
Islanded microgrids are small electric power networks that have no connection to a larger grid. They can be 
found, for example, in remote places, such as, islands or rural areas. Islanded microgrids typically comprise 
storage, renewable and conventional units as well as local loads. The central question of this work is: How to 
operate islanded microgrids with very high renewable share, i.e., how to control the energy of the storage 
units and how to maximize infeed from uncertain renewable sources without compromising a safe operation?

To answer this question, different model predictive control (MPC) schemes for the operation of microgrids are 
deduced. These can be distinguished by the way they handle uncertain load and renewable infeed. Namely, 
they are: certainty equivalence MPC, minimax MPC, risk-neutral stochastic MPC, and risk-averse MPC.

All schemes are posed in computationally tractable ways and compared in numerical case studies. These 
indicate that the way uncertain load and renewable infeed are modeled has a significant impact on safety and 
performance. Among the considered approaches, risk-averse MPC is most suitable as it provides robustness 
to misestimated forecasts and unlikely events which translates into low costs and a safe operation.
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Abstract

Islanded microgrids (MGs) are small electric power networks that have no connection
to a larger grid. They typically comprise storage units, renewable and conventional gen-
erators as well as loads. The central question of this work is: How to operate islanded
MGs with high renewable share, i.e., how to control the energy of the storage units, and
how to maximize infeed from uncertain renewable sources without compromising a safe
operation?

To answer this question, different model predictive control (MPC) schemes for the op-
eration of MGs are deduced. These are derived based on a generic model of an islanded
MG with high renewable share. The schemes can be distinguished by the way they handle
the uncertain load and renewable infeed: (i) certainty equivalence MPC, where a nominal
forecast is fully trusted; (ii) minimax MPC, where time-varying forecast intervals are as-
sumed; (iii) risk-neutral stochastic MPC, where a forecast probability distribution is fully
trusted; and (iv) risk-averse MPC, where a forecast probability distribution is not fully
trusted.

All schemes are posed in computationally tractable ways and compared in a numer-
ical case study. The results of this study indicate that (i) certainty equivalence MPC can
compromise a safe operation; (ii) minimax MPC leads to a safe operation at the expense of
higher costs; (iii) risk-neutral stochastic MPC leads to a safe operation and low costs if the
forecast probability distribution is accurate; and (iv) risk-averse MPC provides robustness
to misestimated forecasts and unlikely events which leads to a safe operation at low costs.

In conclusion, how uncertain load and renewable infeed are modeled has a significant
impact on safety and performance. Overall, risk-averse MPC was identified to be most
suitable for the operation of islanded MG as it provides robustness to misestimated fore-
casts and unlikely events which translates into low costs and a safe operation.





Kurzfassung

Microgrids (MGs) im Inselbetrieb sind kleine elektrische Netze ohne Verbindung zu ei-
nem größeren Netz. Sie beinhalten typischerweise Speicher, erneuerbare und konventio-
nelle Einheiten sowie Verbraucher. Die zentrale Frage dieser Arbeit lautet: Wie können
MGs mit hohem Anteil erneuerbarer Erzeuger als elektrische Insel betrieben werden,
d. h., wie sollte die gespeicherte Energie geregelt werden, und wie kann man erneuerbare
Einspeisung maximieren, ohne die Versorgungssicherheit zu gefährden?

Um diese Frage zu beantworten, werden unterschiedliche Ansätze zur modellprä-
diktiven Regelung (englisch model predictive control, MPC) hergeleitet. Diese basieren
auf einem gemeinsamen mathematischen Modell eines MGs. Die Ansätze unterscheiden
sich darin, wie unsichere erneuerbare Erzeugung und Last modelliert werden: (i) Sicher-
heitsäquivalente MPC, bei der die nominelle Vorhersage als sicher angenommen wird;
(ii) Robuste MPC, bei der zeitvariante Vorhersageintervalle angenommen werden; (iii) Ri-
sikoneutrale stochastische MPC, bei der die Wahrscheinlichkeitsverteilung der Vorhersage
als sicher angenommen wird; und (iv) Risikoaverse MPC, bei der die Wahrscheinlichkeits-
verteilung der Vorhersage als unsicher angenommen wird.

Alle Ansätze werden so hergeleitet, dass sie mit existierenden Verfahren numerisch
gelöst werden können und in einer Simulationsstudie miteinander verglichen. Die Er-
gebnisse der Studie legen nahe, dass (i) die sicherheitsäquivalente MPC zu verringerter
Versorgungssicherheit führt; (ii) die robuste MPC zu einem sicheren Betrieb und erhöhten
Kosten führt; (iii) die risikoneutrale stochastische MPC zu einem sicheren Betrieb und
niedrigen Kosten führt, wenn die angenommene Wahrscheinlichkeitsverteilung korrekt
ist; und (iv) die risikoaverse MPC robust gegenüber fehlerhaften Wahrscheinlichkeitsver-
teilungen und unwahrscheinlichen Ereignissen ist, was zu einem sicheren Betrieb und
niedrigen Kosten führt.

Zusammenfassend lässt sich sagen, dass die Modellierung von unsicherer erneuerbare
Erzeugung und Last einen großen Einfluss auf Versorgungssicherheit und Kosten hat.
Alles in allem wurde die risikoaverse MPC als tauglicher Ansatz für den Betrieb von
MGs im Inselbetrieb identifiziert, da sie robust gegenüber fehlerhaften Vorhersagen und
unwahrscheinlichen Vorfällen ist und zu einen sicheren Betrieb mit niedrigen Kosten
führt.
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1
Introduction

Consider an existing setup of an islanded1 electric power grid 1 Note that islanded grids
are not connected to a larger
electrical network.

with a high share of renewable infeed that serves a village.
The grid includes storage units, renewable energy sources and
conventional generators that provide power to different loads.
How to operate such a grid, i.e., how to decide:

• When to charge or discharge storage units and at which
rate?

• What is a “good” way to deal with infeed from uncertain
renewable energy sources?

• When to enable or disable the different conventional gener-
ators and how much power to draw from them?

This work circles around these questions. More precisely,
it proposes different operation control strategies for islanded
microgrids that answer these questions based on historic load
and weather data as well as the current state of charge of stor-
age units. The proposed strategies can be distinguished by the
way they model the uncertain load and available renewable
power. The different control schemes are posed in computa-
tionally tractable ways and compared in a case study.

This chapter is structured as follows. First, the motivation
is continued in more detail in Section 1.1. Then, the contribu-
tions of this work are discussed in Section 1.2. In Section 1.3,
related publications are reviewed. Finally, publications by the
author are presented in Section 1.4 and a brief outline is given
in Section 1.5.
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1.1 Motivation

Why a high share of renewable energy sources? Electricity is
one of the major energy carriers in the world [4]. It powers
commercial, industrial and residential loads, such as, public
transportation, industrial processes, information and com-
munication technology, as well as home appliances, light,
heating, and many more.

In conventional power systems, electric energy is typically
generated using fossil-fueled, nuclear and hydro power plants
[127]. Here, steam or water powered turbines [74], in smaller
grids also diesel engines, provide mechanical power to gen-
erators that convert it into electric power. The operation of
most of these so-called conventional generators is associated
with waste and safety concerns as well as political issues in
the case of nuclear power plants and undesired greenhouse
gas emissions2 in the case of fossil-fueled power plants [6]. 2 The desire for a reduction

of greenhouse gas emissions
is manifested, e.g., in the
Kyoto Protocol [259] and the
Paris Agreement [260].

One way to reduce greenhouse gas emissions is by a reduc-
tion of electric energy consumption, e.g., via more efficient
electric appliances [198]. This, however, can only hamper the
worldwide rise in electric power demand as the number of
households with access to electric energy keeps increasing
[108]. Therefore, a reduction of greenhouse gas emissions by
means of a substitution of conventional generators by renew-
able energy sources (RES) [188], such as photovoltaic power
plants or wind turbines, is even more important.

Why islanded microgrids? Access to electricity correlates with
an increased education index [111] and better public health
as well as decreased poverty and environmental degrada-
tion [249]. Worldwide, the number of people without access
to electricity decreased since 1990. Still, 840 million people
remained without access to electricity in 2017. Of all these
people, 87 % live in rural areas [108]. For many of these areas,
islanded microgrids (MGs) represent an important alternative
to costly power grid extension. As the transport costs for fos-
sil fuels are usually high in these areas [270], RES are often
more cost-efficient than conventional generators. Therefore,
islanded MGs with high share of RES play an essential role in
strategies to increase the electrification rate.
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In the context of large-scale power systems with increasing
share of RES, MGs also play an important role. Many renew-
able generators are small-scaled and geographically dispersed
over the electric power grid [116]. Consequently, with an in-
creasing share of RES, the structure of electric power systems
changes from grids with a small number of large-scale units
to a grids with a large number of small-scale units [95]. The
increasing number of units in the grid makes their operation
very complex [194]. One way to cope with this complexity is
by partitioning the overall grid into coupled MGs [61, 134].
The units in an MG, i.e., storage, renewable and conventional
generators, are then operated such that the MG appears as a
“single controllable system” [132] to the outside world.

MGs can be operated connected to or isolated from the
transmission network [115, 187, 209], e.g., in presence of
fault events. In grid-connected operation, an MG can act as
a source providing energy to others or as a load. By empha-
sizing a local power balance within each MG, the power flow
over transmission lines can be reduced [56, 133]. In islanded
operation, no power exchange with others is possible. Here,
an equilibrium of partly uncertain generation, demand and
storage needs to be ensured at all times using only the units
in the MG [175], which renders this operation particularly
challenging. Mastering islanded operation therefore provides
important insights for the operation of grid-connected MGs.

Why operation control? Operation control is responsible to
provide setpoints of desired power to the units [171]. By en-
abling conventional generators and providing power setpoints
to all units on a timescale of minutes, the energy contained in
the storage units is controlled. Finding suitable setpoints, by
means of a controller that solves an optimal control problem
for given historic data and stored energy, a safe and reliable
operation can be ensured. Furthermore, operation control
plays an important role in the commercial success of an MG.
Providing power setpoints that minimize the operation cost of
an MG is crucial for an economically meaningful operation.
Moreover, the operation strategy has a high impact on the re-
newable share of a given MG topology. Using suitable control
approaches (i.e., “only” software) the renewable share of a
grid can be increased without adding new renewable units.
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1.2 Contributions

In what follows, the main contributions of this thesis are
posed. First, an overview is provided. Then, the contributions
of the different chapters are presented in more detail.

1.2.1 Overview

Throughout this thesis, different control schemes are derived
and compared to each other. In this context, the main contri-
butions can be divided into the following parts.

Model of islanded MG. A generic control-oriented model of an
MGs in islanded operation is derived in this thesis. It includes
grid-forming storage units3 and conventional generators 3 Storage units can be op-

erated in grid-feeding or
grid-forming mode. For the
operation in grid-feeding
mode, where a desired
power or current is pro-
vided, an existing voltage
is required. Grid-forming
units, on the contrary, pro-
vide a desired voltage with
a certain amplitude and
frequency and do not require
an existing voltage for their
operation.

that can be enabled or disabled. Their use allows to disable
conventional generators, e.g., in times of high renewable
infeed, as their grid-forming capabilities are not required
for the operation of the MG. Moreover, proportional power
sharing between grid-forming storage units and conventional
generators is included in order to model the effects of the
underlying control layers. A possible limitation of renewable
infeed, e.g., if all storage units are fully charged, is also part
of the model. Finally, the power transmitted via the power
lines is taken into account using a linear power flow model.

Forecasts of load, wind and PV power. Time-series based au-
toregressive integrated moving average forecast models for
load demand and available power of RES are derived in this
thesis. These are required to compute the optimal control
trajectories in the different control approaches. The obtained
forecasts are compared to benchmark approaches from liter-
ature and shown to provide an increased forecast accuracy
for the data sets considered in this thesis. Furthermore, the
forecasts of available renewable power are shown to often be
non-Gaussian which motivates the use of control approaches
that do not require normally distributed uncertainties. Based
on this observation, different representations of the forecasts
are derived. This includes a mean value forecast and robust
forecast intervals. Moreover, scenario trees, which can be seen
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as compact representations of discrete forecast probability
distributions, are considered.

Model predictive operation control approaches. To find a suit-
able controller for the operation of islanded MGs, various
model predictive control (MPC) approaches are derived. All
of them are formulated in computationally tractable ways
such that they can be solved by off-the-shelf software and
used to control arbitrary islanded MGs with known topolo-
gies. The controllers are all based on a common model of an
MG and a common cost function. They can, however, be dis-
tinguished by the way they model the uncertain forecast of
load and available renewable power. In detail, the approaches
are as follows. (i) Certainty equivalence MPC, where the
mean value forecast is assumed to be certain. This approach
represents the state-of-the-art. (ii) Minimax MPC that consid-
ers a forecast in the form of time-varying robust intervals. In
this approach, the worst-case cost is minimized, considering
bounded uncertain load and renewable infeed. (iii) Risk-neu-
tral stochastic MPC where the uncertain forecast is modeled
as a scenario tree, i.e., a discrete time-varying probability
distribution. Here, the expected cost over the probability dis-
tribution is minimized assuming that the forecast probability
distribution is certain. (iv) Risk-averse MPC that allows to
consider uncertain probabilities in the forecast scenario tree.
This approach can provide robustness to bad forecasts and
unlikely events with high impact on the operation cost.

Illustrative simulations. In various examples and simulations,
the properties of the MG model and the different control ap-
proaches are illustrated. This includes open-loop simulations
considering a simple MG that acts as a running example.
These simulations illustrate the different representations of
the uncertain variables and the resulting decisions of the MPC
schemes. Moreover, small examples are included to provide
some intuition for the MG model, the forecasts and the MPC
approaches.

In a comprehensive simulation case study, all controllers
are compared to each other. Here, closed-loop simulations are
performed over a simulation horizon of one week for a simple
MG and an extended MG that includes two storage units, two
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conventional and two renewable generators. Additionally,
a sensitivity analysis is performed. This analysis includes
6 000 closed-loop simulations over a simulation horizon of
three days that illustrate the robustness of the approaches to
misestimated forecast probability distributions.

1.2.2 Chapters

The main part of this thesis comprises 11 chapters and com-
prehensive conclusions. Key contributions of these chapters
are as follows.

Chapter 2: Problem statement. Here, the challenges addressed
in this thesis are outlined. First, a general introduction to
microgrids is provided and hierarchical control of MGs is
discussed. Then, requirements for the operation control of is-
landed MGs are posed. These arise, e.g., from the local power
balance that is required at all times in islanded operation or
the high share of RES.

Chapter 3: Preliminaries. In this chapter, basics from differ-
ent domains are provided. This includes an introduction of
mathematical operators and sets used in this thesis and MPC
fundamentals. Additionally, reformulations from optimiza-
tion theory that are required to pose the MPC problems in
computationally tractable ways are examined. In the end of
the chapter, basics regarding the models of transformers and
transmission lines are provided. These include the nonlinear
AC power flow equations and the derivation of the DC power
flow approximations for AC power systems.

Chapter 4: Microgrid model. As a basis for the formulation
of different MPC problems, the model of an islanded MG
is derived. This is done in a way that enables models with
an arbitrary finite number of storage units, renewable and
conventional generators as well as loads and an arbitrary
transmission network.

The model includes the DC power flow approximations
[74, 77, 165, 200] for AC grids that allow to consider power
limits of the transmission lines. Moreover, motivated by [231,
232] the storage power plants are modeled as grid-forming
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units. This allows to control MGs with very high share of RES
that are capable of running without conventional generators.
Furthermore, the dynamics of the storage units are modeled
such that the uncertain load and renewable infeed affects
the state of charge. Additionally, motivated by [104, 172,
180], grid-forming conventional generators are modeled such
that they can be enabled or disabled. Proportional power
sharing of all enabled grid-forming units is also considered
to approximately model the lower control layers. Finally,
unlike most other approaches (e.g., [110, 141, 180]), the model
includes a possible limitation of renewable infeed, e.g., if the
storage units are fully charged. This enables a control of MGs
with very high share of RES.

Chapter 5: Model predictive control formulation. A generic MPC
problem for the operation of islanded MGs is provided.
Therefore, a cost function is formulated. It includes costs
incurred by utilization of conventional generators and curtail-
ment of renewable infeed as well as costs associated with the
state of charge. Using the cost function and the MG model
from Chapter 4, a prescient MPC problem is formulated as a
mixed-integer quadratic program (MIQP) that can be solved
by available software.

Chapter 6: Forecast. Many real-world MPC approaches for
the operation of MGs require a forecast of load and available
renewable infeed. Motivated by the desire for cost-efficient
ways to predict these uncertain inputs [256], time-series based
forecast models that only require historic data, i.e., measure-
ments of load, wind speed and irradiance, are employed. For
the forecasts, the widely adopted seasonal autoregressive
integrated moving average models are employed. Suitable
forecast models are identified by means of a hyperparameter
search that includes more than 6 000 model configurations.
The forecasts are combined with simple models of photo-
voltaic (PV) power plants and wind turbines in order to ob-
tain predictions of available renewable power and load.

Chapter 7: Certainty equivalence MPC. Using the MG model
from Chapter 4, the cost function from Chapter 5 and the
forecast from Chapter 6, a certainty equivalence MPC prob-
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lem is formulated. Motivated by [172, 180], the formulation
relies on the assumption that the mean value of the forecast
of load and available renewable power is certain. This widely
used MPC approach represents the state-of-the-art and serves
as a simple reference. The MPC problem is formulated as an
MIQP that can be solved by available software.

Chapter 8: Minimax MPC. Based on the model from Chap-
ter 4 and the cost from Chapter 5, a minimax MPC problem is
formulated. Motivated by [104, 128], the approach considers
a forecast of load and available renewable infeed in the form
of time-varying intervals which are obtained using the fore-
cast models from Chapter 6. Considering such intervals, the
worst-case cost of all possible realization is minimized. This
allows for robustness to uncertain load and renewable infeed
at the expense of more conservative control actions than the
certainty equivalence approach. The minimax MPC problem
is formulated as a mixed-integer quadratically-constrained
program (MIQCP) which can be solved by available software.

Chapter 9: Scenario trees. Using the forecast models from
Chapter 6, scenario trees are derived. These are compact rep-
resentations of forecast probability distributions that can be
used to formulate stochastic MPC problems. The contribu-
tions of this chapter are twofold. The first part is based on
[91, 93] and provides a formulation of the MG model from
Chapter 4 considering a prediction in the form of a scenario
tree. The second part focuses on the generation of scenario
trees using a variant of forward tree construction that follows
[169]. The resulting scenario tree provides the basis for the
scenario-based approaches in Chapters 10 and 11.

Chapter 10: Risk-neutral stochastic MPC. The controller de-
rived in this chapters considers a forecast in the form of a
scenario tree (see Chapter 9). Motivated by [22, 103, 158, 178],
the approach minimizes the expected value of the cost from
Chapter 5 subject to constraints that follow the model from
Chapter 4. Considering various forecast scenarios, robustness
to uncertain load and renewable infeed can be provided. As
the expected cost is minimized, the approach is less conserva-
tive than minimax MPC, where no probabilistic information
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is employed. The resulting MPC problem is formulated as an
MIQP that can be solved by available software.

Chapter 11: Risk-averse MPC. Similar to risk-neutral stochastic
MPC, this approach is based on the model from Chapter 4,
the cost function from Chapter 5 and forecast scenario trees
from Chapter 9. Various forecast scenarios are considered to
provide robustness to uncertain renewable infeed and load.
Additionally, motivated by [48, 118], uncertainty in the prob-
abilities of the scenario tree can be considered. In detail, the
approach allows to specify how much a probability distribu-
tion can be trusted by tuning the risk that the controller takes.
This allows to continuously interpolate between risk-neutral
stochastic MPC, where the probability distribution is fully
trusted, and worst-case MPC, where the probabilities are not
trusted at all. By choosing an acceptable risk, robustness to
misestimated forecast probability distributions and so-called
high-effect low-probability events can be provided which
translates into low costs and a safe operation. In a similar
fashion as in [247], the risk-averse MPC problem is reformu-
lated using an epigraph relaxation. This results in an MIQCP
which can be solved by available software.

Chapter 12: Case study. The properties of the different control
approaches are illustrated in a simulation case study. Here,
closed-loop simulations are performed for all model predic-
tive controllers from the preceding chapters. The simulations
are carried out with real forecast models and real weather
data for two different MG models and a simulation horizon
of one week. The first MG model includes a storage unit, a
conventional generator, a wind turbine and a load. The sec-
ond MG is motivated by [123] and includes two storage units,
two conventional generators, one wind turbine, one PV power
plant, and one load. For both models, closed-loop simula-
tions are employed to compare the controllers with respect
to (i) operating cost, (ii) constraint satisfaction, and (iii) ro-
bustness to misestimated forecast probability distributions
and extreme events. Furthermore, a sensitivity analysis is
performed with the simple MG. This analysis investigates ro-
bustness of the different schemes to inaccurate forecasts with
systematic errors.
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Chapter 13: Conclusion. The main results of the thesis are
summarized and general conclusions are drawn. Moreover,
possible future research directions are briefly outlined.

