

M. Sc. Jelto Frerichs

Development of a Combustion Model for Medium Speed Dual-Fuel Engines

Berichte aus dem ivb | Band 34 | Braunschweig 2022

Development of a Combustion Model for Medium Speed Dual-Fuel Engines

Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde einer Doktor-Ingenieurin oder eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation

von:	Jelto Frerichs	

geboren in (Geburtsort): Hannover

eingereicht am: 27.05.2021 mündliche Prüfung am: 16.12.2021

Vorsitz: Prof. Dr.-Ing. Ferit Küçükay

Gutachter: Prof. Dr.-Ing. Peter Eilts Prof. Dr.-Ing. Michael Bargende

Berichte aus dem ivb

Band 34

Jelto Frerichs

Development of a Combustion Model for Medium Speed Dual-Fuel Engines

Shaker Verlag Düren 2022

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Braunschweig, Techn. Univ., Diss., 2021

Copyright Shaker Verlag 2022 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-8449-8 ISSN 2364-3862

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Preface

The present work was developed during my time as a research assistant at the Institute of Internal Combustion Engines at the Technische Universität Braunschweig. The research leading to this work was conducted during the FVV-project *Propeller Operation with Four-stroke Dual-fuel Engines II*.

My gratitude goes to Prof. Dr.-Ing. Peter Eilts for his interest in my work and for the good working atmosphere. The trust placed in me and the freedom I had in the implementation contributed significantly to the success of the present work. Furthermore, I would like to thank Prof. Dr.-Ing Michael Bargende for his interest in my work and for joining the doctoral committee and Prof. Dr.-Ing. Ferit Küçükay for chairing the doctoral committee.

Also, I would like to thank the working committee of our FVV-project and our chairman Dr.-Ing. Philipp Henschen. In particular I would like to thank our project partner, the Department of Marine Engineering at the Hamburg University of Technology, and especially Mr. Maximilian Schröder who conducted the experimental research, which is used as reference in the present work. Furthermore, I would like to thank MAN Energy Solutions SE for providing engine measurement data during the start of the project and for providing the injection rate measurements of the diesel injector.

If there's one thing I've learned over the last few years, it's that you get through hard times better when you have good companions. I want to thank my former colleagues for the wonderful time at the Institute of Internal Combustion Engines, the fruitful scientific discussions and for the great time we had besides work.

Last but not least, I would like to thank my family and my girlfriend Kalliopi, who have always supported me and thus contributed to the success of this work.

Braunschweig, May 2021 Jelto Frerichs

Abstract

Considering the global sulfur limitation for maritime fuels and the existing IMO Tier III legislation, natural gas as a fuel is getting more important in the shipping sector. One way to use natural gas is the dual-fuel combustion process where a homogeneous lean natural gas mixture is ignited by a micro pilot injection of diesel fuel.

In the present work a predictive combustion model for medium speed dual-fuel engines is developed and implemented in GT-Power. To predict the start of combustion, a detailed physically/chemically based ignition delay model is developed, based on the 1D spray model of Musculus and Kattke. Therefore, detailed correlations for the ignition delay times of the 2-stage ignition process are derived from reaction kinetics calculations. Using these correlations, the reaction progress inside the spray is calculated until ignition. Furthermore, the influence of wall contact of the spray is included in the model, as well as the prolonging effect of overmixing for long ignition delay times.

The spray model results at start of combustion are used to initialize the combustion model. The spray zone and the homogenous natural gas/air mixture are burned with different combustion models, to account for the effect of the inhomogeneous fuel distribution. Due to the implemented state-of-the art sub-models for laminar and turbulent flame speed, a wide range of air-fuel ratios is covered by the combustion model.

To account for the HC emissions two flame quenching models are included and extended with an empirical correlation. NO_x emissions are modelled using a standard Extended Zeldovich Mechanism and for the prediction of knocking combustion a detailed knock model from literature is implemented.

The models are calibrated and validated with measurement data from a single cylinder medium speed dual-fuel engine, except for the ignition delay model which does not require calibration. The start of combustion and the combustion parameters are predicted reasonably for a wide range of injection timings and operation conditions. Furthermore, the included HC models allow for a satisfactory prediction of the engine operation parameters brake specific fuel consumption and indicated mean effective pressure.

