calculation	71
4	Asses	ssment of Hairpin Windings	73
	4.1	Ohmic Losses inside Hairpin Conductors	74
	4.1.1	Expected Value Range for the Loss Ratio	77
	4.1.2	Analytical Calculation of the Loss Ratio	78
	4.1.3	Generalization of the Analytical Expressions for \emph{k}_{r}	83
	4.1.4	Verification of the General Expression for \emph{k}_{r}	87
	4.1.5	Analysis of Alternating Phase Conductors inside a Slot	90
	4.1.6	Numerical Calculation by Means of FEM	92
	4.2	Manufacturability of Hairpin Windings	97
	4.2.1	Typical Production Steps for Hairpin Windings	97
	4.2.2	Considerations when Determining the Winding Scheme	101
5	Efficie	ent Modeling of Machines	115
	5.1	Machine Model Based on Response Surfaces	117
	5.1.1	Spanning of Response Surfaces through Regression	119
	5.1.2	Choosing an Adequate Set of Responses Surfaces	120
	5.1.3	Secondary Result Quantities	128
	5.2	Calculation of Performance Characteristics	130
	5.2.1	Approximate Formulation of Equality Constraints	131
	5.3	Remarks on the Workflow's Implementation	133
	5.3.1	Comparison to Direct Finite Element Analysis	
6	Exem	plary Machine Assessment	137
	6.1	Basic Design	
	6.1.1	Characteristic Design Parameters of Exemplary Machine	141
	612	Surrogate Model	142

6	.2	Calculated Performance Characteristics	147
	6.2.1	Characteristic Curves	147
	6.2.2	Performance Maps	150
	6.2.3	Impact of Manufacturing Influences	155
6	.3	Variation of the Winding Scheme	158
	6.3.1	Comparison of Characteristic Curves	161
	6.3.2	Comparison of Performance Maps	163
7	Drivin	g Cycle Simulation	169
7	.1	Considerations regarding Regenerative Braking	171
7	.2	Energy Demand and Dissipated Power	172
	7.2.1	Calculated Energy Demand for the Exemplary Assessment	173
	7.2.2	Impact of Eddy-Currents in Demanded Power and Losses	176
	7.2.3	Assessments for Heavy-Duty Operation	177
	7.2.4	Conclusions of Driving Cycle Simulations	181
8	Sumn	nary, Conclusion and Outlook	182
8	.1	Application to Other Machine Types	183
	8.1.1	Remark on the Usage of the term MTPA	185
8	.2	Outlook for Future Work	186
Lis	t of Fig	ures	i
Lis	t of Tal	oles	vii
Bib	liograp	ohy	ix
Lis	of ow	n Publications	xix
Δnı	endix		xxi