1.3 Related work

There exist various publications that are concerned with op-
eration control of MGs. These can be distinguished by the
way they treat uncertain load and renewable infeed. Well
known formulations are (i) certainty equivalence, where a
nominal forecast is assumed to be certain, (ii) worst-case,
where a forecast in the form of robust intervals is considered,
(iii) risk-neutral stochastic, where a forecast probability distri-
bution is fully trusted, and (iv) risk-averse, where ambiguity
in the forecast probability distribution is considered.

1.3.1 Certainty equivalence approaches

Many publications related to operation control of MGs rely on
the assumption that the forecast of the uncertain input is cer-
tain. In what follows, first approaches for the grid-connected
operation are reviewed. Then, control schemes for islanded
grids are examined. Finally, limitations of the approaches are
discussed.

Numerous approaches focus on the operation of grid-
connected MGs. A central MG controller that is operated in a
hierarchical control structure is presented in [256]. Here, an
economic optimization that includes demand-side bidding
and a forecast of RES is performed. In [54], the operation of
interconnected MGs, modeled as a multi-agent system, is dis-
cussed. For a network of interconnected MGs that comprises
microturbines, various loads and so-called prosumers that
are formed of residential loads, small-scaled PV generators
and storage units, an energy management and operational
planning approach is presented in [112]. Furthermore, in [129]
an MPC-based energy management approach that considers
a deterministic forecast is discussed. Similar residential pro-
sumer households are considered in [273]. Here, different ap-
proaches to control the households such that their aggregate
power is flattened are presented. A distributed algorithm for
a similar application is presented in [35]. In [36], an alterna-
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tive algorithm is introduced that employs the alternating di-
rection method of multipliers. Assuming interconnected MGs
with storage units and controllable loads, in [37] a distributed
model predictive operation control approach is presented.
Based on the energy hub framework [70, 71], a nonlinear MPC
algorithm is proposed in [9]. Furthermore, a two-stage ap-
proach that combines scheduling and predictive control for a
similar application is introduced in [8].

Other certainty equivalent approaches consider both, is-
landed and grid-connected operation. In [177, 180, 181],
mixed-integer MPC formulations for the operation of a single
MG are presented. The formulations include storage dynam-
ics with power conversion losses, limits of power consumed
or provided by the potentially connected grid as well as con-
ventional generators that can be enabled or disabled. In [110],
a two-stage operation control approach is presented that com-
prises a schedule and a dispatch layer. Furthermore, a day
ahead schedule for MGs that employs genetic algorithms is
presented in [45].

Some certainty equivalent operation control approaches
were exclusively developed for the operation of islanded
MGs. In [16], an energy management approach is presented
to dispatch generators by adapting power setpoints and droop
gains of the units. Additionally, in [141] a method to schedule
islanded MGs is introduced. Moreover, in [175] a controller
based on a rolling horizon strategy is derived. In [101], an
energy management problem for deterministic forecasts of
load and renewable generation is formulated. Furthermore, in
[155, 172] and in the author’s work [89], MPC approaches for
the operation of islanded MGs are presented.

Even though the presented approaches are promising, most
of them are limited in at least one of the following regards.
(i) They do not include a possible limitation of infeed from
RES [16, 35, 101, 110, 129, 141, 155, 177, 180, 181, 256, 273].
(ii) The dynamics of the storage units are not modeled [16,
256]. (iii) It is not considered that conventional generators
can be switched on and off [8, 9, 16, 112, 129]. (iv) The power
flow over a transmission network is not explicitly modeled
[16, 35, 37, 101, 112, 129, 141, 155, 175, 177, 180, 181, 256, 273].
(v) They are designed for the operation of grid-connected
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MGs and therefore not directly applicable to islanded MGs
[8, 9, 35–37, 54, 112, 129, 256, 273]. Furthermore, only in
[16, 89] power sharing of grid-forming units is explicitly dis-
cussed. An additional drawback of all certainty equivalence
approaches is the assumption of a perfect forecast. In settings
with high renewable infeed of wind turbines and PV power
plants, this assumption often does not hold. In practice, this
leads to “unserved energy” [175] or violations of power or
energy limits [89] and motivates approaches that model un-
certainty in the forecast of load and available infeed from
renewable sources, e.g., robust worst-case control schemes.

1.3.2 Worst-case approaches

There exist various publications related to the operation con-
trol of MGs, where uncertainties in the form of robust inter-
vals are assumed. In what follows, first approaches associated
with the grid-connected operation are reviewed. Then, opera-
tion control schemes for islanded grids are examined. Finally,
the limitations of these approaches are discussed.

There exist many approaches for the operation of grid-
connected MGs. In [279], a scheduling approach that consid-
ers uncertain infeed from RES is presented. For the operation
of MGs, MPC approaches that consider uncertain renew-
able infeed and load are introduced in [128, 129] . Assuming
uncertain wind turbine parameters, an MPC scheme for en-
ergy management is presented in [199]. Moreover, in [44] a
multi-objective fuzzy logic expert system for energy man-
agement applications is discussed. This system can handle
uncertainties related to forecasts. A robust power manage-
ment system that considers uncertain available infeed from
PV power plants and wind turbines is introduced in [104].
There also exist robust schemes for the energy hub framework
from [70, 71], e.g., the scheduling approach presented in [179]
which considers uncertain unit parameters.

For the operation of islanded MGs, the author’s publica-
tions [89, 90] include two robust approaches. In [89], a mini-
max MPC scheme that considers uncertain forecasts of load
and available renewable infeed is presented. This scheme was
extended in [90] to an approximate closed-loop minimax MPC
which is less conservative than the approach in [89].
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Even though the presented approaches are promising, most
of them are limited in at least one of the following aspects.
(i) They do not include a possible limitation of infeed from
RES [44, 128, 129]. (ii) Grid-forming storage units are not
considered [104, 199]. (iii) Power sharing of grid-forming
units is not modeled [44, 128, 129, 199, 279]. (iv) It is not
considered that conventional generators can be switched on
and off [44, 128, 129, 179, 199, 279]. (v) The power flow over
a transmission network is not explicitly modeled [44, 104,
128, 129, 199, 279]. (vi) They are designed for the operation
of grid-connected MGs and therefore not directly usable in
islanded MGs [44, 128, 129, 179, 199, 279]. An additional
drawback of robust approaches is that often the worst-case
cost is minimized. In settings with high renewable infeed
from wind turbines and PV power plants, this can lead to
overly conservative operation regimes as discussed, e.g., in
[90, 91]. This motivates the use of approaches where more
complex forecasts of load and available renewable infeed are
considered, e.g., risk-neutral stochastic control schemes.

1.3.3 Risk-neutral stochastic approaches

There exist numerous publications on operation control of
MGs which include more complex probability distributions
than, for example, certainty equivalence MPC. The presented
schemes can be separated into those that consider random
processes in the form of continuous probability distributions
and those that consider discrete probability distributions.

Continuous probability distributions. There are several ap-
proaches for the operation of grid-connected MGs that con-
sider continuous probability distributions. In [119–121], a
wind power forecast with non-Gaussian probability distri-
bution is assumed. In [83], an MPC scheme for a DC MG is
presented. The proposed scheme assumes forecasts of load
and PV infeed that follow a Gaussian probability distribu-
tion. Here, chance constraints on the power exchanged with
the utility grid are imposed while minimizing the expected
cost associated with this power. An approach that includes
a schedule and a stochastic MPC is presented in [202]. Here,
uncertain load and PV generation are considered.
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Even though the presented approaches are promising, most
of them are limited in at least one of the following regards.
(i) They do not include a possible limitation of infeed from
RES [83, 119, 121, 202]. (ii) Grid-forming storage units are not
considered by any approach. (iii) None of the schemes models
power sharing of grid-forming units explicitly. (iv) It is not
considered that conventional generators can be switched on
and off [83, 119–121]. (v) The power flow over a transmis-
sion network is not explicitly included in any of the control
schemes. (vi) All approaches are designed for the operation of
grid-connected MGs and therefore not directly applicable to
islanded MGs.

Discrete probability distributions. There are several approaches
that consider discrete probability distributions, e.g., indepen-
dent forecast scenarios or so-called scenario trees. In what
follows, first approaches associated with the grid-connected
operation are reviewed. Then, operation control schemes for
islanded grids are examined. Finally, the limitations of the
approaches are discussed.

There exist some approaches for the operation of grid-
connected MGs. In [253], a scenario-based two-stage approach
is presented. The scheme aims to minimize the expected
power losses and costs. Another two-stage approach that
comprises an optimal schedule and an MPC is presented in
[190]. Here, forecasts of uncertain weather and load in the
form of a scenario tree are considered. Moreover, in [161] a
scenario-based operation management that considers uncer-
tain load, renewable infeed and market price is introduced.

Some approaches consider both, grid-connected and is-
landed operation. In [178], a two-stage approach that employs
a scenario tree is presented. This approach is extended in
[182] and used to control a lab-scale grid-connected MG.

There also exist a small number of approaches for the oper-
ation of islanded MGs. In [154], a scenario-based strategy for
the operation of droop-controlled MGs is introduced. Here,
a heuristic optimization approach is employed to minimize
the expected cost. Furthermore, in [103] a sampling-based
stochastic MPC scheme is presented assuming uncertain wind
power and load. The certainty equivalence scheme from [101]
is extended in [100] by using discrete forecast scenarios. In
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the author’s work [91], a risk-neutral stochastic MPC scheme
is presented. This scheme considers uncertain forecasts of
load and renewable infeed in the form of a scenario tree and
minimizes the expected MG operation costs.

Even though the presented approaches are promising,
most of them are limited in at least one of the following re-
gards. (i) They do not include a possible limitation of infeed
from RES [100, 103, 154, 178, 182, 190, 253]. (ii) Grid-form-
ing storage units are not considered [103, 178, 182, 190, 253].
(iii) Power sharing of grid-forming units is not explicitly
modeled [103, 161, 178, 182, 190, 253]. (iv) It is not consid-
ered that conventional generators can be switched on and off
[103, 154, 253]. (v) The power flow over a transmission net-
work is not explicitly modeled [100, 161, 178, 182, 190, 253].
(vi) They are designed for the operation of grid-connected
MGs and therefore not directly applicable to islanded MGs
[161, 190]. An additional drawback of aforementioned ap-
proaches is that they require exact forecast probability dis-
tributions. In practical settings, this might not always be the
case4 [93]. This motivates the use of approaches that can 4 Inexact forecast probability

distributions can emerge,
for example, from oversim-
plified forecast models or
approximation errors in
the construction of scenario
trees.

provide robustness to misestimated forecast probability distri-
butions, such as, risk-averse control schemes.

1.3.4 Risk-averse approaches

Risk-averse optimization approaches have been popular in
stochastic finance and actuarial mathematics for some time
[191, 241]. Their key idea is to model inexact knowledge
about the probability distribution, i.e., ambiguity, in an opti-
mization problem. This permits resilience against bad forecast
models and high-effect low-probability events.

Approaches that provide robustness to uncertain probabil-
ity distributions are also becoming more popular in the power
systems domain. In [274, 281, 282], risk-averse distributionally
robust approaches for the unit commitment problem are pre-
sented. Furthermore, in [69, 160, 269] risk-averse scheduling
strategies that employ the average value-at-risk (AVaR) are The average value-at-risk is

also known as conditional
value-at-risk.

derived. For optimal trading of power from wind turbines,
in [32, 162] two approaches that make use of the AVaR are
introduced. There also exist several risk-averse approaches for
optimal power flow, e.g., [147, 207, 208, 254, 278, 280].
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There is a small number of publications that propose risk-
averse approaches in the MG context. In [166], a risk-averse
stochastic programming approach for the design process of
an MG is presented. Furthermore, in [118] a risk-averse MPC
approach is used for the energy management of storage units
in an MG. Drawbacks of the presented approach are that it
only considers renewable infeed as uncontrollable negative
power demand and that it does not include conventional gen-
erators. Furthermore, it is designed for the operation of grid-
connected MGs and therefore not directly usable for islanded
MGs. In the author’s work [93], a risk-averse operation con-
trol approach for islanded MGs is presented. The approach
can be used for the operation of grids with very high share
of RES by considering grid-forming storage units and con-
ventional generators that can be disabled. Furthermore, the
power flow over the transmission lines as well as power shar-
ing between grid-forming units is modeled. By employing
the AVaR, the derived controller can provide robustness to
misestimated forecast probability distributions and high-effect
low-probability events.

1.4 Publications

Most results presented in this work are based on existing
publications. To all of the them, the author of this thesis has
made substantial contributions. The publications in reverse
chronological order are as follows.

• C. A. Hans, P. Sopasakis, J. Raisch, C. Reincke-Collon, and
P. Patrinos. Risk-averse model predictive operation control
of islanded microgrids. IEEE Transactions on Control Systems
Technology, 28(6):2136–2151, 2020.

• C. A. Hans and E. Klages. Very short term time-series
forecasting of solar irradiance without exogenous inputs.
In 6th International Conference on Time Series and Forecasting,
pages 1007–1018, 2019.

• C. A. Hans, P. Braun, J. Raisch, L. Grüne, and C. Reincke-
Collon. Hierarchical distributed model predictive control of
interconnected microgrids. IEEE Transactions on Sustainable
Energy, 10(1):407–416, 2019.
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• C. A. Hans, P. Sopasakis, A. Bemporad, J. Raisch, and
C. Reincke-Collon. Scenario-based model predictive opera-
tion control of islanded microgrids. In 54th IEEE Conference
on Decision and Control, pages 3272–3277, 2015.

• C. A. Hans, V. Nenchev, J. Raisch, and C. Reincke-Collon.
Approximate closed-loop minimax model predictive oper-
ation control of microgrids. In European Control Conference,
pages 241–246, 2015.

• C. A. Hans, V. Nenchev, J. Raisch, and C. Reincke-Collon.
Minimax model predictive operation control of microgrids.
In 19th IFAC World Congress, pages 10287–10292, 2014.

Moreover, the author of this thesis contributed to publi-
cations [102, 122, 123, 168, 223, 229, 232, 284]. They are not a
direct part of the thesis, even though many of them address
control issues in MGs.

1.5 Outline

The remainder of this thesis is structured as follows. In Chap-
ter 2, control of MGs is discussed and detailed requirements
for the operation control of islanded MGs are posed. Then,
in Chapter 3 preliminaries on notation and basics on MPC,
optimization theory as well as power systems are provided.
The model of an islanded MG is introduced in Chapter 4. For
this model, a cost function is presented and employed in a
prescient MPC formulation in Chapter 5. In Chapter 6, fore-
casts of load demand and available renewable infeed of wind
turbines and PV power plants are discussed. These forecasts
are then employed in a certainty equivalence MPC formu-
lation in Chapter 7. Subsequently, a robust minimax MPC
formulation is derived in Chapter 8. In Chapter 9, forecast
scenario trees are introduced. These are then used to formu-
late a risk-neutral stochastic MPC problem in Chapter 10 and
a risk-averse MPC problem in Chapter 11. In Chapter 12, the
different control approaches are compared in various nu-
merical case studies. Chapter 13 concludes the thesis with a
summary and future research directions.





2
Problem statement

The goal of this chapter is to identify central challenges in
operation control of MGs. These provide an important ba-
sis for the design and evaluation of different MPC schemes
throughout in this work.

This chapter is structured as follows. In Section 2.1, an
introduction to MGs is provided. Then, in Section 2.2 control
of MGs with high renewable share is discussed. Finally, in
Section 2.3 requirements for operation control of islanded
MGs are posed.

2.1 Microgrid concept

Worldwide, the share of RES continuously increased in recent
years [205]. From this increase, two major challenges in the
electric power sector arise.

The first challenge stems from the change in the power
systems’ structure. Conventional power systems are typically
composed of a small number of large-scale generators. RES in
contrast are often small-scaled and geographically dispersed
over a wide area [275]. Consequently, as more conventional
generators are replaced by renewable ones, the structure of
power systems changes from grids with a small number of
large-scale conventional units to grids with a large number of
small-scale renewable units.

The second challenge arises from the intermittent nature of
many renewable generators [113, 275]. In conventional power
systems, the operation is typically focused on generation units
where the power can be changed in a deterministic manner
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Figure 2.1: Example of an
MG. Note that the MG can
be connected to or isolated
from the transmission
network via the point of
common coupling (PCC).
Example based on [216].

within given operating bounds. In power systems with high
share of RES, power generation can be non-deterministic due
to intermittent infeed of wind turbines or PV power plants.
As long as the share of RES is small, they can be simply
treated as negative loads. With increasing renewable share,
the renewable sources need to be explicitly considered in
operation schemes of electric power systems.

Thus, existing strategies cannot be directly applied to fu-
ture power systems with high share of RES. This motivates
approaches tailored for decentralized and intermittent gen-
eration. The microgrid concept [94, 95, 131] represents such
an approach for future power systems. It aims to partition
the overall network into smaller MG cells that are operated
by local control systems. This permits each MG to act as “a
single controllable system” [132, 173] to the outside world. By
forming MGs that appear as monolithic parts, the complexity
of control layers that coordinate a certain part of the grid can
be reduced. Furthermore, fluctuations of RES and load can be
compensated locally by matching generation and consump-
tion inside each MG as far as possible. This allows to reduce
uncertainty in the operation of the overall grid, e.g., regarding
power transfer over the power lines that connect the MGs.

PV power plant

Wind turbine

Conventional
generator

Storage unit

Load

As illustrated in Figure 2.1, MGs are typically composed
of storage units, renewable and conventional generators
[81, 114, 132]. These units are interconnected by transmission
lines and operated to provide power to the loads. MGs can be
operated in grid-connected or island mode [62, 95, 131, 132].
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An MG in grid-connected mode is electrically coupled with a
larger grid via the point of common coupling (PCC). In case
of failures, it can be disconnected from the transmission net-
work and operated as an islanded MG [135, 187]. Small power
systems that do not have a connection to a transmission net-
work due to their geographical location, e.g., islands or rural
areas, also fall into the class of islanded MGs. In islanded
operation, all fluctuations of renewable generation and load
must be covered locally by adapting the power of the remain-
ing units. Maintaining this local power equilibrium renders
the operation of islanded MGs particularly challenging.

2.2 Hierarchical control of MGs

Based on requirements on different timescales and to facil-
itate the transition from conventional power systems, hier-
archical control approaches have been advocated for MGs
[27, 62, 80, 82]. Motivated by conventional power systems1, 1 More information on

control of conventional
power systems can be found,
for example, in [149, 235].

the lower control layers are often denoted as primary and sec-
ondary control. The control layer that comprises scheduling
[7, 174, 242] and tertiary control [149, 235] is often referred to
as operation control or energy management.2 2 In some publications

this layer is also referred
to as tertiary control. To
emphasize that it comprises
schedule and tertiary control,
in this thesis it is referred to
it as operation control.

2.2.1 Primary control

The lowest control layer that typically acts on a timescale of
milliseconds to seconds is widely referred to as primary con-
trol. The goal of this layer is to maintain frequency and volt-
age stability [27, 210, 225]. Furthermore, it aims to ensure that
a change in power, e.g., caused by uncertain renewable in-
feed or load, is covered by the grid-forming units in a desired
proportional manner such that an equilibrium of generation,
consumption and storage power is maintained [227]. This
so-called power sharing [197] is often provided by inverter-
interfaced storage units and conventional generators [210].

To ensure a safe and reliable operation, primary control
is frequently implemented in a decentralized manner using,
e.g., droop control [187, 232]. Thus, typically this control
layer only relies on the physical coupling of the units via the
electrical lines and does not require explicit communication.
This, however, typically leads to steady state deviations in
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frequency and voltage amplitudes [123]. Secondary control
can be employed to compensate these deviations.

2.2.2 Secondary control

The control layer above primary control is widely referred
to as secondary control and typically acts on a timescale of
minutes. It aims to compensate steady state frequency de-
viations and keep voltage amplitudes in a desired range.
Furthermore, it can be used to ensure reactive power shar-
ing [125, 228, 230] as well as accurate active power sharing in
presence of primary control schemes with inaccurate clocks
[123, 124, 126]. In literature, one can find both, secondary con-
trol approaches that rely on communication with a central
entity [152, 159] and distributed secondary control schemes
that only require peer-to-peer communication between the
units [28, 237, 243, 244].

Using a hierarchical control approach composed of primary
and secondary control, a stable operation where frequency
and voltages remain in desired ranges can be achieved. More-
over, active and reactive power sharing can be ensured. How-
ever, it is very challenging to optimize the operation of com-
plex MGs using only primary and secondary control. There-
fore, a supervisory operation control layer is often used to
ensure a safe and economically meaningful operation.