Due to the detailed description of the different combustion phases, the influence of the injection timing on the NO_x emission is captured well with the standard NO_x -model. This allows for a proper prediction of the NO_x -limited injection timing over a wide range of boundary conditions. The knock limit is also predicted within an acceptable range for different air-fuel ratios and charge air temperatures.

Kurzfassung

In Anbetracht der weltweiten Schwefelbegrenzung für Schiffskraftstoffe und der bestehenden IMO Tier III-Gesetzgebung gewinnt Erdgas als Kraftstoff zunehmend an Bedeutung. Eine Möglichkeit zur Nutzung von Erdgas ist das Dual-Fuel-Brennverfahren, bei dem ein homogenes, mageres Erdgas/Luft-Gemisch durch eine Piloteinspritzung gezündet wird.

In der vorliegenden Arbeit wird ein prädiktives Verbrennungsmodell für mittelschnell laufende Dual-Fuel-Motoren entwickelt und in GT-Power implementiert. Zur Vorhersage des Verbrennungsbeginns wird ein detailliertes physikalisch/chemisch basiertes Zündverzugsmodell entwickelt, das auf dem 1D-Spray-Modell von Musculus und Kattke aufbaut. Dazu werden aus reaktionskinetischen Berechnungen detaillierte Korrelationen für die Zündverzugszeiten der 2-stufigen Selbstzündung abgeleitet. Mit Hilfe dieser Korrelationen wird der Reaktionsverlauf innerhalb des Sprays bis zur Zündung berechnet. Außerdem wird der Kontakt des Sprays mit der Brennraumwand berücksichtigt, ebenso wie der verzögernde Einfluss von starker Abmagerung des Sprays auf den Zündverzug.

Die Ergebnisse des Spraymodells zum Zündzeitpunkt werden zur Initialisierung des Verbrennungsmodells verwendet. Die Sprayzone und das homogene Erdgas/Luft-Gemisch werden mit unterschiedlichen Verbrennungsmodellen verbrannt, um den Effekt der inhomogenen Brennstoffverteilung zu berücksichtigen. Durch die Verwendung von Submodellen für die laminare und turbulente Flammengeschwindigkeit, die dem aktuellen Stand der Technik entsprechen, kann eine große Bandbreite an Kraftstoff/Luft-Verhältnissen von dem Modell abgedeckt werden.

Zur Modellierung der HC-Emissionen werden zwei Flammenlöschungsmodelle einbezogen und mit einer empirischen Korrelation erweitert. Die NO_x-Emissionen werden mit einem Extended Zeldovich Mechanismus modelliert und zur Vorhersage der klopfenden Verbrennung wird ein detailliertes Klopfmodell aus der Literatur implementiert.

Die Modelle werden mit Messdaten eines mittelschnell laufenden Einzylinder Dual-Fuel Motors kalibriert und validiert, mit Ausnahme des Zündverzugsmodells, das keiner Kalibrierung bedarf. Der Beginn der Verbrennung und die Verbrennungsparameter werden für einen weiten Bereich von Einspritzzeitpunkten und Betriebsbedingungen gut vorhergesagt. Darüber hinaus werden unter Berücksichtigung von unverbranntem Kraftstoff auch die Motorbetriebsparameter spezifischer Kraftstoffverbrauch und indizierter Mitteldruck zufriedenstellend vorhergesagt. Aufgrund der detaillierten Beschreibung der verschiedenen Verbrennungsphasen wird der Einfluss des Einspritzzeitpunkts auf die NO_x-Emissionen mit dem Standard-NO_x-Modell gut erfasst. Es ist außerdem möglich den durch NO_x Emissionen begrenzten spätestmöglichen Einspritzzeitpunkt in zufriedenstellender Genauigkeit vorherzusagen. Die Klopfgrenze kann ebenso für verschiedene Luftverhältnisse und Ladelufttemperaturen zufriedenstellend vorhergesagt werden.