2.2.3 Operation control

The layer above secondary control is often referred to as op-
eration control or energy management. It typically acts on
a timescale of minutes to fractions of hours and optimizes
the MG operation by providing power setpoints to the lower
control layers. These setpoints can be found by solving op-
timization problems that include a cost function as well as a
set of constraints that represent the MG’s behavior [116]. The
solutions of the optimal control problems usually depend on
the state of charge as well as forecasts of available renewable
power and load. With increasing share of RES, it becomes
hard to accurately predict these values and obtain a mean-
ingful operation schedule over an entire day. Therefore, it
appears beneficial to combine the functionalities of schedule
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[7, 174, 242] and tertiary control [149, 235] to form a single
optimal operation control layer.

A widely adopted approach in this context is model predic-
tive control. In MPC, the system behavior is predicted into the
future using forecasts of renewable infeed and load as well
as measurements of the state of charge. By minimizing a cost
function subject to constrains, that represent, e.g., the dynam-
ics of the system or energy and power limits, optimal power
setpoints for the units can be obtained.3 3 There exist various oper-

ation control approaches
for grid-connected and
islanded MGs. For a com-
prehensive overview, the
reader is kindly referred to
Section 1.3.

2.3 Requirements for operation control of islanded
microgrids

One big challenge arises from the fact that RES are typically
located relatively close to each other in islanded MGs. This
reduces the effects of smoothing by geographical dispersion
of RES [117, 151]. Consequently, more fluctuations than in
conventional power systems can be found in islanded MGs.

Another important challenge originates from the local
power balance. In grid-connected operation, the fluctuations
of loads and RES can be covered outside the MG, e.g., by
large-scale power plants or other grid-connected MGs. Unfor-
tunately, in island mode this is not possible. Here, all fluctua-
tions of load and weather-dependent RES need to be covered
by the units in the MG [187]. This renders islanded operation
of MGs with high renewable share particularly challenging.

It is useful to employ storage units that participate in pri-
mary control to deal with the fluctuations in islanded MGs.
These allow to reduce frequency variations and enable an
operation without conventional generators in some time in-
stants. Moreover, renewable sources must be controlled, e.g.,
by allowing to limit their infeed. Additionally, operation con-
trol schemes must be robust to uncertain renewable infeed
and inaccurate forecasts. From these general considerations,
the following requirements for the operation control of is-
landed MGs with high share of RES can be deduced.

Remark 2.3.1. The requirements in this section were posed
having an islanded AC MG with primary and secondary
control layers as described in Section 2.2 in mind. However,
they also apply for MGs with other control approaches on
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the lower layers as long as they consider proportional power
sharing of grid-forming units and allow a limitation of RES.

2.3.1 Renewable generators

One big challenge that comes with many RES is that their
infeed depends on uncertain weather conditions [86]. Con-
sequently, a significant number of RES has uncertain infeed.
Operation strategies for MGs with high share of RES therefore
need to deal with this uncertainty [252].

In the design of islanded MGs with a desired renew-
able share, there is a trade-off between storage size and the
amount of installed RES. Here, one extreme case is to install
storage units with a large capacity that allow to store all re-
newable generation. Unfortunately, this comes with a high
financial invest for the storage units. It is also possible to
choose a smaller storage capacity and install more RES. This,
however, requires a curtailment of RES [276], e.g., if all stor-
age units are fully charged. Consequently, operation control
must take a possible limitation of RES into account.

Moreover, the nature of the financial investment in renew-
able and conventional generators differs significantly. Many
conventional generators come with a small capital cost per ex-
pected annual infeed and higher running costs per provided
energy that is often driven by fuel costs [261]. RES, such as,
wind turbines and PV power plants, on the contrary have a
high capital cost and almost no power-dependent operation
costs [261]. Therefore, in operation control of existing MGs, it
is desired to substitute conventional by renewable generation
as much as possible.

If MG topology and weather conditions allow, it is even
desired to disable conventional generators and operate the
grid only with renewable and storage units. For MGs to work
without conventional generators providing voltage and fre-
quency, it is therefore required that storage units are able to
operate in grid-forming mode as discussed in the next section.

2.3.2 Storage units

Storage units are often connected to the grid via inverters.
These can be operated in grid-feeding or grid-forming mode,
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depending on the implementation of the lower control layers
[231]. In grid-feeding mode, the units connect to an existing
grid and provide or consume a desired active and reactive
power or current. In grid-forming mode, the units provide
a desired voltage with a certain amplitude and frequency
[268]. In islanded MGs, it is desirable to operate them in grid-
forming mode for the following reasons.

In MGs with high renewable share, there are time instants
where renewable infeed fully covers the load. In such condi-
tions, it is desirable to disable all conventional generators4. 4 Note that conventional

generators are typically
operated as grid-forming
units.

Unfortunately, renewable generators, such as, PV power
plants or wind turbines, are usually operated in grid-feeding
mode, i.e., they require a grid with a given voltage and fre-
quency that they can connect to [17]. This voltage and fre-
quency can be provided by storage units with grid-forming
inverters.

The power of the grid-forming units changes with inter-
mittent renewable infeed and load to maintain a local power
equilibrium. In grids without storage units that react to fre-
quency deviations, these fluctuations need to be covered by
grid-forming conventional generators which can drive them
to operating conditions with lower fuel efficiencies. Further- As observed in [164], a

transient operation does not
per se lead to an increase in
fuel consumption.

more, the change in renewable infeed can lead to violations of
their power limits if the setpoints are not chosen accordingly.
Grid-feeding storage units can cover some of the fluctuations
such that the conventional generators can be operated closer
to their desired operating conditions. The lower control layers
can even be designed such that storage units cover most fluc-
tuations (see, e.g., [246]), which allows to keep conventional
generators even closer to their desired operating conditions.

Another important challenge is that uncertain load and
renewable infeed affect the power and energy of grid-forming
storage units. Depending on load and renewable infeed, the
storage power can be lower or higher than the power setpoint
provided by the operation control layer. This difference be-
tween power setpoint and power can be significant in grids
with high renewable share. Therefore, it is required to model
the effects of uncertain infeed and load on the power and en-
ergy of grid-forming storage units to ensure that their physi-
cal constraints are satisfied.
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2.3.3 Conventional generators

In the context of islanded MGs with high renewable share,
grid-forming conventional generators are often used as
backup generators in times of low renewable infeed and
empty storage units. Moreover, they can be used if the load is
very high and cannot be solely covered by the other units.

One challenge associated with conventional units is that,
similar to grid-forming storage units, uncertain load and
renewable infeed drive their power away from their power
setpoints. Therefore, it is required to consider the effects of
uncertain load and renewable infeed on their power to ensure
that they remain within given bounds [116].

Moreover, in MGs that include storage units, conventional
generators are often disabled during periods of high renew-
able infeed or available stored energy. The decision whether
they are enabled or disabled has to be taken by the opera-
tion control keeping in mind their running costs and the cost
associated with enabling or disabling them [180].

2.3.4 Power sharing

In presence of uncertain load and renewable infeed, an equi-
librium of generation, consumption and storage power needs
to be maintained. This is typically ensured by adapting the
power provided or consumed by the grid-forming units [187].
Among these units, it is desired to compensate the fluctu-
ations that drive them away from their power setpoints in
a proportional manner, e.g., according to their rated power.
There are different ways to achieve a desired proportional
power sharing, for example, droop control [227].

The major challenge that comes with power sharing is that
the operation control needs to model how much a change
in load or renewable power affects the power output of the
grid-forming units to ensured that all units remain within
their operational limits and that the cost associated with the
units’ power is minimal. This is particularly challenging in
settings where grid-forming conventional units are enabled
and disabled as this affects power sharing (see Examples 4.8.1
and 4.8.2).



problem statement 27

2.3.5 Power flow over transmission lines

In islanded operation, MGs are not connected to a bigger
transmission network. However, the units within the MG are
connected to each other by power lines. In setups where the
units are not in one place feeding into a single bus as in [180],
the transmission lines of the grid need to be considered. More
precisely, the power flow over the transmission lines needs to
be taken into account in order to prevent a violation of power
limits [172].

2.3.6 Robustness to uncertain load and renewable generation

In MGs without RES, forecasts of the uncertain input often
follow a normal distribution [30, Section 2.8]. With increasing
share of RES, this is no longer the case as the forecast proba-
bility distributions can significantly change with weather con-
ditions, e.g., because of the nonlinear relation between wind
speed and available renewable power of wind turbines [195].
Additionally, the power of renewable units can be limited
which can additionally modify forecast probability distribu-
tions. Therefore, it is required to employ control schemes that
do not require the uncertain input to be Gaussian.

The forecast accuracy of available renewable power can be
much lower than the accuracy of load forecasts (see Chap-
ter 6). This effect plays an important role in grids with high
share of uncertain RES, where the installed renewable power
exceeds the rated load demand. Therefore, the operation con-
trol layer must provide power setpoints that ensure a safe
MG operation in the sense that the units and transmission
lines remain within their given operating limits, in presence
of uncertainties. Moreover, the power setpoints should be
provided in a way that enables an economic operation of the
grid by maximizing renewable and minimizing conventional
generation in settings where load and renewable infeed are
not exactly known.

2.3.7 Robustness to inaccurate forecast models and extreme
events

Islanded MGs can be small-scaled in terms of rated load
power. Consequently, the project volume of the deployment
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of such an MG can be quite small. Therefore, it is desired to
use cost-efficient forecast models [256], that do not require
exhaustive training or many observations and can be easily
identified. Such simple models can come with a decreased
forecast accuracy. Moreover, it can happen that forecast mod-
els very roughly approximate the underlying probability
distribution. Therefore, robustness of the operation control to
misestimated forecast probability distributions is important.

Some events in the operation of MG can have a high effect
on the cost if they occur, but have a small probability of oc-
curring. Such high-effect low-probability events usually play
a minor role in operation control schemes due to their low
probabilities. However, it is desired to operate MGs in ways
that are averse to this risk, i.e., that ensure that such events do
not lead excessive costs.

2.4 Summary

In this chapter a problem statement targeted towards the
operation control of islanded MGs was given. First, the MG
concept was introduced and hierarchical control of MGs was
discussed. Then, requirements for the operation control of
MGs with high share of RES were posed.

Based on this problem statement, in Chapter 4, the model
of an islanded MG is derived. Moreover, in Chapters 5, 7, 8,
10 and 11 different control approaches are deduced and as-
sessed regarding their compliance with the control challenges
posed in this chapter. Furthermore, in Chapter 6 different
time-series based forecast models are identified. However,
first, some preliminaries are posed in the next chapter.



3
Preliminaries

In the previous chapter, the MG concept was introduced and
important challenges in MG operation control were posed.
Before formulating an MG model in Chapter 4, we discuss
some basics from different domains in order to keep the suc-
cessive chapters more compact and prevent repetitions.

This chapter is structured as follows. In Section 3.1, some
basics on notation are given. Then, in Section 3.2 basic princi-
ples of model predictive control are discussed. In Section 3.3,
some reformulations from optimization theory are intro-
duced. Finally, in Section 3.4 basics regarding the power flow
over the transmission network are provided.

3.1 Notation

Sets. Throughout this work, blackboard bold letters denote
sets. The sets of real numbers, negative real numbers and
positive real numbers are denoted by R, R<0 and R>0, re-
spectively. Moreover, the set of nonpositive real numbers is
R≤0 and the set of nonnegative real numbers is R≥0. The
set of natural numbers is N and the set of nonnegative in-
tegers is N0. The set of nonnegative integers in the closed
interval [a, b] ⊂ N0 is N[a,b] = {x|x ∈ N0 ∧ a ≤ x ≤ b}.
Furthermore, the set of Boolean numbers is B = {0, 1}
and the set of complex numbers is C. The complex number
x ∈ C is given by x = x̂eıφ, where x̂ = |x| is the modulus
of x, φ is the argument of x, e is Euler’s number and ı is the
imaginary unit. Alternatively, every complex number can
be described by x = �(x) + ı�(x) = |x|(cos(φ) + ı sin(φ)).
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Here, �(x) = |x| cos(φ) is the real part and �(x) = |x| sin(φ)
the imaginary part of x. The complex conjugate of x ∈ C

is x∗ = �(x)− ı�(x). The cardinality of a countable set I is
denoted by |I|. The set {a0, a1, . . . , aN} of cardinality N + 1,
N ∈ N is referred to as {ai}N

i=0 . Likewise, the set including
the elements ai for all i ∈ I ⊂ N0 is referred to as {ai}i∈I.

Vectors. A vector of size N where all entries are 1 is denoted
by 1N and a vector of same size where all entries are 0 by 0N .
Similarly, an N × M matrix where all entries are 1 is denoted
by 1N×M and a matrix of the same size where all entries are 0
by 0N×M. The N × N identity matrix is denoted by IN . Con-
sider a scalar b ∈ R and a vector a = [a1 · · · aN ]


 ∈ RN .
For a compact notation, a + b is used instead of a + 1Nb.
Likewise, a − b is shorthand for a − 1Nb. The matrix with di-
agonal entries a1, . . . , aN and zeros else is denoted by diag(a).

The Euclidean norm of a is ‖a‖2 =
√

∑N
i=1 a2

i . The vector

with elements a1, . . . , aN is denoted by [ai]
N
i=1 = [a1 . . . aN ]


.
Consider the set V = {v1, v2, . . . , vN} ⊂ N0 with elements
vi < vj for i < j, i ∈ N[1,N], j ∈ N[1,N]. Then, the vector
[av1 av2 . . . avN ]


 can be equally expressed as [ai]i∈V. The
sum over all ai for i = v1, v2, . . . , vN is denoted by ∑i∈V ai.

Basic operators. Consider the vectors a ∈ RN and b ∈ RN .
The relationship a > b is understood in an element-wise
sense, i.e., a > b is identical to ai > bi for all i ∈ N[1,N]. The
same holds for a < b, a = b, a ≥ b and a ≤ b. In a similar
fashion, max(a, b) provides the element-wise maximum and
min(a, b) the element-wise minimum of the vectors. Con-
sider a ∈ RN and b ∈ R. The relation a > b is shorthand for
a > 1Nb. The same holds for a < b, a = b, a ≥ b and a ≤ b
as well as max(a, b) and min(a, b). When used with one single
vector as input, max(a) returns the largest element of a and
min(a) the smallest element of a. Consider the nonempty set
X ⊆ RN and a function f : X → R that exhibits a mini-
mum over X. Then, the minimum value of f over X is de-
noted by minx∈X f (x) and the maximum value of f over X by
maxx∈X f (x). The domain X� ⊆ X for which the function at-
tains the minimum value is denoted by X� = arg minx∈X f (x).
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Box plots. Box plots [257] are used to visualize probability
distributions in some parts of this thesis. The variant of box
plots considered is shown in Figure 3.1. Here, the dot in the
middle indicates the median, i.e., the middle value that sep-
arates the lower from the upper half of the distribution. The
lower end of the white area, q1, marks the first quartile, i.e.,
the 25th percentile and the upper end, q3, marks the third
quartile, i.e., the 75th percentile. Thus, the white area around
the median contains the middle 50 % of the values. The dif-
ference q3 − q1 is often referred to as interquantile range. The
lower whisker, i.e., the lower end of the lower line, marks
the smallest value that is greater than q1 − 1.5(q3 − q1). The
upper whisker marks the largest value that is smaller than
q3 + 1.5(q3 − q1). The outliers, i.e., the values that are below
or above the whiskers, are marked by circles.

> q1 − 1.5(q3 − q1)

q1 (25th percentile)

median

q3 (75th percentile)

< q3 + 1.5(q3 − q1)

Outliers

Figure 3.1: Example of a box
plot. Illustration motivated
by [88].

3.2 Model predictive control

Model predictive control is an optimal control based approach
that is widely adopted in industry [31, 68, 163, 201]. The goal
of MPC is to find a control input v(k) ∈ RNv , Nv ∈ N at time
instant k ∈ N0 by minimizing the cost function of an optimal
control problem [3, 79, 150, 156, 203, 204] over a finite predic-
tion horizon J ∈ N. Therefore, state and auxiliary variables
are predicted into the future. Typically, these variables are
affected not only by the control input but also by uncertain
inputs (see Figure 3.2). These can be accounted for by using
forecasts in MPC problem formulations. The variable a(k + j|k) refers

to a prediction performed at
time instant k for prediction
step j, i.e., for future time
instant k + j.

The decision variables of an MPC problem formulated at
time k ∈ N0 are the inputs v(k + j|k) ∈ RNv at prediction
steps j = 0, . . . , J − 1 which are collected in v = [v(k + j|k)]J−1

j=0

MPC Plant

Uncertain
input w(k)

Control input

v(k) = v�(k|k)
Output

xk

Forecast of
uncertain input
[ŵ(k + j|k)]Jj=1

Figure 3.2: Block diagram of
model predictive controller
(MPC) and controlled plant.
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Figure 3.3: Example tra-
jectories of MPC approach
with prediction horizon
J = 4. The first value of
the predicted optimal input
v�(k|k), . . . , v�(k + 3|k) is
applied to the system, i.e.,
v(k) = v�(k|k). Based on
[68].

and the states1 x(k + j + 1|k) ∈ RNs , Ns ∈ N, which are 1 Note that the plant model
which includes the discrete
time dynamics enters the
optimization problem in the
form of the constraints (3.1).
Therefore, inputs and states
are considered as decision
variables throughout this
work.

collected in x = [x(k + j|k)]Jj=1. Moreover, a forecast of the un-

certain input ŵ(k + j + 1|k) ∈ RNw, Nw ∈ N is employed. An
MPC problem can be formulated using the stage cost function
�j, the discrete time state transition function fx and the state
inequality constraints function f̃x as well as the functions f̃vw

and fvw that represent inequality and equality constraints re-
lated to the uncertain input and the control input. With these
functions, the MPC problem reads as follows.

Problem 1 (Model predictive control). Solve the optimization
problem

min
v,x

J−1

∑
j=0

�j
(
v(k + j|k), ŵ(k + j + 1|k), x(k + j + 1|k))

subject to

x(k + j + 1|k) = fx(x(k + j|k), v(k + j|k), ŵ(k + j + 1|k)),
(3.1a)

0 ≤ f̃x(x(k + j + 1|k)), (3.1b)

0 ≤ f̃vw(v(k + j|k), ŵ(k + j + 1|k)), (3.1c)

0 = fvw(v(k + j|k), ŵ(k + j + 1|k)). (3.1d)

∀j = 0, . . . , J − 1,
with given2 initial state x(k|k) = xk. 2 In this example, full state

measurement is assumed,
i.e., the output of the plant is
the state xk at time instant k.

In Problem 1, the cost function is minimized over the pre-
diction horizon subject to constraints (3.1). The resulting
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predicted optimal input trajectory v�(k|k), . . . , v�(k + J − 1|k)
is obtained by solving Problem 1 with given initial state xk.
This trajectory for a given forecast of the uncertain input and
state as well as past control inputs and states is shown in
Figure 3.3.

Remark 3.2.1. Note that throughout the thesis, in MPC prob-
lem formulations, the time instant of the predicted uncertain
input is associated with the predicted state that result from it.
For example, the uncertain ŵ(k + j + 1|k) directly influences
the state x(k + j + 1|k) via (3.1a).

From the predicted optimal input trajectory, v(k) = v�(k|k)
is applied to the plant. After a certain time, typically the
sampling time Ts, has passed, a new measurement xk+1

is obtained and Problem 1 is solved again at time instant
k + 1. This scheme is repeated in a receding horizon manner
(see [18, 23, 204]) as illustrated in Algorithm 1. By using the
updated state measurement xk as initial value every time the
MPC problem is solved, we include feedback in the system.

Algorithm 1: Model predic-
tive control.

1: At time k: Measure state xk and obtain forecast
[ŵ(k + j|k)]Jj=1.

2: Solve Problem 1.
3: Apply control input v(k) = v�(k|k).
4: At the next time instant: increment k = k + 1 and go to 1.

3.3 Optimization theory

In this section, some preliminaries from optimization the-
ory are discussed. These include auxiliary results required
to reformulate different MPC problems in computationally
tractable ways. Furthermore, the so-called “Big-M” reformula-
tions of two operators are posed.

3.3.1 Auxiliary results

In what follows two lemmata that are required to formulate
the optimal control problems in Chapters 8 and 11 in com-
putationally tractable ways are introduced. First, a lemma
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that was published in the author’s work [93, Lemma 1.1] is
repeated.