Contents

Abbre	eviati	ons	IX
Symb	ols		XI
List o	f Fig	ires	XVI
List o	f Tab	les	XX
1 In	ntrodu	uction	1
1.1	M	otivation	1
1.2	Sti	ucture of the thesis	2
2 Fi	undaı	nentals and state of the art	4
2.1	Dı	al-fuel combustion in medium speed engines	4
2.2	Ph	enomenological combustion models	4
2.	.2.1	Package model for diesel combustion modelling	4
2.	.2.2	Turbulent Entrainment model	5
2.	.2.3	Combustion models for pilot ignited dual-fuel engines	6
2.3	Ne	w findings in the present work	10
3 Ig	gnitio	n delay modelling	12
3.1	Sp	ray model	12
3.2	Ev	aporation and temperature distribution	14
3.3	Αι	toignition modelling	17
3.	.3.1	Homogenous reactor calculations	18
3.	.3.2	Correlations	19
3.	.3.3	Ignition delay calculation inside a control volume	24
3.	.3.4	Transport equation for the reaction progress	26
3.	.3.5	The effect of overmixing on the ignition delay	27
3.	.3.6	Wall contact of the spray	29
4 C	ombı	stion model development	31
4.1	Ge	eneral overview of the model	31
4.2	Сс	mbustion of the pilot spray	32

	4.2	.1	Mixing-controlled combustion	32
	4.2	.2	Premixed combustion	32
	4.3	Co	mbustion of the premixed natural gas	33
	4.4	Transition between the combustion phases		35
	4.5	La	ninar flame speed	36
	4.6	Tu	rbulent flame speed	38
	4.7	Fla	me front model	38
	4.8	NC	D _x emissions	43
	4.9	Un	burned hydrocarbons	44
	4.9	.1	Flame quenching at combustion chamber walls	45
	4.9	.2	Flame quenching in crevice volumes	46
	4.10	ŀ	Knock modelling	47
5	Tes	t en	gine and measurement data analysis	49
	5.1	Tes	st engine	49
	5.2	Kn	ock detection	50
	5.3	En	gine model	54
	5.4	Inj	ection profile	55
6	Cal	ibra	tion procedure	56
	6.1	Co	mbustion model	56
	6.2	Un	burned hydrocarbons	58
	6.3	NC	D _x model	60
7	Res	sults		62
	7.1	Ign	ition delay	62
	7.2	Co	mbustion parameters	65
	7.3	HC	emissions	66
	7.3	.1	Scavenged natural gas during valve overlap	66
	7.3	.2	HC from incomplete combustion	68
	7.4	Op	eration parameters	70
	7.5	NC	_x emissions	71

7	.6 Kno	ock model	77
	7.6.1	Medium-speed dual-fuel engine	77
	7.6.2	Stoichiometric heavy-duty engine	79
8	Conclus	ion	81
Re	ferences		83
Ap	pendix		89
A	Appendix	A: Evaporation model and mixing temperature	89
A	Appendix	B: Ignition delay model	90
A	Appendix C: Thermal conductivity93		93
A	Appendix D: Injection rate95		95
A	Appendix E: Model calibration96		96
A	Appendix	F: Coefficient of variance	97
A	Appendix	G: NO _x emissions	98

Abbreviations

0D	Zero-dimensional
1D	One-dimensional
3D	Three-dimensional
AFR	Air-fuel ratio
BMEP	Brake mean effective pressure
BSFC	Brake specific fuel consumption
CA	Crank angle
CAaTDCF	Crank angle after top dead center firing
CFD	Computational fluid dynamic
CH ₄	Methane
C_2H_6	Ethane
C_3H_8	Propane
C4H10	Butane
C7H16	n-Heptane
CCV	Cycle-to-cycle variabilities
CV	Control volume
COVIMEP	Coefficient of variance of the indicated mean effective pressure
DOE	Duration of energizing
EGR	Exhaust gas recirculation
FVV	Research Association for Combustion Engines e. V.
H ₂	Hydrogen
HC	Hydrocarbons
IMEP	Indicated mean effective pressure
HCCI	Homogeneous charge compression ignition
HIL	Hardware in the loop
IMO	International Maritime Organization

KF	Knock frequency
KI	Knock integral
LHV	Lower heating value
LLNL	Lawrence Livermore National Laboratories
LNG	Liquified natural gas
LTHR	Low temperature heat release
MFB02	Crank angle when 2% of the fuel is burned
MFB50	Crank angle when 50% of the fuel is burned
MWM	Motorenwerke Mannheim
NG	Natural gas
NUI	National University of Ireland
NO	Nitrogen monoxide
NO ₂	Nitrogen dioxide
NO _x	Nitrogen oxide
R ²	Coefficient of determination
RANS	Reynolds-averaged Navier-Stokes
SI	Spark ignited
SOC	Start of combustion
SOE	Start of energizing
SOI	Start of injection
TDC	Top dead center

Symbols

Subscripts

0	Start value
19	Numbering
a	Ambient gas
avail	Available
b	Burned; break up
bu	Burn up
calc	Calculated
Ceil	Ceiling temperature for LTHR
Ch	Charge air
cl	Centerline
comb	Combustion
Cyl	Cylinder
D	Diesel (Pilot fuel)
e	Entrained into the flame front
EGR	Exhaust gas
FF	Flame front
flame	Flame (thickness)
high	High temperature ignition
i	Allocation to control volume, spray model
int	Integral (length scale)
j	Timestep, spray model
k	Allocation to combustion chamber wall (head, piston, liner)
1	Liquid fuel
low	Low temperature ignition

max	Maximum
mix	Mixture
mr	Most reactive
NG	Natural gas
overmixing	Change due to overmixing
pilot	Pilot zone
pot	Potentially
prem	Premixed
Q	Quench
reac	Change due to chemical reactions
Ref	Reference value
SOC	Start of combustion
trans	Transition
u	Unburned
w, wall	Combustion chamber walls (head+piston+liner)

Latin symbols

Α	Coefficient, knock model
В	Coefficient, temperature increase due to LTHR
BasisPG	Background noise of the cylinder pressure signal (knock detection)
С	Progress variable
Cm	Mean piston speed
c _p	Specific heat capacity (constant pressure)
C _{bu}	Model parameter, turbulent entrainment model
C _{ign}	Model parameter, ignition delay
$C_{overmixing}$	Model parameter, ignition delay

C _{prem}	Model parameter, combustion of premixed pilot fuel
Cquench	Model parameter, quench layer thickness
C _{Spray}	Model parameter, spray angle
C _{ST}	Model parameter, turbulent entrainment model
d	Thickness
D	Diffusion coefficient; cylinder bore
<i>e</i> 1	Model parameter, knock model
E_A	Activation energy
F	Coefficient, laminar flame speed and NOx model
f_1f_4	Model parameters, laminar flame speed (n-heptane)
f _{trans}	Transition factor
G	Coefficient, laminar flame speed
h	Specific enthalpy and height
k	Turbulent kinetic energy; reaction rate (NOx model)
KI	Knock integral
<i>KI</i> ₁ , <i>KI</i> ₂	Integral of the high-pass filtered cylinder pressure in window 1 and 2 (knock detection)
KRAT	Knock integral ratio (knock detection)
l	Length
m	Mass and coefficient (laminar flame speed)
Μ	Momentum
n	Coefficient, laminar flame speed
p	Pressure
ġ	Heat flux
r	Inner spray radius; coefficient (laminar flame speed)
R	Outer spray radius; gas constant
S	Spray tip penetration

S_L	Laminar flame speed
S_T	Turbulent flame speed
t	Time
Δt	Timestep
Т	Temperature
T^{0}	Reaction zone temperature, laminar flame speed
ΔT	Temperature increase due to low temperature heat release
u	Velocity
u'	Mean turbulent velocity
V	Volume
x	Distance from injector nozzle
Χ	Volumetric fraction
Y	Mass fraction

Greek symbols

α ₀	Coefficient, package model
α	Coefficient, Abramovich profile and knock model
β	Coefficient, spray model and knock model
γ	Coefficient, knock model
$\delta_1 \dots \delta_9$	Coefficient, mixing temperature
Δ	Difference
Θ	Spray cone angle
λ	Air-fuel equivalence ratio and thermal conductivity
ν	Kinematic viscosity
ξ	Dimensionless radius
ρ	Density

τ	Time scale, ignition delay and eddy burn up
$v_1 \dots v_4$	Exponents of the ignition delay correlation
φ_{df}	Dual-fuel fraction
Φ	Equivalence ratio
ω _c	Source term of progress variable c