Lemma 3.3.1. Let ∅ �= X ⊆ RNx and ∅ �= Y ⊆ RNy as well
as f : X × Y → R and β ∈ R. Consider that for every x ∈ X,
f (x, y) attains a minimum over Y, i.e., miny∈Y f (x, y) exists.
Then, the optimization problem

min
x∈X, v∈RNv

�(x, v) subject to min
y∈Y

f (x, y) ≤ β,

with cost function � : RNx × RNv → R is equivalent to

min
x∈X, v∈RNv ,

y∈Y

�(x, v) subject to f (x, y) ≤ β

in the sense that both problems share the same optimal cost
and sets of optimal values.

Proof. As the two problems have the same cost function,
it suffices to show that they have the same constraint sets.
Therefore, we define the sets

S =
{

x ∈ Rn | min
y∈Y

f (x, y) ≤ β
}

and

S′ = {x ∈ Rn | ∃y ∈ Y such that f (x, y) ≤ β}.

Take x ∈ S, i.e., miny∈Y f (x, y) ≤ β. Since the minimum
exists, there is a y� ∈ Y such that f (x, y�) ≤ β. Hence, x ∈ S′

and consequently S ⊆ S′.
Take x ∈ S′, i.e., there is a y0 ∈ Y such that f (x, y0) ≤ β.

Then, x ∈ S because miny∈Y f (x, y) ≤ f (x, y0) ≤ β, and
consequently S′ ⊆ S. This proves that S′ = S.

The next lemma is motivated by [34, 52, 138, 139]. It pro-
vides an epigraph formulation of the max operator (see Fig-
ure 3.4) which is later required in Sections 8.3 and 11.1. For
more information on epigraphs, the reader is kindly referred
to [26, 34, 211, 215].

Lemma 3.3.2. Consider two functions �1 : RNx → R and
�2 : RNx → R. For every x ∈ X ⊆ RNx , X �= ∅ the maximum
of �1(x) and �2(x) is

max(�1(x), �2(x)) = min
β∈R

�1(x)≤β
�2(x)≤β

β. (3.2)
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Proof. Consider a function � : RNx → R and the auxiliary
variable β ∈ R. Then, for given x ∈ X, it holds that

�(x) = min
β∈R

�(x)≤β

β. (3.3)

For �(x) = max(�1(x), �2(x)), this becomes

max(�1(x), �2(x)) = min
β∈R

max(�1(x),�2(x))≤β

β. (3.4)

The result of �(x) = max(�1(x), �2(x)) is either �1(x) or
�2(x). Hence, we know that either �2(x) ≤ �1(x) ≤ β or
�1(x) ≤ �2(x) ≤ β holds. Replacing max(�1(x), �2(x)) ≤ β by
�1(x) ≤ β and �2(x) ≤ β, therefore leads to a minimization
where the largest value, �1(x) or �2(x), provides the lower
bound for β while the other inequality automatically holds.
Therefore, (3.4) is equivalent to the right-hand side of (3.2).
This completes the proof.

Figure 3.4: Example of epi-
graph formulation of max
operator. Note that the epi-
graph of max(�1(x), �2(x)) is
the set

{(x, β) ∈ X × R |
�1(x) ≥ β, �2(x) ≥ β}

Remark 3.3.3. Lemma 3.3.2 can be extended to find the maxi-
mum over NI ∈ N functions. With �i : RNx → R, i ∈ N[1,NI]

,
this is

max
i∈N[1,NI ]

�i(x). (3.5)

Using an epigraph reformulation with auxiliary variable
β ∈ R, this can be equally stated as

min
β∈R

�i(x)≤β
i∈N[1,NI ]

β. (3.6)

Remark 3.3.4. Note that the epigraph formulation is espe-
cially useful in cases where the maximum of a finite number
of functions is minimized, e.g.,

min
x∈X

max(�1(x), �2(x)). (3.7)

Here, the epigraph formulation (3.3.2) yields

min
x∈X

min
�1(x)≤β
�2(x)≤β

β (3.8)

which is equivalent to
min
x∈X

�1(x)≤β
�2(x)≤β

β. (3.9)
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3.3.2 Big-M reformulation

In Chapter 4, the model of an MG is derived in the form of
linear inequalities that are employed to formulate differ-
ent MPC problems. Unfortunately, the physical behavior of
the MGs includes two nonlinear operators, namely, the min
operator and a multiplication between a real-valued and a
Boolean decision variable. Here, the so-called “Big-M refor-
mulation”, also known as “Big-M method”, can be used to
transform the nonlinear operators into a set of linear inequali-
ties [14, 18, 41, 42, 263, 271, 272].

The following lemma concerns a multiplication of Boolean
and real-valued decision variables. It stems from [18].

Lemma 3.3.5 (Big-M reformulation of multiplication). Con-
sider the relation

y = xδ (3.10)

with bounded variables y ∈ R, x ∈ [xmin, xmax] ⊂ R and
Boolean δ ∈ B. Equation (3.10) can be equally stated as

y =

⎧⎨⎩0, if δ = 0,

x, if δ = 1.
(3.11)

Using m ∈ R with m < xmin and M ∈ R with M > xmax, Note that m and M can be
easily derived offline as illus-
trated, e.g., in Section 4.8.

(3.11) can be transformed into the set of linear inequalities

mδ ≤ y ≤ Mδ, (3.12a)

x − M(1 − δ) ≤ y ≤ x − m(1 − δ). (3.12b)

Proof. For δ = 0, (3.12) becomes

0 ≤ y ≤ 0, (3.13a)

x − M ≤ y ≤ x − m. (3.13b)

This makes (3.13a) into the equality constraint y = 0. Inserting
this into (3.13b) yields

x − M ≤ 0 ≤ x − m, (3.14a)

⇐⇒ m ≤ x ≤ M. (3.14b)

As m and M were chosen such that [xmin, xmax] ⊂ [m, M],
(3.14b) does not imply any restriction on x. Note that for
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δ = 0, x = y contradicts (3.13a) except for y = x = 0 which
also holds for δ = 0.

For δ = 1, (3.12) becomes

m ≤ y ≤ M, (3.15a)

x ≤ y ≤ x. (3.15b)

This makes (3.15b) into the equality constraint y = x. As
y = x and x ∈ [xmin, xmax] ⊂ [m, M], (3.15a) represents
no additional restriction on y. Note that for δ = 1, y = 0
contradicts (3.15b) except for y = x = 0 which also holds for
δ = 1.

In the derivation of the control-oriented MG model in
Chapter 4, the min operator is used in a context where the re-
sult is not necessarily minimized. Therefore, it is not useful to
replace it in a similar fashion as in Section 3.3.1 by relatively
simple reformulations. It is rather required to use additional
decision variables in order to express the min operator by
a set of linear inequalities as in Lemma 3.3.5. Note that the
following lemma closely follows the reformulations in [18].

Lemma 3.3.6 (Big-M reformulation of minimum operator).
Consider the minimum operator

y = min(x1, x2) (3.16)

with real-valued bounded y ∈ R, x1 ∈ [xmin
1 , xmax

1 ] ⊂ R and
x2 ∈ [xmin

2 , xmax
2 ] ⊂ R. This operator can be equally repre-

sented by the set of linear inequalities

x1 − Mδ ≤ y ≤ x1, (3.17a)

x2 + m(1 − δ) ≤ y ≤ x2, (3.17b)

with parameters m < xmin
1 − xmax

2 and M > xmax
1 − xmin

2 as Note that m and M can be
easily derived offline as illus-
trated, e.g., in Section 4.5.

well as the additional Boolean variable δ ∈ B.

Proof. As δ is a Boolean variable, two exclusive cases emerge
from (3.17): δ = 0 and δ = 1.

For δ = 0, (3.17) becomes

x1 ≤ y ≤ x1, (3.18a)

x2 + m ≤ y ≤ x2. (3.18b)
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Inserting y = x1 from (3.18a) into (3.18b) yields

x2 + m ≤ x1 ≤ x2. (3.19)

As the parameter m is chosen such that m < xmin
1 − xmax

2 ,
we know that x2 + m < x2 + xmin

1 − xmax
2 ≤ xmin

1 ≤ x1.
Therefore, the inequality at the left-hand side in (3.19) always
holds. The inequality at the right-hand side, however, only
allows for x1 ≤ x2. The case where x1 > x2 does not lead to
a feasible set of inequalities for δ = 0 as it contradicts (3.19).
As y = min(x1, x2) = x1 for x1 ≤ x2, the minimum value is
provided in this case.

For δ = 1, (3.17) becomes

x1 − M ≤ y ≤ x1, (3.20a)

x2 ≤ y ≤ x2. (3.20b)

Inserting y = x2 from (3.20b) into (3.20a) yields

x1 − M ≤ x2 ≤ x1. (3.21)

As the parameter M is chosen such that M > xmax
1 − xmin

2 ,
we know that x1 − M < x1 − (xmax

1 − xmin
2 ) ≤ xmin

2 ≤ x2.
Therefore, the inequality at the left-hand side in (3.21) always
holds. The inequality at the right-hand side, however, only
allows for x2 ≤ x1. The case where x2 > x1 does not lead to
a feasible set of inequalities for δ = 1 as it contradicts (3.21).
As y = min(x1, x2) = x2 for x2 ≤ x1, the minimum value is
provided in this case.

Note that (3.19) and (3.21) both include the edge case
x1 = x2. As then min(x1, x2) = x1 = x2, this does not cause
any problems.

3.4 Power transmission

As stated in Section 2.3.5, power flow over the transmission
network needs to be considered in operation control of MGs.
Therefore, in what follows different power flow models are
discussed. First, some assumptions are made.

Assumption 3.4.1 (Balanced, symmetric grid at steady state).
In the analysis of power flows, we assume balanced and sym-
metric three-phase grids. Thus, the admittances of all phases
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(a) Equivalent π circuit
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Figure 3.5: Equivalent elec-
trical circuits of transmission
line at steady state.as well as currents and voltages are identical, except for a

phase shift of ±2π/3. Consequently, the three-phase system
can be equivalently represented by its single-phase equivalent
circuit [74, 77, 127].

Assumption 3.4.2 (Dynamics of electric components). The
dynamics of the transmission lines are assumed to have much
smaller time constants than dynamics of the units in the grid.
Therefore, the transmission system is assumed to be at steady
state, i.e., the admittances are assumed to be constant [127].

Remark 3.4.3 (Per-unit notation). The numerical values used
throughout this thesis are in per-unit (pu) [74, 77, 127]. This
allows for a more generic modeling and more general exam-
ples where the actual power ratings of the units play a minor
role. However, this thesis is written with islanded MGs in the
lower MW range in mind. The base quantities of the per-unit
system are defined such that all ideal transformers can be
removed from the model of the transmission network. More
about this common elimination can be found, e.g., in [74].

3.4.1 Passive electrical components used for transmission

In the MGs considered in this work, the different units and
loads are connected by AC transmission lines and transform-
ers. In what follows, simplified models for both are derived.

Transmission lines. The equivalent π circuit of a transmission
line connecting points i ∈ N and l ∈ N is shown in Fig-
ure 3.5(a) which closely follows [5, 74, 77, 127]. It comprises
the two shunt admittances yii ∈ C, yll ∈ C and a series ad-
mittance yil ∈ C. For overhead transmission lines that are
shorter than 80 km, the shunt admittances can be neglected
[74, 77, 127]. This results in the simplified circuit of a trans-
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(a) Equivalent circuit
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Figure 3.6: Equivalent electri-
cal circuits of transformer at
steady state.mission line shown in Figure 3.5(b) that only comprises the

series admittance yil . As MGs are usually composed of units
and loads that are geographically close to each other (see Sec-
tion 2.1), the following assumption can be made.

Assumption 3.4.4 (Simplified transmission lines). In the con-
text of MGs, short transmission lines can be assumed. Thus,
the shunt admittances can be neglected and transmission lines
can be represented solely by their series admittance.

Transformers. The equivalent circuit of a transformer connect-
ing points i ∈ N and l ∈ N is shown in Figure 3.6(a) which
closely follows [74, 77, 127]. It comprises the series admit-
tances y′il ∈ C and y′′il ∈ C as well as the shunt admittance
ye ∈ C. Following Remark 3.4.3, the base voltages of the per-
unit system are chosen such that the ideal transformers can
be eliminated. The current running through admittance ye is
usually small compared to the currents running through the
series admittances and therefore often neglected [74, 77]. This
results in the simplified circuit of a transformer shown in Fig-

ure 3.6(b) that only consists of series admittance yil =
y′il y

′′
il

y′il+y′′il
.

As the excitation current of the transformer is of minor impor-
tance in the operation control of MGs, the following assump-
tion is formulated.

Assumption 3.4.5 (Simplified transformer model). In the
context of operation control of islanded MGs, the shunt ad-
mittance of transformers can be neglected. Thus transformers
can be represented solely by their series admittance.

Using these simplified circuits, we can easily compute the
series admittance between two nodes in the electric network
by combining the admittances of all lines and transformers
connecting them. The resulting admittance can be used to
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determine the power flowing between the nodes as illustrated
in the next section.

3.4.2 AC power flow

Assume a network composed of Nb ∈ N nodes. Following
Assumptions 3.4.4 and 3.4.5, every passive electrical compo-
nent in the network can be expressed by its series admittance.
Consequently the overall series admittance yil between nodes
i ∈ N[1,Nb]

and l ∈ N[1,Nb]
can be easily derived by combining

all series admittances between these nodes. For simplicity the
connection between i and l is referred to as transmission line,
even though it can comprise a finite number of transmission
lines and transformers. Using the admittances of the trans-
mission lines, the AC power flow equations can be formulated
as follows.

−

+

v̂ieıθi

sil
yil sli

−

+

v̂leıθl

Figure 3.7: Power flow
between two nodes of
transmission network.

Consider the complex voltages v̂ieıθi and v̂leıθl with am-
plitudes v̂i ∈ R≥0 and v̂l ∈ R≥0 as well as phase angles
θi ∈ [0, 2π) and θl ∈ [0, 2π). These nodes are connected
by series admittance yil as shown in Figure 3.7. The current
flowing from node i to node l is

cil = (v̂ieıθi − v̂le
ıθl )yil . (3.22)

Using the complex conjugate of this current, the apparent
power flowing into the line at node i is [74]

sil = v̂ieıθi c∗il , (3.23a)

= v̂ieıθi (v̂ie−ıθi − v̂le
−ıθl )y∗il . (3.23b)

With θil = θi − θl and v̂i v̂leıθil = v̂i v̂l(cos(θil) + ı sin(θil)), this
can be equivalently stated as

sil =
(
v̂2

i − v̂i v̂l(cos(θil) + ı sin(θil))
)
y∗il . (3.24)

Separating admittance yil into conductance gil = �(yil) ∈ R≥0

and susceptance bil = �(yil) ∈ R, we can equivalently state
(3.24) as

sil = v̂2
i gil − v̂i v̂l

(
gil cos(θil) + bil sin(θil)

)
+ ı
(− v̂2

i bil − v̂i v̂l
(

gil sin(θil) + bil cos(θil)
))

. (3.25)

Finally, we can decompose the apparent power sil into active
power

pil = �(sil) = v̂i
(
v̂igil − v̂l

(
gil cos(θil) + bil sin(θil)

))
(3.26a)



42 operation control of islanded microgrids

and reactive power

qil = �(sil) = v̂i
(− v̂ibil − v̂l

(
gil sin(θil)− bil cos(θil)

))
.

(3.26b)

Each pair of nodes {i, l} in the electric network is asso-
ciated with an admittance yil = yli that is zero if no direct
connection between the nodes exists and nonzero if a direct
connection exists. Using Kirchhoff’s law, we know that for
each node in the network, the injected active and reactive
power, pg,i and qg,i, equals the sum of power flowing into all
connected transmission lines. Using (3.26), the power flowing
out of the node i is [49, 63, 74, 77, 127, 232]

pg,i = v̂i

Nb

∑
l=1
l �=i

(v̂igil − v̂l (gil cos(θil) + bil sin(θil))) , (3.27a)

qg,i = v̂i

Nb

∑
l=1
l �=i

(−v̂ibil − v̂l (gil sin(θil)− bil cos(θil))) . (3.27b)

With the AC power flow model given by (3.26) and (3.27),
the power of every transmission line and every node in the
grid can be determined. This model is now used to derive the
simplified DC power flow equations for AC grids.

3.4.3 DC power flow

In what follows, the simplified DC power flow approxima- For a general overview over
different power flow models
that can be employed in an
optimization context, the
reader is kindly referred
to [5, 64, 65]. Different
convex optimal power flow
formulations can be also
found in [144–146].

tions for AC grids are derived. Despite the name, the ap-
proximations are used to calculate the power flow of an AC
grid. One big advantage of these approximations is that they
provide a linear relation between the power injected at the
nodes and the power flowing over the lines. This makes them
especially suitable for convex optimization problems.

Assumption 3.4.6 (Constant and equal voltages). The base
quantities of the per-unit system (see Remark 3.4.3) are as-
sumed to be chosen such that the voltage amplitudes at all
nodes i ∈ N[1,Nb]

are v̂i = 1 pu [49, 63, 74, 77, 127, 200].

Assumption 3.4.7 (Small angle differences). The phase angle
differences between the nodes are assumed to be small. Thus,
cos θil ≈ 1 and sin(θil) ≈ θil = θi − θl [49, 63, 74, 77, 127, 200].
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Using Assumptions 3.4.6 and 3.4.7, (3.26) becomes

pil = −bilθil , (3.28a)

qil = −gilθil . (3.28b)

These equations can be further simplified by using the follow-
ing common assumption.

Assumption 3.4.8 (Inductive grid). The connections between
the nodes in the grid are dominantly inductive, i.e., the con-
ductance gil is smaller that the absolute value of the sus-
ceptance |bil |. Therefore, gil can be neglected, i.e., gil = 0
[49, 63, 74, 77, 200]. For MGs that provide power to small
villages or cities, this does not represent a major drawback
as most transmission lines are operated at a medium volt-
age level with units and loads typically connected via trans-
formers. These transformers are almost always dominantly
inductive.3 The same does not hold for the short transmis- 3 Following [109, Figure 30],

the X/R ratio (which is
equivalent to a |b|/g ratio
for admittance y = g + ıb)
is typically above 5, even for
small-scale transformers.

sion lines which can be often found in MGs. However, as the
connections between the units and the loads represent a com-
bination of short lines and inductive transformers, the overall
admittance between the nodes of the grid can be considered
dominantly inductive.

A thorough analysis of the error introduced by the DC
power flow approximations for AC grids, which rely on the
on the assumption of inductive connections between the
nodes, can be found in [200]. Using a power grid with 30
nodes, the authors show that “even for very low X/R ratios”
of X/R = 2, the “5 % error margin is virtually never ex-
ceeded”. Consequently, for geographically close nodes in the
grid that are connected by short lines and transformers, the
overall admittance can be assumed to be dominantly induc-
tive and the DC power flow approximations can be employed.

Remark 3.4.9 (Alternative power flow models). Note that
the controllers deduced in this thesis work with most linear
power flow models such as a linearized AC power flow or a
linearized version of the DistFlow equations [15, 73] for radial
distribution networks (see, e.g., [245]). Using more general
network models can allow to drop Assumption 3.4.8 and
thereby model a wider range of MG topologies. As long as
alternative linearized power flow models can be expressed by
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affine equality and inequality constraints, most4 controllers 4 The minimax MPC ap-
proach in Chapter 8 might
need to be modified in order
to include the maximum and
minimum power flow values
in the constraints.

presented in this thesis can still be employed. However, for
simplicity, in the remainder of this thesis the linearized DC
power flow equations for AC grid were used.

Using Assumption 3.4.8, i.e., gil = 0, the reactive power in
(3.28b) becomes qil = 0. Consequently, the apparent power is
equal to the active power. The power injected at node i can be
determined in a similar fashion from (3.27), i.e.,

pg,i =
Nb

∑
l=1
l �=i

−bilθil . (3.29)

For simplicity we define the admittance used in DC power
flow as yil = −bil . Then (3.28a) and (3.29) become

pil = yilθil , (3.30a)

pg,i =
Nb

∑
l=1
l �=i

yilθil . (3.30b)

Using these equations, we can now form a DC power flow
model for the entire network.

3.4.4 Representation of transmission network as graph

To formulate (3.30) for each node, it is convenient to model
the transmission network as a weighted undirected con-
nected graph. This graph is a triple G = (V, E, ỹ) where
V = N[1,Nb]

is the set of nodes, i.e., the set of buses in the
grid, and E = {ĕ1, . . . , ĕNe} ⊆ [V]2 is the set of edges, i.e.,
the set of transmission lines in the grid, with cardinality
|E| = Ne ∈ N. Here, [V]2 refers to the set of all subsets of
V with two elements. Every edge ĕn = {i, l} ∈ E, n ∈ N[1,Ne],
is associated with the weight yn = yil which corresponds to
the admittance between nodes i ∈ V and l ∈ V. The weight-
ing function ỹ : E → R≥0 provides this admittance for a given
edge, i.e., ỹ(ĕn) = ỹ({i, l}) = yil = yn.