List of Figures

Figure 2.1: Schematic overview of the dual-fuel combustion in medium speed engines
Figure 2.2: Axial and radial discretization of the fuel spray in the package model of
Hiroyasu [8]
Figure 2.3: Schematic view of the turbulent entrainment model, with the burned and
unburned zone and the flame front with the flame front area
Figure 3.1: Schematic view of the 1D spray model and the Eulerian control volume approach
Figure 3.2: Abramovich profile in different stages of the spray development. α =1.5 is
the fully developed profile
Figure 3.3: Air to fuel ratio at the liquid length, calculated for heptadecane in air 15
Figure 3.4: Comparison of detailed correlation for the specific heat capacity from [33]
and linear approximation, for air and methane/air mixtures with different equivalence ratios
Figure 3.5: Detailed consideration of the enthalpies needed for heating of the liquid
fuel, evaporation and overheating of the gaseous fuel for a starting temperature Tf , 0 =
50°C, using n-dodecane as reference fuel
Figure 3.6: Definition of the different stages of autoignition, explained with a
temperature trace from a Cantera simulation with the following initial conditions: 750K,
50 bar, $\Phi_{n-Heptane}$ =1.0 und $\Phi_{Methane}$ = 0.5: (a) and (b) temperature trace, (c) and (d)
temperature gradient, left and right sight show the same graphs with differently scaled
y-axes to explain the different ignition regimes19
Figure 3.7: Low temperature ignition delay times for different boundary conditions
(modeled and simulated)
Figure 3.8: High temperature ignition delay times for different boundary conditions
(modeled and simulated)
Figure 3.9: Temperature increase due to LTHR for different boundary conditions
(modeled and simulated)
Figure 3.10: Radial profile of the fuel distribution, expressed by the equivalence ratio
ΦD , (left) and the resulting temperature distribution before and after the low temperature
heat release; Boundary conditions: $Ta = 800$ K, $p = 50$ bar, $\Phi NG = 0.5$
Figure 3.11: Radial distribution of the local ignition delay times for τlow and $\tau high$
before and after the occurrence of LTHR; Boundary conditions: $Ta = 800$ K, $p = 50$ bar,
$\Phi NG = 0.5$, temperature and ΦD distribution shown in the previous figure

Figure 3.12: Exemplary evolution of fuel distribution and reaction progress inside the spray for different timestamps starting at 1 ms after SOI; Top: Axial distribution of the cross-sectional averaged ΦD inside the spray; Bottom: Axial distribution of the reaction Figure 3.13: Equivalence ratio of the diesel fuel at the most reactive mixture plotted over the ambient temperatures from 700 to 850 K for $\Phi NG=0.5$ and different pressures; Top: relevant for low temperature ignition delay: Bottom: for high temperature ignition Figure 3.14: Longest possible distance between the injector tip and the combustion chamber walls for an injector with a central position (left) and with a non-central Figure 4.2: Comparison of the burnup time (right) and the available mass inside the flame front (left) during combustion for burnup times calculated with the turbulent flame speed calculated with the unburned zone temperature (solid lines) and the mixing Figure 4.3: Burn rates for longer and shorter ignition delay, split in pilot and main Figure 4.4: Schematic view of the flame front for different combustion progresses at a **Figure 4.5:** Discretization of the flame front into slices in axial direction of the spray. 41 **Figure 4.7:** NO₂/NO_x ratio plotted against the air-fuel ratio λ : For most cases NO₂ makes Figure 4.8: Ignition delay correlations for the three temperature regimes and the combined ignition delay time for a stoichiometric methan/air mixture at 100 bar 48 Figure 5.1: Overview of the engine operation map and the measured operating points 50 Figure 5.2: Top: Cylinder pressure with typical knock induced oscillations; bottom: Figure 5.3: Cylinder pressure of a knocking working cycle without the typical pressure oscillations; top: pressure with typical knock induced oscillations; bottom: pseudo highpass filtered cylinder pressure with the two windows used for the VDO-algorithm ... 52 Figure 5.4: Normalized heat release rate of a knocking working cycle and the

Figure 5.5: Single cylinder engine model in GT-Power
Figure 5.6: Trapezoidal injection rates for 0.35 ms and 0.7 ms DOE at 1400 bar rail
pressure
Figure 6.1: Comparison of independent calibrated values for Cbu against IMEP and the
product of IMEP and the mean piston speed $c_{\rm m}$
Figure 6.2: Specific HC emissions from incomplete combustion (measured values
reduced by the simulated scavenged fuel) plotted against the air to fuel ratio of the
natural gas/air mixture 59
Figure 6.3: Parameter Cquench, calibrated at the different operation points and the
correlation plotted against the product of IMEP and the mean piston speed $c_{\rm m}$
Figure 6.4: Top: measured and simulated NO _x emissions for the operation points used
for model calibration; Bottom: ratio of measured and simulated NO_{x} emissions without
calibration of the overall NOx multiplier
Figure 7.1: Measured and simulated ignition delay in crank angle space
Figure 7.2: Measured and simulated ignition delay in time space
Figure 7.3: Comparison of measured and simulated ignition delay times for a medium
speed dual-fuel engine. Results taken from [31]
Figure 7.4: Comparison of the combustion parameters MFB02 (top), MFB50 (middle)
and the burn duration 10-75% (bottom); Left side shows the values simulated with a
constant <i>Cbu</i> for the whole engine map and the right side with $Cbu = f(IMEP)$ 66
Figure 7.5: Comparison of measured and simulated HC emissions due to scavenging.
The measured values are corrected by a constant offset to match the simulation at the
first measurement
Figure 7.6: Start and end of energizing of the gas admission valve for all measured
operation points and the opening and closing crank angle of the inlet valve
Figure 7.7: Simulated HC emissions due to scavenging for all operation points, plotted
over the end of energizing, sorted by engine speed
Figure 7.8: Comparison of measured and simulated HC emissions for the four operation
points on the 120% propeller curve. The different colors indicate different charge air
pressures
Figure 7.9: Comparison of measured and simulated operation parameters: IMEP,
maximum cylinder pressure p_{max} , specific HC emissions and BSFC71
Figure 7.10: Measured and simulated NO _x emissions for all measurement points72
Figure 7.11: Measured and simulated NO_x emissions for varying injection timing at an
operation point with 525 1/min and 11.8 bar BMEP73

Figure 7.12: Measured and simulated burn rates for the operation points from Figure Figure 7.13: Simulated NO_x concentration inside the cylinder for the three operation points from Figure 7.11. The measured values are included at the right side for Figure 7.14: Cylinder pressure (top) and burned zone temperature (bottom) for the three Figure 7.15: Comparison of measured and simulated NO_x-limited SOE for the operation points on the 120% propeller curve: circle symbols are measured and diamond symbols simulated values; open or filled symbols denote the charge air temperature of approx. Figure 7.16: KI values for the operation points 402 to 594, characterized by the Figure 7.17: Comparison of measured and simulated knock at different air-fuel ratios and charge air temperatures at an operation point with 450 1/min and 9.1 bar BMEP; Top: measured knock frequency and exponential fit; Bottom: simulated KI values ... 79 Figure 7.18: Comparison of measured and simulated spark timing at 5% knock frequency for different natural gas compositions with methane numbers from 60 to 98 Figure 8.1: Relative deviation between air to fuel ratio at liquid length in methane/air Figure 8.2: Pressure and temperature at start of combustion (SOC) from the forward Figure 8.3: Thermal conductivity simulated with Cantera for different natural gas Figure 8.5: Measured and approximated injection rates for 0.7 ms duration of Figure 8.6: Comparison of the injection duration from the injection rate measurement. the injector map measurement and the trapezoidal approximation for different rail Figure 8.7: Coefficient of variance of the IMEP plotted against the start of energizing of the pilot injector, for the four operation points on the 120% propeller curve with

List of Tables

Table 3.1: Boundary conditions for homogenous reactor calculations 18
Table 3.2: Comparison of $\tau high$ from Cantera simulations at 40 bar and 100 bar at 700
K and 900 K and constant ΦD and ΦNG of 1.0 and 0.5
Table 5.1: Main data of the test engine
Table 6.1: Parameters of the combustion model
Table 7.1: Comparison of measured and simulated knock limited MFB50 at 450 1/min
and 9.1 bar BMEP79
Table 8.1: Air to fuel ratios at liquid length for heptadecane in air numerical values from
Figure 3.3
Table 8.2: Coefficients for the mixing temperature in Eq. (3.6) 89
Table 8.3: Composition of the different gases used for the investigation of thermal
conductivity and the knock model validation with the heavy-duty gas engine
Table 8.4: Operation points used for calibration of the combustion model and the NO _x -
model
Table 8.5: Operation points used for calibration of the HC-models
Table 8.6: Measured and simulated NOx-limited SOE for the operation points on the
120% propeller curve