Because of (3.30a) and assumed inductive lines with
yil = yli, it holds that pil = −pli. Hence, it is sufficient to
include either pil or pli in the DC power flow model. To in-
clude the power of each line only once, we deduce a directed
graph from G by choosing an arbitrary direction for each
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edge ĕn ∈ E. The entries of the edge-node incidence matrix
F ∈ RNb×Ne associated with the directed graph are [29, 77]

Fin =

⎧⎪⎪⎨⎪⎪⎩
−1, if node i is the sink of edge ĕn,

1, if node i is the source of edge ĕn, and

0, otherwise.

Using F, the line admittances yn = ỹ(ĕn) and the vector of
phase angles θ = [θ1 · · · θNb ]


, the power of all transmission
lines pe = [pe,1 · · · pe,Ne ]


 is given by

pe = diag([y1 · · · yNe ])F
θ. (3.31a)

The power provided or consumed by all nodes is collected in
pg = [pg,1 · · · pg,Nb ]


. It can be calculated with the weighted
Laplacian L = F diag([y1 · · · yNe ])F
 [89, 92] via

pg = Lθ. (3.31b)

As discussed in [53, 75], the Laplacian is independent of the
orientation of the underlying graph. Therefore, the weighted
Laplacian is also independent of the orientation captured by
F.

Remark 3.4.10. Each node in the transmission network repre-
sents one bus in the electric grid. To each bus, multiple units
or loads can be connected. There can also be buses with no
unit and no load connected. Such buses typically serve to
connect a number of transmission lines with each other.

Remark 3.4.11. By replacing all weights yo by the correspond-
ing line admittances yil , one can see that (3.31b) has the form⎡⎢⎢⎢⎢⎣

pg,1

pg,2
...

pg,Nb

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∑Nb

l=2 y1l . . . −y1Nb

−y21 . . . −y2Nb
...

. . .
...

−yNb1 . . . ∑Nb−1
j=1 yNbl

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

θ1

θ2
...

θNb

⎤⎥⎥⎥⎥⎦ . (3.32)

This makes (3.31b) into an equivalent representation of
(3.30b).

3.5 Summary

In this chapter, basics from different domains were discussed.
This includes an introduction on notation and box plots as
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well as MPC. Also, preliminary results from optimization
theory that allow to formulate the MPC problems in com-
putationally tractable ways were recalled. Finally, AC and
DC power flow models were derived. Using these basics,
the model of an islanded MG as well as different control ap-
proaches are obtained in the next chapters.



4
Microgrid model

In Chapter 2, the MG concept was introduced and central
challenges in islanded operation were posed. Based on these
challenges, the model of an MG that includes the behavior
of the underlying control layers is derived in this chapter.
This model provides the basis for the formulation of various
operation controllers in the subsequent chapters.

The main contribution of this chapter is the derivation of
a generic control-oriented MG model in the form of affine
equality and inequality constraints. This model includes an
arbitrary finite number of storage units, conventional and
renewable generators as well as loads and an arbitrary trans-
mission network. It exhibits the following important features.

1. Opposed to many other approaches [16, 44, 110, 180, 253,
256], a possible limitation of infeed from RES is considered.
This enables the control of MGs where the power provided
by renewable sources can fully serve the load and charge
the storage units. In such setups, a limitation of RES is
important if available renewable power exceeds the load
and the storage units cannot be charged any further.

2. In a similar fashion as in [104, 172, 180], the presented
model includes conventional generators that can be dis-
abled. This allows to consider islanded MGs with high
share of RES, where in presence of sufficient renewable
infeed or stored energy, conventional units are disabled.

3. Grid-forming storage units are considered. These enable an
operation where all conventional generators are disabled.
This mode of operation is important in MGs with high
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renewable share where conventional generators are partly
substituted by a combination of storage and renewable
units. To the knowledge of the author, grid-forming storage
units are only considered in [100, 101] and in the authors’
work [89–91, 93] which provides the basis for this chapter.

4. Motivated by [110, 112, 179, 180, 253, 279], the dynamics
of the storage units are modeled. They include the effects
of uncertain load and renewable generation on the state of
charge of the storage units.

5. In contrast to many other approaches, proportional power
sharing between the grid-forming units is considered. This
allows to model how variations in load and renewable in-
feed affect the power of storage and enabled conventional
units. Hereby, it is possible to ensure constraint satisfac-
tion in presence of uncertainties. To the knowledge of the
author, proportional power sharing is only included in
[16, 154] and in the author’s publications [89–91, 93].

6. Unlike many existing approaches [16, 112, 175, 253, 256,
279], power flow over the transmission lines that connect
the units and loads is explicitly modeled. The transmitted
power is calculated based on the power of the units and
loads via the DC power flow approximations for AC grids
[74, 77, 165, 200]. This allows to explicitly consider the
limits of the transmission lines.

The majority of the model presented in this chapter was in-
troduced in the authors’ work [89] and refined in [90, 91, 93].
In what follows, first a general introduction on the model is
given in Section 4.1. Then, some assumptions are posed in
Section 4.2. Consecutively, the different parts of an MG are in-
troduced, starting with the loads in Section 4.3. Conventional
generators are introduced in Section 4.4, renewable generators
in Section 4.5, and storage units in Section 4.6. A model of
the transmission network is derived in Section 4.7 and power
sharing of grid-forming units is discussed in Section 4.8. Fi-
nally, in Section 4.9, the overall model of an islanded MG is
stated.
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4.1 Introduction

The control-oriented model of an islanded MG includes
Ne ∈ N transmission lines, Nt ∈ N conventional generators,
Ns ∈ N storage units, Nr ∈ N RES and Nd ∈ N loads. Thus,
it is composed of Nu = Nt + Ns + Nr units. At time instant
k ∈ N0, the model is formed using the affine constraints

x(k + 1) = Ax(k) + B̃z(k), with x(0) = x0, (4.1a)

h1 ≤ H1 x(k + 1), (4.1b)

h2 ≤ H2
[
v(k)
 z(k)
 w(k)


]
, (4.1c)

g = G
[
v(k)
 z(k)
 w(k)


]
. (4.1d)

Here, x(k) ∈ RNs represents the state vector with initial value
x0 ∈ RNs . This vector is composed of entries xi(k) that rep-
resent the stored energy of unit i ∈ N[1,Ns]. Furthermore,
v(k) = [u(k)
 δt(k)
]
 is the vector of control inputs, com-
posed of real-valued inputs u(k) ∈ RNu and Boolean inputs
δt(k) ∈ BNt . Moreover, w(k) ∈ RNw, Nw ∈ N is the uncertain
external input and z(k) ∈ RNz , Nz ∈ N a vector of auxil-
iary variables. The matrices of the discrete time dynamics are
A ∈ RNs×Ns and B̃ ∈ RNs×Nz . The matrices H1, H2, G and
the vectors h1, h2, g are all real-valued and of appropriate di-
mensions. These matrices and vectors are used to formulate
state inequality constraints (4.1b) as well as power-related
inequality constraints (4.1c) and equality constraints (4.1d).

In detail, the real-valued control inputs are the units’ power
setpoints u(k) = [ut(k)
 us(k)
 ur(k)
]
. Here, ut(k) ∈ R

Nt
≥0 is

associated with the conventional generators, us(k) ∈ RNs with
the storage units and ur(k) ∈ R

Nr≥0 with the renewable genera-
tors. For storage and conventional generators, us(k) and ut(k)
represent desired power values. For RES, ur(k) represents
an upper limit on the weather-dependent renewable infeed.
Thus, ur(k) is the maximum allowed infeed. Additionally,
each conventional generator i ∈ N[1,Nt] has a Boolean control
input δt,i ∈ B. This input indicates whether generator i is
enabled (δt,i = 1) or disabled (δt,i = 0). The Boolean variables
of all conventional generators are collected in the vector δt(k).

The uncertain external input is w(k) = [wr(k)
 wd(k)
]
.
Here, wr(k) ∈ R

Nr≥0 is the available infeed under weather
conditions of all renewable units and wd(k) ∈ RNd the load.
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Due to time-varying load and renewable generation and a The reader is kindly referred
to Remark 4.9.2 as well as
Examples 8.2.1 and 9.2.2 for
detailed discussions on the
difference between power
and power setpoint.

physically dictated local balance of generation, storage and
load, the power of unit i ∈ N[1,Nu], pi(k) ∈ R, can differ
from the power setpoint ui(k). Therefore, the power of the
units p(k) = [pt(k)
 ps(k)
 pr(k)
]
, which is part of the
auxiliary vector z(k), needs to be explicitly modeled. The
vector p(k) includes the power of the conventional generators,
pt(k) ∈ R

Nt
≥0, storage units, ps(k) ∈ RNs and renewable

generators, pr(k) ∈ R
Nr≥0. Additionally, the power of the loads,

pd(k) ∈ RNd , and the power transmitted over Ne transmission
lines, pe(k) ∈ RNe , are modeled. However, these variables do
not need to be included in z(k) as discussed Section 4.7.

Remark 4.1.1 (Running example). Throughout this work,
the running example Figure 4.1 is used to illustrate basic
principles in the operation of islanded MGs. It is based on the
MG used in the case studies of [89–91, 93] and comprises a
wind turbine that represents the class of renewable units, a
storage unit, a conventional generator and a load. The units
and the load are connected by a network of four transmission
lines. Thus, all basic components discussed in this chapter are
included. For an easy understanding, the running example
is kept very simple and only represents a tiny fraction of
potential islanded MG topologies.

pr,1

x1

ps,1

pt,1

ut,1, δt,1

us,1ur,1

wr,1

wd,1

pd,1

3

pe,4

4

pe,3

2

pe,2

1

pe,1

Figure 4.1: MG used as a
running example. The MG
includes the basic compo-
nents introduced in this
chapter, i.e., a conventional,
a storage and a renewable
unit as well as transmission
lines and a load. Motivated
by [93].

4.2 Assumptions

Assumption 4.2.1 (Lower control layers). It is assumed that
the control layers below operation management, i.e., primary
and secondary control (see Section 2.2), are designed such
that the voltages and the frequencies remain in a desired safe
operating area.

Assumption 4.2.2 (Steady state model of lower control layers).
The lower control layers are assumed to be designed such
that the units can run for several minutes in a stable way
without the need to update the power setpoints provided
by the operation control layer. As the lower control layers
(see Section 2.2) are acting on a much faster timescale, the
steady state equations for all units can be considered. Hence,
the only remaining dynamics are those associated with the
energy of the storage units. Considering storage units that can
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require hours for a full charging cycle, running the operation
control on a timescale of several minutes is sufficient.

Assumption 4.2.3 (Loads). In the context of this thesis it is
assumed that all loads can be modeled as constant power
loads. Moreover, the loads are assumed to be uncontrollable.

Assumption 4.2.4 (Grid-forming units). As discussed in
Sections 2.3.2 and 2.3.3, all storage units and conventional
generators are assumed to be operated in grid-forming mode.

Assumption 4.2.5 (Power sharing of grid-forming units). The
lower control layers provide a predefined proportional ac-
tive power sharing among all enabled grid-forming units (see
Section 2.3.4). Thus, the enabled grid-forming units share
fluctuations of loads and RES in a known proportional man-
ner. This behavior can be achieved using, for example, droop
control [226, 227, 229, 232, 243] on the primary control layer.

Assumption 4.2.6 (Conventional generators). The time that
conventional generators require to start or shut down is as-
sumed to be small compared to the sampling time of opera-
tion control. Therefore, it is assumed that they are immedi-
ately able to provide power to the MG after being enabled.
Considering units with a rated power in the range of hun-
dreds of kW to some MW that require less than 1 min for
startup or shutdown, this does not represent a major limita-
tion assuming sampling times in the range of minutes (see
Assumption 4.2.2). Moreover, the dynamics of the conven-
tional generators are assumed to be fast such that climb rates,
etc., do not need to be modeled.

Assumption 4.2.7 (Storage units). It is assumed that the state,
i.e., the energy of all storage units, is available to the opera-
tion control layer. Moreover, the effects of storage losses, e.g.,
self-discharge or conversion losses, are assumed to be negli-
gible compared to the uncertainty introduced by renewable
generators and loads.

Assumption 4.2.8 (Transmission lines). For the combination
of transmission lines and transformers considered in the grid
model, the line resistance and the reactive power flow are
assumed to be negligible.1 Furthermore, the phase angle dif-

1 In presence of line re-
sistances that cannot be
neglected, alternative power
flow models, such as the
linearized DistFlow equa-
tions (see, e.g., [245]) could
be used. Please refer to
Remark 3.4.9 for a more
detailed discussion on this
topic.ferences in the MG are assumed to be small and the voltage
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amplitudes constant. Thus, the simplified DC power flow
approximations [200] for AC grids (see Section 3.4.3) can be
used. For the MGs considered in this work, the uncertainty
introduced by RES and loads is assumed to be much larger
than the error associated with these simplifications.

4.3 Load

wd,iLoad

pd,i
All uncontrollable loads, e.g., households, industrial con-
sumers and uncontrolled RES, are collected in the vector
wd(k) ∈ RNd and modeled as an uncertain external input.
Note that wd,i(k) ∈ R, i ∈ N[1,Nd]

can also be a combination of
both, load and uncontrolled renewable infeed, e.g., in the case
of houses with installed rooftop PV units. However, for read-
ability, wd,i(k) ∈ R is simply referred to as load, even though
it may comprise many things. The load wd(k) is defined neg-
ative for consumption and positive for generation. To comply
with the power definition of the units in Sections 4.4 to 4.6,
the load power provided to the grid is

pd(k) = wd(k). (4.2)

Remark 4.3.1 (Controllable loads). In this work, controllable
loads are not considered (see Assumption 4.2.3). Compared to
MGs with controllable loads, those with uncontrollable loads
are often harder to operate as the load demand always has
to be met. It is still worth noting that controllable loads can
increase the degrees of freedom and therefore help to achieve
certain goals in the operation of MGs. If desired to include
controllable loads in the framework presented in this thesis,
they could be modeled using a real-valued control input
ud(k) ∈ RNd that reduce the load, i.e.,

pd(k) = wd(k) + ud(k). (4.3)

To only allow a certain reduction, the control input could be
bounded by pmin

d ∈ RNd and pmax
d ∈ RNd , i.e.,

pmin
d ≤ ud(k) ≤ pmin

d . (4.4)

Alternatively, some loads could be considered switchable.
Such loads could be modeled using a Boolean control input
δd(k) ∈ BNd , i.e.,

pd(k) = diag(δd(k))wd(k). (4.5)
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Naturally, (4.4) and (4.5) could also be combined into

pd(k) = diag(δd(k))wd(k) + ud(k). (4.6)

However, many operators of islanded MGs wish to run
their grid without the need to reduce the security of supply
by making some loads controllable. Therefore, controllable
loads were not considered in this work.

4.4 Conventional generators

pt,i

ut,i
δt

Conventional
generator

As discussed in Section 2.3.3, it is desirable to switch conven-
tional generators off if they are temporarily dispensable in
the operation of an MG. Therefore, each conventional gen-
erator i ∈ N[1,Nt] is equipped with a Boolean input δt,i(k).
If δt,i(k) = 0, then unit i is disabled and power as well
as power setpoint need to be zero. If unit i is enabled and
δt,i(k) = 1, then power and setpoint are between pmin

t,i ∈ R≥0

and pmax
t,i ∈ R≥0. This can be modeled for all conventional

generators by

diag(pmin
t )δt(k) ≤ pt(k) ≤ diag(pmax

t )δt(k), (4.7a)

diag(pmin
t )δt(k) ≤ ut(k) ≤ diag(pmax

t )δt(k), (4.7b)

with pmin
t ∈ R

Nt
≥0 and pmax

t ∈ R
Nt
≥0.

Remark 4.4.1. For conventional generator i ∈ N[1,Nt], (4.7)
becomes

pmin
t,i δt,i ≤ pt,i ≤ pmax

t,i δt,i, (4.8a)

pmin
t,i δt,i ≤ ut,i ≤ pmax

t,i δt,i. (4.8b)

Thus, if unit i is disabled, then δt,i = 0 and

0 ≤ pt,i ≤ 0, (4.9a)

0 ≤ ut,i ≤ 0, (4.9b)

i.e., power and power setpoint are forced to zero. If the unit is
enabled and δt,i = 1, then (4.8) becomes

pmin
t,i ≤ pt,i ≤ pmax

t,i , (4.10a)

pmin
t,i ≤ ut,i ≤ pmax

t,i . (4.10b)

i.e., power and setpoint are within the bounds of the unit.
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4.5 Renewable generators

pr,i
ur,i

wr,i

Wind
turbine

pr,i
ur,i

wr,i

PV power
plant

Assumption 4.5.1 (Always enabled renewable units). The
renewable units are assumed to be always enabled. As it is
desired to use as much power as possible from RES and as
their run time cost is very low, this assumption usually does
not significantly increase the operating costs. If required, this
assumption can be easily abandoned by including a Boolean
input and modifying (4.11) to resemble the power and set-
point limits of the conventional generators in (4.7).

The power and the setpoint are limited by the rated power
of the renewable units. This limitation can be included by

pmin
r ≤ pr(k) ≤ pmax

r , (4.11a)

pmin
r ≤ ur(k) ≤ pmax

r , (4.11b)

with pmin
r ∈ R

Nr≥0 and pmax
r ∈ R

Nr≥0.
As discussed in Section 2.3.1, a high share of RES is con-

sidered. Therefore, it can be required to limit the renewable
infeed in the operation of the grid. This limitation can be
performed via the power setpoint ur,i(k) ∈ R≥0 of each re-
newable unit i ∈ N[1,Nr], which represents an upper limit
on the power infeed pr,i(k) ∈ R≥0. With the available infeed
under weather conditions wr,i(k) ∈ R≥0, the limitation can be
modeled by

pr(k) = min(ur(k), wr(k)). (4.12)

Unfortunately, it is not sufficient to represent (4.12) solely by
pr(k) ≤ ur(k) and pr(k) ≤ wr(k) as this allows for values
of pr(k) that are smaller than ur(k) and wr(k) but not equal
to either one of them. Consequently, the element-wise min
operator needs to be employed.

Following Lemma 3.3.6 and [14, 18, 42, 263], the min op-
erator in (4.12) can be transformed into a set of affine in-
equalities. Therefore, a vector of auxiliary free variables
δr(k) ∈ BNr is introduced. Moreover, the constants mr ∈ RNr

and Mr ∈ RNr with mr < pmin
r − pmax

r and Mr > pmax
r − pmin

r
are chosen accordingly.2 As they only depend on the known

2 For the derivation of
mr and Mr, we assume,
without loss of generality,
that the available power
of the renewable units
is bounded by the units’
operational limits, i.e., that
pmin

r ≤ wr(k) ≤ pmax
r .parameters pmin

r and pmax
r , mr and Mr can be derived offline.
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Finally, (4.12) can be reformulated as (see Lemma 3.3.6)

ur(k)− diag(Mr)δr(k) ≤ pr(k) ≤ ur(k), (4.13a)

wr(k) + diag(mr)(1Nr − δr(k)) ≤ pr(k) ≤ wr(k). (4.13b)

0 5 10
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Time k
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w

er
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u
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Power setpoint ur,i

Avail. power wr,i

Actual power pr,i

Figure 4.2: Limitation of
renewable infeed using the
power setpoint. The power
limits in the example are
pmin

r = 0 and pmax
r = 2.

Example 4.5.2. For renewable unit i ∈ N[1,Nr], a possible
limitation is illustrated in Figure 4.2. In the example, the
power setpoint ur,i(k) is constant over the entire time horizon.
For k ≤ 5, the available renewable infeed under weather
conditions wr,i(k) lies above ur,i(k). Therefore, the provided
renewable infeed is pr,i(k) = ur,i(k). For k > 5, wr,i(k) is below
the power setpoint ur,i(k). Therefore, power from the RES is
not limited by ur,i(k) and pr,i(k) = wr,i(k).

Remark 4.5.3 (Uncontrolled RES). The modeling framework
presented in this thesis allows to consider uncontrolled RES,
e.g., PV rooftop installations, small hydroelectric power sta-
tions or wind turbines without an operation control input. As
posed in Section 4.3, these units can be simply modeled as
negative loads. The separation into loads and RES performed
in this thesis aims to clarify which uncertain inputs can be
limited and which cannot. However, it is only performed in
favor of a clear terminology and not supposed to restrict the
modeling to certain types of MGs.

4.6 Storage units

xi

ps,i
us,i

Storage
unit

Motivated by Section 2.3.2, grid-forming storage units [231]
are considered. Their model is discussed in what follows.

4.6.1 Power

Assumption 4.6.1 (Always enabled storage units). It is as-
sumed that the storage units are always enabled which is
useful for two reasons. (i) A proper selection of droop gains
for conventional and storage units can lead to an operation
where the storage units cover most of the fluctuations which
can help to reduce fuel consumption. (ii) There is always a
chance that the renewable infeed is higher than expected such
that storage units can be charged. If desired, the assumption
of always enabled storage units can be easily abandoned by
including a Boolean input and modifying the constraints to
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resemble the power and setpoint limits of the conventional
units in (4.7).

The power and the power setpoints of the storage units are
limited by the nominal power of the units. This is captured by

pmin
s ≤ ps(k) ≤ pmin

s , (4.14a)

pmin
s ≤ us(k) ≤ pmin

s , (4.14b)

with pmin
s ∈ R

Ns
≤0 and pmax

s ∈ R
Ns
≥0.

4.6.2 Energy

Motivated by [43, 103], the dynamics of the storage units are
modeled by the discrete time state model

x(k + 1) = Ax(k) + Bps(k), with x(0) = x0 (4.15a)

and A = INs , B = −Ts INs . Here, Ts ∈ R>0 is the discrete Note that storage unit
i ∈ N[1,Ns ] is

• charged if ps,i < 0 and

• discharged if ps,i > 0.

sampling time and x0 ∈ R
Ns
≥0 the initial state. Because of a

finite storage capacity, x(k) is bounded by xmin ∈ R
Ns
≥0 and

xmax ∈ R
Ns
≥0, i.e.,

xmin ≤ x(k) ≤ xmax. (4.15b)

Remark 4.6.2 (Storage efficiency). Self-discharge of batteries
can be modeled in (4.15a) by choosing the diagonal entries of
A smaller than 1. Alternatively, a constant xsd ∈ R

Ns
≥0 can be

employed to model a constant discharge via no-load losses.
This would result in the modified dynamics

x(k + 1) = Ax(k) + Bps(k)− xsd. (4.16)

Remark 4.6.3 (Complexity of storage model). It is possible to
use more complex storage models, e.g., based on the mixed
integer formulation in [180]. In our modeling framework, the
storage model from [180] would take the form

x(k + 1) = Ax(k) + Bps(k)− xsd, (4.17a)

where xsd ∈ R
Ns
≥0 represents self-discharge, e.g., via no-load

losses. Moreover, B = diag([b1 · · · bNs ]) ∈ R
Ns×Ns
≤0 with

bi =

⎧⎨⎩−Tsηc
i , if ps,i < 0 (charge),

−Ts/ηd
i , if ps,i ≥ 0 (discharge),

(4.17b)
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for all i ∈ N[1,Ns] and ηc
i , ηd

i ∈ (0, 1]. As indicated in [180],
(4.17) can be reformulated into a set of affine inequalities
using additional real-valued and Boolean decision variables.

The simple storage model (4.15a) considered in this the-
sis can be derived from (4.17) by setting ηc

i = ηd
i = 1 and

xsd = 0Ns . Compared to the model from [180], it does not
require additional decision variables and therefore helps to
keep the computational complexity of potential optimization
problems manageable.

Remark 4.6.4 (Thermal storage). It is possible to model
Nh ∈ N storage heaters using a modified version of (4.15a).
This, however, requires to limit the electric power ps(k) to
negative values in order to only allow for electric charging of
thermal storage units, i.e.,

pmin
s ≤ ps(k) ≤ 0. (4.18a)

with pmin
s ∈ R

Nh≤0. Adding a term to model the uncertain heat

demand, wh(k) ∈ R
Nh≥0, the dynamics take the form

xh(k + 1) = Ahxh(k) + Bs ps(k) + Bhwh(k), (4.18b)

where Ah = diag([a1 · · · aNh ]) ∈ [0, 1]Nh×Nh models self-
discharge, Bs = diag([bs,1 · · · bs,Nh ]) ∈ R

Nh×Nh≤0 the electric

charging efficiency and Bh = diag([bh,1 · · · bh,Nh
]) ∈ R

Nh×Nh≤0
the heat discharge efficiency. Naturally, the storage capacity
is finite and the stored thermal energy limited by xmin

h ∈ R
Ns
≥0

and xmax
h ∈ R

Nh≥0, i.e.,

xmin
h ≤ xh(k) ≤ xmax

h . (4.18c)

4.7 Transmission network

Assumption 4.7.1 (Connectedness of network graph). It is
assumed that the graph G = (V, E, ỹ) that represents the
transmission network is connected. In the context of this
work, this means that there exists an electric path between
any two buses in the network.

As stated in Section 2.3.5, it is important to model power
flow over the electric grid to keep the transmitted power
within given limits. In this work, this is done by means of the
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DC power flow approximations (see Section 3.4.3). To use the
least number of decision variables, (3.31) is reformulated to
determine the power flowing over the lines, pe(k) ∈ RNe , di-
rectly from the power of the buses3, pg(k) ∈ N[1,Ng], without 3 Recall from Remark 3.4.10

that each bus in the network,
i.e., each node of the graph
G, can have multiple units or
loads connected to it.

introducing additional decision variables.
Recall from Section 3.4.4 that

pe(k) = diag([y1 · · · yNe ])F
θ(k), (4.19a)

pg(k) = Lθ(k), (4.19b)

with L = F diag([y1 · · · yNe ])F
. As a connected electric
network graph G is assumed, the Laplacian L is symmetric
and has rank Ng − 1 [75, 92]. To calculate the line power
pe(k) from the power injected into the network pg(k), the
transformation

[
θ̃(k)

θNg(k)

]
=

⎡⎢⎢⎢⎢⎣
θ1(k)− θNg(k)

...
θNg−1(k)− θNg(k)

θNg(k)

⎤⎥⎥⎥⎥⎦ =

[
INg−1 −1Ng−1

0

Ng−1 1

]
︸ ︷︷ ︸

T

θ(k)

(4.20)
is employed. Using p̃g(k) = [pg,1(k) · · · pg,Ng−1(k)]
 and
combining (4.19b) and (4.20) yields[

p̃g(k)
pg,Ng(k)

]
= LT−1

[
θ̃(k)

θNg(k)

]
(4.21a)

=

[
L̃ 0Ng−1

b
 0

] [
θ̃(k)

θNg(k)

]
(4.21b)

where L̃ ∈ R(Ng−1)×(Ng−1) is the upper left block of L and b


contains the first Ng − 1 entries of the last row of L, i.e.,

L =

[
L̃ ∗
b
 ∗

]
.

Using T̃ = [INg−1 0Ng−1], L̃ = T̃LT̃
 and b
 = [0

Ng−1 1]LT̃


can be deduced. As L̃ is invertible [227], the phase angle
differences θ̃(k) can determined via

θ̃(k) = L̃−1 p̃g(k). (4.22)

Moreover, using (4.20) the phase angles can be reconstructed
from the injected power at the nodes p̃g(k) and the phase
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angle θNg(k) as

θ(k) = T−1

[
θ̃(k)

θNg(k)

]
(4.23a)

= T−1

[
L̃−1 p̃g(k)

θNg(k)

]
. (4.23b)

Inserting this into (4.19a) yields

pe(k) = diag([y1 · · · yNe ])F
T−1

[
L̃−1 p̃g(k)

θNg(k)

]
. (4.24a)

From (4.21) also originates the equation

pg,Ng(k) = b
 θ̃(k).

which with (4.22) becomes

pg,Ng(k) = b
L̃−1 p̃g(k). (4.24b)

Remark 4.7.2. Note that b
L̃−1 = −1

Ng−1 holds.4 Therefore, 4 L and L̃ are symmetric.

Moreover, it holds that
L1Ng = 0Ng [75]. Therefore,

0Ng = L1Ng ,

= L
1Ng ,

=

[L̃
 b
∗ ∗

]
1Ng ,

=

[
L̃
1(Ng−1) + b

∗

]
.

Hence, b
L̃−1 = −1

(Ng−1).

An alternative derivation of
this relation can be found in
[92, Section III.B].

(4.24b) represents the power equilibrium of all nodes, i.e.,

1

Ng

pg(k) = 0.

Due to the structure of F
 and T−1, the choice of θNg(k)
does not affect the transmitted power in (4.24a). Therefore,
it can be arbitrary chosen as θNg(k) = 0 such that (4.24a)
becomes

pe(k) = diag([y1 · · · yNe ])F
T−1

[
L̃−1 p̃g(k)

0

]
, (4.25a)

= diag([y1 · · · yNe ])F
T−1

[
L̃−1T̃pg(k)

0

]
, (4.25b)

= diag([y1 · · · yNe ])F
T−1T̃
L̃−1T̃pg(k). (4.25c)

Thus, with F̃ = diag([y1 · · · yNe ])F
T−1T̃
L̃−1T̃, (4.24a)
becomes

pe(k) = F̃pg(k). (4.26)

To connect the units and loads to the different buses in
the network, the matrix U ∈ BNg×(Nu+Nd) is introduced.
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Note that the number of nodes Ng, i.e., the number of buses
in the network, is not necessarily identical to the number of
units and loads Nu + Nd. Therefore, U is not always a square

matrix. Using p̃(k) =
[
pt(k)
 ps(k)
 pr(k)
 pd(k)


]
, it can be
defined element-wise for i ∈ N[1,Ng] and j ∈ N[1,Nu+Nd]

as

Uij =

⎧⎪⎨⎪⎩
1,

if the unit or load associated with entry p̃j is
connected to bus i,

0, otherwise.

Thus, the power that flows into the grid at every bus is

pg(k) = U
[
pt(k)
 ps(k)
 pr(k)
 pd(k)


]
.

Finally, using F̃ and U, the power of the transmission lines
can be determined from the power of the units and loads as

pe(k) = F̃U
[
pt(k)
 ps(k)
 pr(k)
 pd(k)


]
,

⇐⇒ pe(k) = F̃U
[
pt(k)
 ps(k)
 pr(k)
 wd(k)


]
. (4.27)

With (4.27), the limits on the transmission lines can be
finally formulated. The power flow over the lines is limited by
pmin

e ∈ RNe and pmax
e ∈ RNe . Using (4.27), the line limits can

be expressed by

pmin
e ≤ F̃U

[
pt(k)
 ps(k)
 pr(k)
 wd(k)


]
 ≤ pmax
e .

(4.28a)

Furthermore, (4.24b) which, as stated in Remark 4.7.2, is
equivalent to 1


Ng
pg(k) = 0 must hold. As every unit is

connected to exactly one bus, each column of U contains
precisely one 1-entry and Ng − 1 entries that are 0. Therefore,

1

Ng

U = 1

(Nu+Nd)

and 1

Ng

pg(k) = 0 is equivalent to

0 = 1

(Nu+Nd)

[
pt(k)
 ps(k)
 pr(k)
 wd(k)


]
. (4.28b)

Example 4.7.3. The transmission network from the running
example is shown in Figure 4.3. For this topology, the edges
are collected in E = {{1, 4}, {2, 3}, {2, 4}, {3, 4}}, where
{1, 4} = ĕ1, {2, 3} = ĕ2, {2, 4} = ĕ3 and {3, 4} = ĕ4. All
nodes are elements of I = {1, 2, 3, 4}. Hence, the edge-node
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incidence matrix is

F =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 1 0
0 −1 0 1
−1 0 −1 −1

⎤⎥⎥⎥⎦ . (4.29)

θ4

θ1θ2

θ3

pe,1pe,3

pe,4

pe,2

pg,4

pg,1pg,2

pg,3

Figure 4.3: Transmission
network of running example.

With the line susceptances y1, . . . , y4, the power flowing
over the transmission lines can be calculated via (4.19a) as⎡⎢⎢⎢⎣

pe,1(k)
pe,2(k)
pe,3(k)
pe,4(k)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y1 0 0 −y1

0 y2 −y2 0
0 y3 0 −y3

0 0 y4 −y4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

θ1(k)
θ2(k)
θ3(k)
θ4(k)

⎤⎥⎥⎥⎦ . (4.30)

Bus power and phase angles are linked via (4.19b), i.e.,⎡⎢⎢⎢⎣
pg,1(k)
pg,2(k)
pg,3(k)
pg,4(k)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
y1 0 0 −y1

0 y2 + y3 −y2 −y3

0 −y2 y2 + y4 −y4

−y1 −y3 −y4 y1 + y3 + y4

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

L

⎡⎢⎢⎢⎣
θ1(k)
θ2(k)
θ3(k)
θ4(k)

⎤⎥⎥⎥⎦ .

(4.31)

Using T̃ = [I3 03] and T =

[
I3 −13

0

3 1

]
results in

L̃ =

⎡⎢⎣y1 0 0
0 y2 + y3 −y2

0 −y2 y2 + y4

⎤⎥⎦ .

Consequently,

F̃ = diag([y1 · · · y4])F
T−1T̃
L̃−1T̃

=
1
y̆2

⎡⎢⎢⎢⎣
y̆2 0 0 0
0 y2y4 −y2y3 0
0 y3 (y2 + y4) y2y3 0
0 y2y4 y4 (y2 + y3) 0

⎤⎥⎥⎥⎦ (4.32)

with y̆2 = y2y3 + y2y4 + y3y4. Assuming the same impedance
for all transmission lines, i.e., y1 = y2 = y3 = y4, yields

F̃ =

⎡⎢⎢⎢⎣
1 0 0 0
0 1/3 −1/3 0
0 2/3 1/3 0
0 1/3 2/3 0

⎤⎥⎥⎥⎦ . (4.33)
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The matrix that connects the power of the units and loads
to the power of the buses for the example in Figure 4.1 is

U =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ . (4.34)

Note that only in a limited number of cases U is a diagonal
matrix. For more complex networks, e.g., the Cigre Bench-
mark model in Figure 2.1 or the extended MG in Figure 12.11,
it has a less trivial structure.

4.8 Power sharing of grid-forming units

In islanded operation, an equilibrium of generation, consump-
tion and storage power has to be ensured at all times in pres-
ence of uncertain load and renewable infeed (see Section 2.3).
Therefore, the lower control layers of MGs are often designed
such that the grid-forming units change their power depend-
ing on the uncertain load and renewable infeed. As discussed
in Assumption 4.2.5, we consider proportional active power
sharing between the grid-forming conventional generators
and storage units [123, 226, 227, 232, 243]. This leads to an
operation where all grid-forming units share the variations of
uncertain loads and RES in proportional manner.

Proportional active power sharing between the enabled
units i ∈ N[1,Nt+Ns] and j ∈ N[1,Nt+Ns], i �= j with χi ∈ R>0

and χj ∈ R>0 can be described by5 5 The parameter χi can be
chosen, for example, based
on the nominal power of
units. Its choice is, how-
ever, part of the low layer
control design. Therefore,
we assume that it cannot
be modified by operation
control. More information
on the choice of droop gains
which is closely related
to the choice of χi can be
found, for example, in [16].

pi(k)− ui(k)
χi

=
pj(k)− uj(k)

χj
. (4.35)

Disabled conventional generators with δt,i(k) = ut,i(k) = 0
and pt,i(k) = 0 cannot participate in power sharing. To model
this relation, the auxiliary variable μ(k) ∈ R is used. With
μ(k), power sharing for the storage units can be modeled by

ps,i(k)− us,i(k)
χs,i

= μ(k) (4.36a)
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for all i ∈ N[1,Ns] with χs,i ∈ R>0. Power sharing of all
conventional generators can be equally modeled by

pt,i(k)− ut,i(k)
χt,i

=

⎧⎨⎩μ(k), if δt,i(k) = 1,

0, if δt,i(k) = 0,

⇐⇒ pt,i(k)− ut,i(k)
χt,i

= μ(k)δt,i(k). (4.36b)

for all i ∈ N[1,Nt] with χt,i ∈ R>0. In vector notation, (4.36) can
be equally expressed by

Ks(ps(k)− us(k)) = μ(k)1Ns and (4.37a)

Kt(pt(k)− ut(k)) = μ(k)δt(k), (4.37b)

with Kt = diag ( 1
χt,1

, . . . , 1
χt,Nt

) and Ks = diag( 1
χs,1

, . . . , 1
χs,Ns

).

Unfortunately, the multiplication μ(k)δt(k) is nonlinear.
Therefore, (4.37b) cannot be directly used in formulations
of MIQPs or MIQCPs which can be solved by off-the-shelf
software. Luckily, we can equivalently express (4.37b) by
a set of affine constraints as indicated in [14, 18, 42, 263]
and described in Lemma 3.3.5. For this reformulation, the
constant parameters mt ∈ R≤0 and Mt ∈ R≥0 are intro-
duced. These must be chosen such that mt is less than the
minimum value that μ(k) can take and Mt is greater than
the maximum value that μ(k) can take. As μ(k) is a func-
tion of power and setpoints, the maximum and minimum
values can be derived by combining the limits of power and
power setpoints. For all storage units, the greatest value that
Ks(ps(k)− us(k)) = μ(k)1Ns can take is

μmax
s = max

(
Ks(pmax

s − pmin
s )

)
. (4.38a)

The smallest value of μ(k) caused by the storage units is

μmin
s = min

(
Ks(pmin

s − pmax
s )

)
. (4.38b)

For the conventional generators, the limits can be determined
in a similar manner as

μmax
t = max

(
Kt(pmax

t − pmin
t )

)
, (4.38c)

μmin
t = min

(
Kt(pmin

t − pmax
t )

)
. (4.38d)
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Figure 4.4: Power sharing
with disabled conventional
generator.Combining these values, we know that μ(k) is always between

mt and Mt, given by

Mt > max
(
μmax

s , μmax
t
)
, (4.38e)

mt < min
(
μmin

s , μmin
t
)
. (4.38f)

Using mt and Mt, (4.37b) can be reformulated as6 6 A detailed discussion of
this reformulation can be
found in Lemma 3.3.5.Kt(pt(k)− ut(k)) ≤ Mtδt(k), (4.39a)

Kt(pt(k)− ut(k)) ≥ mtδt(k), (4.39b)

Kt(pt(k)− ut(k)) ≤ 1Nt μ(k)− mt(1Nt − δt(k)), (4.39c)

Kt(pt(k)− ut(k)) ≥ 1Nt μ(k)− Mt(1Nt − δt(k)). (4.39d)

Example 4.8.1 (Power sharing with disabled conventional
generator). Consider the running example from Figure 4.1. If
the conventional generator is disabled, i.e., pt(k) = 0, then the
power balance equation (4.28b) becomes

ps(k) + pr(k) + wd(k) = 0. (4.40a)

Using (4.12), the power provided by the storage unit is

ps(k) = −min(ur(k), wr(k))− wd(k), (4.40b)

i.e., the storage unit covers all fluctuations of uncertain re-
newable infeed and load. This can be clearly observed in
Figure 4.4, where the excess power of the RES that is not con-
sumed by the loads is used to charge the storage unit. Note
that in this operation mode, the storage power only depends
on renewable infeed pr(k) = min(ur(k), wr(k)) and load
pd(k) = wd(k), i.e., it is independent of the setpoint us(k).

Example 4.8.2 (Power sharing with enabled conventional
generator). Consider the running example from Figure 4.1.
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Figure 4.5: Power sharing
with enabled conventional
generator and power sharing
factors χs = χt = 1.

If conventional generator and storage unit are enabled, then
the power of the units becomes harder to determine than in
the previous example as both units share the variations of
renewable infeed and load. In this example, (4.35), yields

ps(k)− us(k)
χs

=
pt(k)− ut(k)

χt
(4.41a)

⇐⇒ pt(k) =
χt

χs

(
ps(k)− us(k)

)
+ ut(k). (4.41b)

Combining this equation with the power balance (4.28b), i.e.,
pt(k) + ps(k) + pr(k) + wd(k) = 0, results in

χt

χs

(
ps(k)− us(k)

)
+ ut(k) + ps(k) + pr(k) + wd(k) = 0. (4.42)

Thus, the power provided or consumed by the storage unit is

ps(k) =
χtus(k)− χsut(k)

χs + χt
− χs

χs + χt

(
pr(k) + wd(k)

)
, (4.43a)

=
χtus(k)− χsut(k)

χs + χt

− χs

χs + χt

(
min(ur(k), wr(k)) + wd(k)

)
. (4.43b)

One can see that the storage power in (4.43b) is composed
of two parts. The first part depends on the power setpoints
us(k) and ut(k).7 The second part changes with wr(k) and 7 Note that the storage

power now depends on the
setpoints of the storage and
the conventional unit.

wd(k). Compared to (4.40b), the effects of the uncertain input,
wr(k) and wd(k), on the storage power ps(k) decreased by a
factor of 1 − χs

χs+χt
= χt

χs+χt
. The reason for this is that the fluc-

tuations caused by RES and load are now distributed among
both grid-forming units. This is also notable when comparing
the storage power in Figures 4.4 and 4.5. Here, it can be seen
that in Figure 4.4 the deviation of the actual storage power
from the setpoint is much higher than in Figure 4.5.
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In conclusion, operating multiple grid-forming units in
parallel for the same uncertain input allows to choose power
setpoints that lie closer to the power limits because less over-
head for fluctuations needs to be reserved. With an increasing
number of grid-forming units, the fluctuations that each unit
covers decrease and less conservative power setpoints can be
selected.

Remark 4.8.3 (Constant power conventional or storage units).
There are setups, where it is desired to operate conventional
generators or storage units as constant power sources. In such
an operation, their power equals their power setpoint, i.e.,
pt,i = ut,i, i ∈ N[1,Nt] or ps,i = us,i, i ∈ N[1,Ns]. In our frame-
work this case can be approximately included by choosing
sufficiently small values χi for the corresponding units, such
that they participate very little in power sharing. If this so-
lution is found to be insufficient, the presented MG model
could be easily extended by excluding the corresponding
unit from the power sharing equations and adding the hard
constraint pt,i = ut,i, i ∈ N[1,Nt] or ps,i = us,i, i ∈ N[1,Ns].

4.9 Overall model

In what follows, the model of an islanded MG deduced in
the past sections is summarized. First, the detailed model is
presented in Section 4.9.1. Then, a compact version is posed
in Section 4.9.2.

4.9.1 Detailed model

Using the equations of the different parts, the overall model
of an islanded MG can be formulated as follows. The limits
on power and setpoint originate from (4.7), (4.11) and (4.14).
They are⎡⎢⎣diag(pmin

t )δt(k)
pmin

s
pmin

r

⎤⎥⎦ ≤ u(k) ≤

⎡⎢⎣diag(pmax
t )δt(k)

pmax
s

pmax
r

⎤⎥⎦ (4.44a)

and⎡⎢⎣diag(pmin
t )δt(k)

pmin
s

pmin
r

⎤⎥⎦ ≤ p(k) ≤

⎡⎢⎣diag(pmax
t )δt(k)

pmax
s

pmax
r

⎤⎥⎦ . (4.44b)



microgrid model 67

Following (4.15), the dynamics of the storage unit are

x(k + 1) = Ax(k) + Bps(k), with x(0) = x0 (4.44c)

and limits

xmin ≤ x(k + 1) ≤ xmax. (4.44d)

The renewable infeed, which is a function of setpoint and
weather-dependent available infeed, can be described by
(4.13) as

ur(k)− diag(Mr)δr(k) ≤ pr(k) ≤ ur(k), (4.44e)

wr(k) + diag(mr)(1Nr − δr(k)) ≤ pr(k) ≤ wr(k). (4.44f)

Power sharing of the grid-forming units is given by (4.37)
which, using (4.39), can be transformed into

Ks(ps(k)− us(k)) = μ(k)1Ns , (4.44g)

Kt(pt(k)− ut(k)) ≤ Mtδt(k), (4.44h)

Kt(pt(k)− ut(k)) ≥ mtδt(k), (4.44i)

Kt(pt(k)− ut(k)) ≤ 1Nt μ(k)− mt(1Nt − δt(k)), (4.44j)

Kt(pt(k)− ut(k)) ≥ 1Nt μ(k)− Mt(1Nt − δt(k)). (4.44k)

Finally, the power limit of the lines is modeled by (4.28a), i.e.,

pmin
e ≤ F̃U

[
pt(k)
 ps(k)
 pr(k)
 wd(k)


]
 ≤ pmax
e

(4.44l)
and the power equilibrium by (4.28b), i.e.,

0 = 1

(Nu+Nd)

[
pt(k)
 ps(k)
 pr(k)
 wd(k)


]
. (4.44m)

Remark 4.9.1 (Feasible values of power and setpoints). Note
that (4.44l) represents a constraint on the power of the units
which can, in general, be more restrictive than the unit power
limits (4.44b). Through the relation of power and power set-
points, (4.44l) can also lead to constraints on the setpoints
which can be more restrictive than (4.44a).

4.9.2 Compact model

In the following chapters, a more compact version of (4.44) is
desirable. Using the control input v(k) = [u(k)
 δt(k)
]
 and
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the auxiliary vector z(k) = [p(k)
 δr(k)
 μ(k)]
, (4.44) can be
written in a way that resembles (4.1) as

x(k + 1) = Ax(k) + B̃z(k), with x(0) = x0, (4.45a)

h1 ≤ H1 x(k + 1), (4.45b)

h2 ≤ H2
[
v(k)
 z(k)
 w(k)


]
, (4.45c)

g = G
[
v(k)
 z(k)
 w(k)


]
. (4.45d)

Here, the dynamics are formed with state matrix A = INs

and input matrix B̃ = [0Ns×Nt B 0Ns×(2Nr+1)]. Furthermore,
h1 = [(xmin)
 (−xmax)
]
 and H1 = [INs − INs ]


. Matrix H2

and vector h2 are such that (4.45c) includes inequalities (4.7),
(4.11), (4.13), (4.14), (4.28a) and (4.39). To formulate H2, it is
convenient to decompose F̃U into submatrices f̃t ∈ RNe×Nt ,
f̃s ∈ RNe×Ns , f̃r ∈ RNe×Nr , and f̃d ∈ RNe×Nd such that
F̃U = [ f̃t f̃s f̃r f̃d]. In detail, H2 and h2 are given by8

8 For compactness, the size
of zero matrices and identity
matrices was omitted.[

h2 H2

]
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0Nt I 0 0 −diag(pmin
t ) 0 0 0 0 0 0 0

pmin
s 0 I 0 0 0 0 0 0 0 0 0

pmin
r 0 0 I 0 0 0 0 0 0 0 0

0Nt −I 0 0 diag(pmax
t ) 0 0 0 0 0 0 0

−pmax
s 0 −I 0 0 0 0 0 0 0 0 0

−pmax
r 0 0 −I 0 0 0 0 0 0 0 0

0Nt 0 0 0 −diag(pmin
t ) I 0 0 0 0 0 0

pmin
s 0 0 0 0 0 I 0 0 0 0 0

pmin
r 0 0 0 0 0 0 I 0 0 0 0

0Nt 0 0 0 diag(pmax
t ) −I 0 0 0 0 0 0

−pmax
s 0 0 0 0 0 −I 0 0 0 0 0

−pmax
r 0 0 0 0 0 0 −I 0 0 0 0

0Nr 0 0 −I 0 0 0 I diag(Mr) 0 0 0
0Nr 0 0 I 0 0 0 −I 0 0 0 0
mr 0 0 0 0 0 0 I diag(mr) 0 −I 0
0Nr 0 0 0 0 0 0 −I 0 0 I 0
0Nt Kt 0 0 Mt I −Kt 0 0 0 0 0 0
0Nt −Kt 0 0 −mt I Kt 0 0 0 0 0 0

mt1Nt Kt 0 0 mt I −Kt 0 0 0 1Nt 0 0
−Mt1Nt −Kt 0 0 −Mt I Kt 0 0 0 −1Nt 0 0

pmin
e 0 0 0 0 f̃t f̃s f̃r 0 0 0 f̃d

−pmax
e 0 0 0 0 − f̃t − f̃s − f̃r 0 0 0 − f̃d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



microgrid model 69

Moreover, matrix G and vector g are such that (4.45d) in-
cludes (4.28b) and (4.37a), i.e.,[

g G
]
=[

0Ns 0 −Ks 0 0 0 Ks 0 0 −1Ns 0 0

0 0 0 0 0 1

Nt

1

Ns

1

Nr

0 0 0 1

Nd

]
.

Note that the relation of variables in (4.45) follows Fig-
ure 4.6. Thus, the variables that are assumed during the time
interval between k and k + 1 are v(k), z(k) and w(k). More-
over, the power of the storage units, which is part of the aux-
iliary vector z(k), and the state at time x(k) affect the stored
energy at time k + 1.

k k + 1

v(k)

w(k)

z(k)

k k + 1

x(k)
x(k + 1)

Figure 4.6: Temporal relation
of variables in compact
model.

Remark 4.9.2 (Power and power setpoint). Looking at the
formulations presented in this chapter, it might appear like
one could reduce most of the power variables and formulate
the model only in terms of power setpoints. This seems benefi-
cial, as it leads to MPC formulations with a smaller number of
decision variables.

One major reason against this reduction lies in the mini-
max and the scenario-based MPC formulations in Chapters 8,
10 and 11. In these approaches, each optimal power setpoints
is associated with multiple uncertain inputs. This, in the end,
leads to multiple power values which are associated with one
power setpoint. Therefore, it is fundamental to distinguish
between power and power setpoints in these approaches.

The reader is kindly referred
to Examples 8.2.1 and 9.2.2
for more detailed discussions
on the distinction between
power and setpoint.

In the prescient and the certainty equivalence MPC for-
mulations in Chapters 5 and 7, a reduction of some power
variables would be possible and could lead to lower com-
puting times of the numerical solvers. However, the solve
times of aforementioned approaches are already quite low
compared to the other approaches (see Chapter 12). There-
fore, the distinction between power and power setpoint was
kept in Chapters 5 and 7 in order to pose MPC problems that
resemble each other.

4.10 Summary

In this chapter, the model of an islanded MG with very high
share of RES was derived. It comprises RES, storage and
conventional units as well as transmission lines and loads.
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In detail, the model includes renewable sources that can be
limited. This is an important property in grids with very high
share of RES as it enables MG configurations with a rated
renewable power that exceeds the nominal load. In such con-
figurations, it is necessary to limit renewable infeed, e.g., if all
storage units are fully charged. Moreover, grid-forming stor-
age units were considered. These enable an operation where
all conventional generators are disabled. Furthermore, power
sharing of grid-forming units is modeled. This allows to take
the effects of fluctuating renewable generators and loads on
the power of storage and conventional units into account. Fi-
nally, a DC power flow model that allows to approximately
account for limits of transformers or power lines has been
derived.

The overall model deduced in this chapter can now be
employed to formulate different MPC problems in Chapters 7,
8, 10 and 11. However, first the cost function and a prescient
MPC formulation are presented in Chapter 5.



5
Model predictive control formulation

Previously, the model of an islanded MG was derived. Based
on this model, a prescient MPC problem that assumes perfect
knowledge of the uncertain input is formulated in this chap-
ter. This formulation serves as a basis for real-world MPC
approaches that employ real forecasts of the uncertain input.

The contributions of this chapter are as follows. A cost
function is formulated that includes the costs of the differ-
ent units: (i) operating and switching costs of conventional
generators, (ii) costs incurred by a limitation of renewable in-
feed, and (iii) costs associated with the power and the state of
charge of storage units. Using this cost and the model of and
islanded MG from Chapter 4, a prescient MPC problem is for-
mulated as an MIQP. This problem can be solved efficiently
by off-the-shelf solvers to obtain optimal power setpoints for a
given MG.

The remainder of this chapter is based on [89–91, 93] and
structured as follows. First, the relation of model variables
assumed for the prescient MPC is discussed in Section 5.1.
Then, a cost function which is composed of an economic part
and a part that is related to the state of charge is introduced
in Section 5.2. Using this cost function, a prescient MPC prob-
lem is formulated in Section 5.3.

5.1 Model variables

To formulate all MPC problems in a consistent way that com-
plies with Problem 1, it is convenient to change how the vari-
ables are associated with the different time instants. Based on
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(4.45), the updated control-oriented model reads

x(k + 1) = Ax(k) + B̃z(k + 1), with x(0) = x0, (5.1a)

h1 ≤ H1 x(k + 1), (5.1b)

h2 ≤ H2
[
v(k)
 z(k + 1)
 w(k + 1)


]
, (5.1c)

g = G
[
v(k)
 z(k + 1)
 w(k + 1)


]
. (5.1d)

The main difference between this model and (4.45) is that the
uncertain input w(k + 1) and the auxiliary vector z(k + 1) are
now associated with the time instant of the state x(k + 1) that
they directly affect.1 More precisely, in (4.45) the uncertainty

1 Associating the uncertain
input and the auxiliary
variables with the next time
instant will allow us to
formulate all MPC problems
in a consistent way.

associated with the time interval between k and k + 1 is w(k).
In (5.1), the uncertainty uncertainty associated with the time
interval between k and k + 1 is w(k + 1). Note that this change
only affects how the variables are associated with the different
time instants. The relation of the variables in the time interval
between k and k + 1 remains unchanged.

k k + 1

v(k)

w(k + 1)

z(k + 1)

k k + 1

x(k)
x(k + 1)

Figure 5.1: Temporal relation
of variables in control-
oriented model.

In Figure 5.1, the changed relation of variables in the
control-oriented model is illustrated. Here, the uncertain
input preset between time instants k and k + 1 is w(k + 1) and
the control input during this period is v(k). The vector of aux-
iliary variables z(k + 1) changes with the control input v(k)
and the uncertain input w(k + 1).2 Similarly, the state x(k + 1) 2 Note that z(k + 1), v(k)

and w(k + 1) are linked via
constraints (5.1c) and (5.1d).

is a function of the previous state x(k) and the auxiliary vec-
tor z(k + 1), i.e., x(k + 1) = fx(x(k), z(k + 1)).3 3 Note that fx can be easily

derived from (5.1a).

5.2 Cost function

The cost function for time instant k ∈ N0 is composed of two
parts. The first part, �o(v(k − 1), v(k), z(k + 1)), is motivated
economically. The second part, �x(x(k + 1)), is a cost associ-
ated with a desired region of operation of the state of charge.
Thus, the cost function at time instant k, i.e., the stage cost, is

�(v(k − 1), v(k), z(k + 1), x(k + 1)) =

�o(v(k − 1), v(k), z(k + 1)) + �x(x(k + 1)). (5.2)

Remark 5.2.1 (Time instants in cost function). The reason
why the cost at the current time instant depends on the past
control input v(k − 1), the current control actions v(k) and
auxiliary variables z(k + 1) as well as on the future state
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x(k + 1) is as follows. The cost at time instant k is influenced
by the control input v(k). The cost associated with this control
decision, depends on the on/off condition of the conventional
generators at time instant k − 1 . This leads to the dependence
of the cost on the last control input v(k − 1). Furthermore,
the decision taken at k in the form of v(k) has an effect on the
future state x(k + 1). Therefore, �x is a function of x(k + 1).
Moreover, the auxiliary variable z(k + 1) changes with v(k)
and w(k + 1) (see Section 5.1). Therefore, �o is a function of
v(k) and z(k + 1).

5.2.1 Economically motivated costs

The economically motivated parts of (5.2) can be divided
into (i) costs incurred by curtailing infeed of renewable
units �r(z(k + 1)), (ii) fuel costs of conventional generators
�rt

t (v(k), z(k + 1)), (iii) switching costs of conventional gen-
erators �sw

t (v(k − 1), v(k)), and (iv) costs associated with the
power of the storage units �s(z(k + 1)). Thus, the economi-
cally motivated stage costs are

�o(v(k − 1), v(k), z(k + 1)) = �r(v(k), z(k + 1))+

�rt
t (v(k), z(k + 1)) + �sw

t (v(k − 1), v(k)) + �s(z(k + 1)).
(5.3)

Renewable units. As stated in Section 2.3.1, RES, such as,
PV power plants or wind turbines, usually come with a very
high initial invest and small operation costs once they are in-
stalled [252, 261]. Therefore, the owners of RES want to keep
the units’ infeed as high as possible. Limiting a renewable
unit can be seen as a loss in money as the weather-dependent
available infeed is not sold to customers. The desire to maxi-
mize renewable infeed can be included in the cost function by
a penalty for using less than the maximal power pmax

r , i.e.,

�r(v(k), z(k + 1)) = c′r

ur(k)+

(pmax
r − pr(k + 1))
 diag(c′′r )(pmax

r − pr(k + 1)), (5.4)

with c′r ∈ R
Nr
>0, c′′r ∈ R

Nr
>0. The small cost associated with the

power setpoints ur(k) was included to ensure that the entries
of ur(k) are only as high as really needed. In practice, this
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typically leads to power setpoints that are less than or equal
to the largest available power forecasts. This is important in
the closed loop, as it prevents unexpectedly high renewable
infeed if the available infeed exceeds the largest forecast.
Note that the elements of c′r are chosen much smaller than the
elements of c′′r such that the effect of this term is negligible
compared to the power-related term.

Conventional generators. Motivated by [265, 266, 277], the
costs for the conventional generators was modeled by the
mixed-integer quadratic function

�rt
t (v(k), z(k + 1)) = c
t δt+

c′t

pt(k + 1) + pt(k + 1)
 diag(c′′t )pt(k + 1), (5.5)

with weights ct ∈ R
Nt
>0, c′t ∈ R

Nt
>0 and c′′t ∈ R

Nt
>0. In Figure 5.2,

this function with parameters from [265] is shown.

4 12 20
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1

Power [MW]

C
os

t
[k

$]

Figure 5.2: Operation cost
of conventional genera-
tor as function of power.
In this example, the pa-
rameters from unit 6
in [265, Table 1(a)] were
used, i.e., ct = 117.755 k$,
c′t = 37.5510 k$/MW, and
c′′t = 0.01199 k$/MW2. Note
that the minimum power of
unit 6 is 4 MW.

Enabling or disabling a conventional generator causes costs
[40]. Therefore, as stated in Section 2.3.3, it is desirable to en-
able or disable these units as little as possible. The switching
cost occurs if a conventional generator (i) was disabled at time
instant k − 1 and is enabled at time instant k, or (ii) was en-
abled at time instant k − 1 and is disabled at time instant k.
With the weight csw

t ∈ R
Nt
>0, this can be modeled by

�sw
t (v(k − 1), v(k)) =

(δt(k)− δt(k − 1))
 diag(csw
t )(δt(k)− δt(k − 1)). (5.6)

Storage units. Storing energy usually causes conversion
losses.4 To represent the costs associated with these losses,

4 See, e.g., [67, 224], for
more details on losses in
electrochemical storage units.

the term

�s(z(k + 1)) = ps(k + 1)
 diag(c′′s )ps(k + 1), (5.7)

with c′′s ∈ R
Ns
>0 is included in the cost function. In Figure 5.3,

the cost is illustrated for a single storage unit.
−1 0 1
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Power [pu]

C
os

t
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$]

Figure 5.3: Power-related
cost of storage unit for
cs = 0.1 k$/pu.

5.2.2 Energy-related costs

The aging of electrochemical storage units is influenced by
the state of charge [2, 39, 264]. Therefore, it is often desired to
keep x(k + 1) in the interval [x̃min, x̃max], with x̃min ∈ R

Ns
≥0,
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x̃max ∈ R
Ns
≥0 and x̃min ≤ x̃max. Motivated by [93], this is done

by formulating the energy-related costs as

�x(x(k + 1)) = c
x (max(x̃min − x(k + 1), 0Ns)+

max(x(k + 1)− x̃max, 0Ns)). (5.8)

with cx ∈ R
Ns
>0. For a single storage unit, the cost �x as a

function of the stored energy x1 is shown in Figure 5.4.

x̃min
1

x̃max
1

0

0.5

State [pu h]

C
os

t
[M

$]

Figure 5.4: Cost associated
with state of charge for
cx = 1 M$/pu h. Note that the
function returns zero as long
as the state is in the interval
[x̃min

1 , x̃max
1 ].

Remark 5.2.2 (Reformulation of energy-related costs). Using
the additional decision variables σ(k + 1) ∈ RNs , the max
functions in (5.8) can be transformed into

�x(x(k + 1)) = min
x̃min−x(k+1)≤σ(k+1)
x(k+1)−x̃max≤σ(k+1)

0≤σ(k+1)

c
x σ(k + 1) (5.9)

in a similar fashion as in Lemma 3.3.2. Note that the min
operator represents the minimum of c
x σ(k + 1) subject to the
constraints that are written below. As the cost �x(x(k + 1))
is minimized, it is sufficient to add c
x σ(k + 1) to the cost
function and x̃min − x(k + 1) ≤ σ(k), x(k + 1) − x̃max ≤
σ(k + 1) as well as 0 ≤ σ(k + 1) to the constraints.

5.3 Problem formulation

Using the cost function, we can now pose a prescient MPC
problem that resembles Problem 1. As shown in Figure 5.5,
in the context of operation control of islanded MG, w(k) com-
prises the uncertain available renewable generation and the
uncertain load. Furthermore, the output of the microgrid is
the stored energy x(k) and the last applied input vk−1 which
is required for the switching cost (5.6).

MPC Microgrid

Uncertain RES
& load w(k)

Input

v(k) = v�(k|k)
Output

xk, vk−1

Uncertain RES
& load

[w(k + j)]Jj=1

Figure 5.5: Prescient MPC
scheme used for the optimal
operation of islanded MGs at
time instant k.
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Based on the MG model (5.1) and the cost function (5.2) an
MPC problem can be formulated as an MIQP which includes
real-valued and Boolean decision variables, a quadratic cost
function and linear constraints. With the decision variables
v = [v(k + j|k)]J−1

j=0 , x = [x(k + j|k)]Jj=1, z = [z(k + j|k)]Jj=1 and
a discount factor γ ∈ (0, 1] that is used to emphasize decisions
in the near future, the MPC problem reads as follows.

Problem 2 (Prescient MPC of islanded MGs). Solve the opti-
mization problem

min
v,x,z

J−1

∑
j=0

�
(
v(k + j − 1|k), v(k + j|k), z(k + j + 1|k), x(k + j + 1|k))γj+1

subject to

x(k + j + 1|k) = Ax(k + j|k) + B̃z(k + j + 1|k),
h1 ≤ H1 x(k + j + 1|k),
h2 ≤ H2

[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1)


]
,

g = G
[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1)


]
,

∀j = 0, . . . , J − 1,
with given initial conditions x(k|k) = xk and v(k − 1) = vk−1.

The problem of this MPC formulation is that in determin-
istic real-world applications the uncertain input [w(k + j)]Jj=1
is not exactly known and can only be forecast. As we consider
islanded MGs with very high share of renewable sources,
the uncertainty that these units introduce plays an important
role. It is therefore crucial for a safe and reliable operation
to find suitable models of the uncertain load and renewable
generation. In what follows, we deduce different predictive
controllers and forecasts that model the uncertain input in
different ways. The goal is to find a control scheme that is as
close as possible to the prescient MPC with perfect knowledge
about future renewable infeed and load. Note that the hypo-
thetical perfect knowledge can be modeled in simulations by
assuming that w(k + j) is known for j = 1, . . . , J which results
in a prescient MPC formulation [91, 93, 206, 267].

Remark 5.3.1. The prescient MPC strategy associated with
Problem 2 is only used as a reference to represent the best
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Figure 5.6: Open-loop
trajectories of prescient MPC.

disturbance model possible, i.e., a perfect forecast. It could
never be used in a real-world setup as the future available
renewable infeed and load are uncertain and therefore never
perfectly known. The goal in the design of real-world control
strategies is to obtain an operation regime that is as close as
possible to the one that results from Problem 2. It must be
noted, that Problem 2 only represents a best case of MPC ap-
proaches with prediction horizon J. Using a longer prediction
horizon can to lead to even better closed-loop results.

5.4 Example

In Figure 5.6, the uncertain input, power, setpoints and stored
energy are shown. As MG model, the running example from
Figure 4.1 was used.5 The values were derived by solving 5 The unit parameters and

the weights of the cost
function can be found in
Tables 12.1 and 12.2.

Problem 2 with initial conditions x(0) = 0.5 pu h and δ
(0−)
t = 0.

The uncertain input was assumed to be perfectly known.
Load and available renewable infeed are shown in the

first row of the plot. It can be observed that the load varies
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a little. The available renewable power of the wind turbine
shows higher variation than the load. The renewable infeed
is such that the load can be fully provided over the entire
prediction horizon. Therefore, the conventional generator
remains disabled. The infeed of the renewable unit is only
limited in one time instant in order to prevent overpower of
the storage unit.

In the example, the excess energy of the renewable unit is
used to charge the battery. In Figure 5.6 this is indicated by
negative storage power values in the third row. Furthermore,
the stored energy in the fourth row continuously increases
from 0.5 pu h to 4.15 pu h.

5.5 Summary

In the chapter, the stage cost and an MPC formulation for the
operation of islanded MG were discussed. More precisely, a
prescient MPC scheme that serves as a reference by assuming
perfect knowledge about future renewable infeed and load
was derived.

In Chapters 7, 8, 10 and 11, different real-world MPC for-
mulations that are based on Problem 2 are presented. They
all vary in the way they model the uncertain available renew-
able infeed and load. Before presenting the first real-world
MPC formulation, suitable forecast models for the available
infeed of wind turbines and PV generators as well as load are
deduced in the next chapter.



6
Forecast

In the previous chapter, a prescient MPC problem for is-
landed MGs with uncertain load and available renewable
infeed was formulated. To deduce real-world MPC schemes,
forecasts of the uncertain inputs are required. Such forecasts
are derived in this chapter.

In what follows, time-series based forecasts without exoge-
nous inputs, i.e., using only past observations of load, wind
speed and irradiance, are employed to predict future load
and available renewable power. The use of forecasts without
exogenous inputs is motivated by the fact that MG projects
often come with a small financial project volume. As stated in
Section 2.3.7, it is therefore desired to employ approaches that
are cost-efficient [256]. Because of their simplicity, time-series
based forecasts meet this desire. In this thesis, the widely
used autoregressive integrated moving average (ARIMA)
models are employed.1 Suitable models are identified in a 1 ARIMA models can be

found in many domains,
such as, forecasting of
water demand [220],
electric load [47] or wind
speed [176].

systematic search that includes more than 6 000 model candi-
dates.

The remainder of this chapter is partly based [88, 91] and
structured as follows. First, preliminaries on forecasting, e.g.,
simple benchmark methods and multi-step ahead forecasts,
are provided in Section 6.1. Then, seasonal and non-seasonal
ARIMA forecasts are introduced and a strategy to find suit-
able models is discussed in Section 6.2. Finally, forecast mod-
els for load and available infeed of PV power plants and wind
turbines are identified in Sections 6.3 to 6.5.
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6.1 Preliminaries

In this section, basics on time-series forecasting required
throughout this chapter are introduced. First, simple bench-
mark forecasting methods are posed. Then, multi-step ahead
forecasts and the prediction root mean squared error are ad-
dressed. Finally, the generation of a collection of forecasts is
discussed.

6.1.1 Simple benchmark methods

Consider a given time-series of measurements of the form Recall from Chapter 4
that Nr is the number of
renewable units and Nd is
the number of loads in an
MGs.

wi(0), wi(1), . . . , wi(K) with finite K ∈ N0, i ∈ N[1,Nr+Nd]
and

wi(k) ∈ R for all time instants k ∈ N[0,K]. In the context of
time-series based forecasting, some simple prediction meth-
ods are often used as references. In what follows, two of them
are discussed: persistence and seasonal persistence forecast.

Persistence forecast. Here, the forecast ŵi(k + j|k) performed
at time k for each prediction step j ∈ N[1,J] within prediction
horizon J ∈ N equals the last observation [106], i.e.,

ŵi(k + j|k) = wi(k). (6.1)

This is illustrated in Figure 6.1 for the load of an MG. Persis-
tence forecasts represent one of the least complex forecasts
possible by assuming that everything will remain as it is.
More complex forecast methods that require more compu-
tations always have to be at least as good as the persistence
forecast to justify the increased effort.

k − 12 k k + 12

−0.8

−0.6

−0.4

Time instant

Po
w

er
[p

u
]

Known past
Unknown future
Persistence forecast
Seas. persist. forecast

Figure 6.1: Persistence and
seasonal persistence forecasts
of load with seasonality of
one week and a sampling
time of 30 min.Seasonal persistence forecast. Another very simple method

is the seasonal persistence forecast [106]. Here, the forecast
equals the measured value that lies one season, e.g., one year
or one week2, in the past. Broadly speaking, for a seasonality 2 The seasonal persistence

forecast with a seasonality
of one week represents a
“same-time-same-day-last-
week” approach.

of one week, the forecast value on Monday at 12 pm is the
value of last Monday at 12 pm. Let us denote the seasonal
period by Np ∈ N. Then, the forecast at prediction time
instant j with j ≤ Np is

ŵi(k + j|k) = wi(k + j − Np). (6.2)

In Figure 6.1 a seasonal persistence forecast of load with a
seasonality of one week is shown.
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6.1.2 Multi-step ahead forecasts

Each forecast can be seen as a function fw : RK+1 → R of
K + 1 past observations, i.e.,

ŵi(k + 1|k) = fw
(
wi(k), wi(k − 1), . . . , wi(k − K)

)
, (6.3)

with k ≥ K. For multi-step ahead forecasts, a recursive
strategy that employs previous predictions can be used
[33, 59, 87, 255], i.e.,

ŵi(k + 1|k) = fw
(
wi(k), wi(k − 1), . . . , wi(k − K)

)
, (6.4a)

ŵi(k + 2|k) = fw
(
ŵi(k + 1|k), wi(k), . . . , wi(k − K + 1)

)
, (6.4b)

ŵi(k + 3|k) = fw
(
ŵi(k + 2|k), ŵi(k + 1|k), . . . , wi(k − K + 2)

)
,

(6.4c)

...

6.1.3 Prediction root mean square error

Consider a test data set that was not used for the training of a
forecast model. Using sample wi(k + j) from this set, the error
of forecast ŵi(k + j|k) performed at time k for instant k + j is

ei(k + j|k) = wi(k + j)− ŵi(k + j|k). (6.5)

Using ei(k + j|k), the prediction root mean squared error for a
prediction performed at time k over prediction horizon J is

PRMSEJ(k) =

√
1
J

J
∑

j=1
(ei(k + j|k))2. (6.6)

PRMSEJ is a random variable which can be accessed via its
samples, i.e., via the elements of the set {PRMSEJ(k)}K2

k=K1
,

where K1 ∈ N0, K2 ∈ N with K1 < K2 are the limits of the test
data. As a measure of the multi-step ahead prediction ability,
the quantiles of the empirical distribution of PRMSEJ can be
visualized using, for example, box plots or histograms.

6.1.4 Generation of a collection of forecasts

For some approaches, e.g., stochastic MPC, the forecast proba-
bility distribution is required. In this thesis, these are obtained
in a similar fashion as in [196] via Monte Carlo sampling.
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Here, a collection of NΩ ∈ N independent and equiprob-
able forecast scenarios, i.e., a scenario fan [97], is generated
employing random errors el

i(j) ∈ R, l ∈ N[1,NΩ ]. A scenario
ŵl

i(k + 1|k), . . . , ŵl
i(k + J|k) can be generated by considering

appropriate3 additive random errors [87, 255], i.e., 3 In this thesis, it is assumed
that the random errors
follow the probability dis-
tribution of the errors from
the training of the forecast
models.

ŵl
i(k + j|k) = fw

( · · · )+ el
i(j). (6.7)

Using (6.4) the multi-step ahead forecast of scenario l is

ŵl
i(k + 1|k) = fw

(
wi(k), . . . , wi(k − K)

)
+ el

i(1), (6.8a)

ŵl
i(k + 2|k) = fw

(
ŵl

i(k + 1|k), . . . , wi(k − K + 1)
)
+ el

i(2),
(6.8b)

ŵl
i(k + 3|k) = fw

(
ŵl

i(k + 2|k), . . . , wi(k − K + 2)
)
+ el

i(3),
(6.8c)

...

Via (6.8), the error propagates from one prediction stage to
the subsequent ones, i.e., the error el

i(j) influences the fore-
casts at time instants k + j + 1 to k + j + J.

Figure 6.2: Collection of 500
independent load forecast
scenarios based on the
persistence forecast with a
sampling time of 30 min.

A collection of load forecasts is shown in Figure 6.2.
Each scenario was generated using the persistence method
from Section 6.1.1 and adding appropriate random errors
el

i(1), el
i(2), . . . from the training of the model, i.e.,

ŵl
i(k + 1|k) = wi(k) + el

i(1), (6.9a)

ŵl
i(k + 2|k) = ŵl

i(k + 1|k) + el
i(2)

= w(k) + el
i(1) + el

i(2), (6.9b)

ŵl
i(k + 3|k) = ŵl

i(k + 2|k) + el
i(3)

= w(k) + el
i(1) + el

i(2) + el
i(3), (6.9c)

...

A detailed discussion on the
Gaussian nature of wind
speed forecast residuals and
the non-Gaussian nature
of the associated wind
power forecast can be found
in [130].

Remark 6.1.1. In this thesis, the use of collections of forecast
scenarios is motivated by non-Gaussian probability distribu-
tions of available renewable power. To determine the available
power of a wind turbine, for example, first a collection of
wind speed forecast scenarios is derived, assuming a Gaussian
forecast error distribution. The resulting scenarios are then
transformed into available wind power using the nonlinear
model of a wind turbine. Because of this nonlinear transfor-
mation from wind speed to power, the resulting probability
distribution for power is typically non-Gaussian.
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6.2 ARIMA forecasting

ARIMA models are widely adoped for time-series forecasting.
Before discussing non-seasonal and seasonal ARIMA models,
the backshift operator is introduced.

6.2.1 Backshift operator

To refer to past values of a time-series wi(0), wi(1), . . . , wi(K),
the backshift operator B with B wi(k) = wi(k − 1) is used.
Note that Bj = B B(j−1) for j ∈ N[2,k]. Consequently, we have
that Bj w(k) = w(k − j).

6.2.2 ARIMA

Autoregressive integrated moving average (ARIMA) models
can be described by [33, 106]

fAR(B) fI(B)wi(k) = aT + fMA(B)ei(k). (6.10)

Here, ei(k) = wi(k)− ŵi(k|k− 1) is the one-step ahead training
error, i.e., the error between training data point wi(k) and the
associated one-step forecast ŵi(k|k − 1) performed at time
instant k − 1. The autoregressive part of the model is captured
by the polynomial

fAR(B) = 1 − aAR,1 B1 − . . . − aAR,NAR BNAR (6.11a)

with parameters aAR,1, . . . , aAR,NAR ∈ R for NAR ∈ N0 and
aAR,NAR �= 0. Furthermore,

fI(B) = (1 − B)NI (6.11b)

with NI ∈ N0 represents a backward difference and aT ∈ R a
trend. The moving average part of the model is captured by

fMA(B) = 1 + aMA,1 B1 + . . . + aMA,NMA BNAR (6.11c)

with parameters aMA,1, . . . , aMA,NMA ∈ R for NMA ∈ N0 and
aMA,NMA �= 0. Models of the form (6.10) are referred to as
ARIMA(NAR, NI, NMA).

By default, ARIMA models do not consider periodic be-
havior of signals, i.e., seasonality. For time-series that include
periodicity, e.g., daily pattern of PV infeed or load, seasonal
ARIMA models can lead to an improved forecast accuracy.
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6.2.3 Seasonal ARIMA

Seasonal ARIMA models can be described by the equation
[33, 106]

fAR(B) fSAR(B) fI(B) fSI(B)wi(k) = aT + fMA(B) fSMA(B)ei(k).
(6.12)

Here, fAR(B), fI(B) and fMA(B) are the polynomials and aT

is the trend from the non-seasonal ARIMA models in Sec-
tion 6.2.2. The seasonal autoregressive part with seasonal
period Np is captured by

fSAR(B) = 1 − aSAR,1 BNp1 − . . . − aSAR,NSAR BNp NSAR (6.13a)

with coefficients aSAR,1, . . . , aSAR,NSAR ∈ R for NSAR ∈ N0 and
aSAR,NSAR �= 0. The seasonal difference is included via

fSI(B) = (1 − BNp)NSI , (6.13b)

with NSI ∈ N0. Finally, the seasonal moving average part with
aSMA,1, . . . , aSMA,NSMA ∈ R for NSMA ∈ N0 and aSMA,NSMA �= 0
is captured by the polynomial

fSMA(B) = 1 + aSMA,1 BNp1 + . . . + aSMA,NSMA BNp NSMA . (6.13c)

In what follows, seasonal ARIMA models of the form (6.12)
are referred to as ARIMA(NAR, NI, NMA)(NSAR, NSI, NSMA)Np .

6.2.4 Model selection
Note that the models were
trained in MATLAB 2015a
using the Econometrics
toolbox.

For the identification of suitable ARIMA forecast models, a
hyperparameter search space is formed by combining dif-
ferent values of NAR, NI, NMA, NSAR, NSI, NSMA and Np in a
similar fashion as in [88]. For every model structure in this
search space4, the (seasonal) ARIMA model parameters are

4 Consider a hyperparam-
eter search space with
NAR ∈ {0, 1}, NI ∈ {1} and
NMA ∈ {3, 5}. Then the
model structures

• ARIMA(0, 1, 3),

• ARIMA(1, 1, 3),

• ARIMA(0, 1, 5), and

• ARIMA(1, 1, 5)

would be considered.

derived using maximum likelihood estimation [33, 59, 87]
under the assumption that the forecast residuals follow a nor-
mal distribution. For the evaluation of the estimated forecast
model, the Ljung-Box test [33] is used to check for uncorre-
latedness of training residuals. Those models that pass the
Ljung-Box test are then compared using the PRMSE.

Remark 6.2.1. The control schemes presented in Chapters 7,
8, 10 and 11 do not rely on linear forecasting models or Gaus-
sian forecast probability distributions. Consequently, alterna-
tive nonlinear forecast algorithms, such as, neural networks
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(see, e.g., [258]) or nearest neighbor regression (see, e.g., [88])
could be easily employed in these control approaches.

6.3 Load

For the training of forecast model candidates, one year of in-
stantaneous power values from an islanded MG in the MW
range were used. The time-series had a sampling interval of
30 min which resulted in 17 520 training data points. To iden-
tify suitable models, similar to [88], a hyperparameter search
as described in Section 6.2.4 was performed. Motivated by
high autocorrelation for the lags 48, 96, . . . (see Figure 6.3),
a seasonality of Np = 48, i.e., 1 d, was selected. Moreover, Using the augmented

Dickey–Fuller test [59]
with a 5 % significance level,
we could not accept the
hypothesis that the load fore-
cast training data time-series
is stationary.

due to a higher autocorrelation for the lag 336, NSAR = 7
and NSMA = 7 were chosen. The remaining model param-
eter candidates were considered to be NAR ∈ {0, . . . , 10},
NI ∈ {0, . . . , 5}, NMA ∈ {0, . . . , 10}, and NSI = 1. Combining
all model parameter candidates resulted in a hyperparameter
search space that included 726 model structures. The training
algorithm could not identify suitable parameters for 32 of the
model structure candidates. Still, 694 models were success-
fully trained and tested on an unknown data set of 21 d with
a prediction interval of 30 min and a prediction horizon of 12
steps. To assess the forecast performance, the PRMSE12 of all
models was compared. Here, the ARIMA(10, 0, 8)(7, 1, 7)48

model exhibited the lowest mean PRMSE12 (0.037 pu) while
passing the Ljung-Box test [33] for uncorrelatedness of residu-
als (p-value 0.9996).

In Figure 6.4, the seasonal ARIMA model is compared with
seasonal persistence models with a seasonality of 1 d and
7 d as well as a non-seasonal persistence model. In the box

Figure 6.3: Autocorrelation
of the load forecast training
data.
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0 0.05 0.1 0.15 0.2 0.25

Persistence
Seas. persist., 1 d
Seas. persist., 7 d

Seas. ARIMA

PRMSE12 [pu]

Figure 6.4: PRMSE12 of
load forecast over 1 008
predictions, i.e., 21 d of
test data. The seasonal
ARIMA model has the form
ARIMA(10, 0, 8)(7, 1, 7)48.

plots5, the 3rd quartile of PRMSE12, indicated by the right 5 An introduction on box
plots can be found in Sec-
tion 3.1.

end of the white box, is significantly lower for the seasonal
persistence model with a seasonality of 7 d than for the one
with a seasonality of 1 d. The 3rd quartile of the persistence
model has the highest value of all forecast techniques shown.
The seasonal ARIMA model shows the smallest values in all
quantiles indicating a decent forecast performance.

Technique Mean [pu] Std. dev. [pu]

ARIMA(10, 0, 8)(7, 1, 7)48 0.037 0.016
Seasonal persistence, 7 d 0.049 0.022
Seasonal persistence, 1 d 0.055 0.031

Persistence 0.103 0.053

Table 6.1: Mean and stan-
dard deviation of PRMSE12
for different load forecast
models.

Similar conclusions can be drawn from Table 6.1. Here,
the ARIMA(10, 0, 8)(7, 1, 7)48 model also outperforms the
persistence methods in terms of mean and standard deviation.

Figure 6.5: Example
of load forecast with
ARIMA(10, 0, 8)(7, 1, 7)48
model.

In Figure 6.5, one of the forecasts used in the evaluation of
the forecast accuracy is shown. Here, the collection of forecast
approximately follows a normal distribution. This statement
is supported by the Kolmogorov-Smirnov test [153] for a
Gaussian distribution which passed the 5 % significance level
for all prediction steps and all predictions performed with the
test data set.

6.4 Wind turbine

The forecast of available power of wind turbine i is obtained
in two steps. First, a time-series forecast of wind speed v̂r,i is
performed. Then, the wind speed values are transformed into
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available wind power ŵr,i using the nonlinear relation

ŵr,i(v̂r,i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

v̂r,i
12 m/s

)3
pmax

r,i , if 2.5 m/s < v̂r,i ≤ 12 m/s,

pmax
r,i , if 12 m/s ≤ v̂r,i ≤ 25 m/s,

pmin
r,i , otherwise.

(6.14)

As shown in Figure 6.6, the function (6.14) approximates the
wind speed to power relation of a real-world wind turbine.
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Cubic approximation
Original

Figure 6.6: Wind speed to
wind power curve of Ener-
con E53 [60] and correspond-
ing cubic approximation for
pmin

r,i = 0 pu, pmax
r,i = 1 pu.

Remark 6.4.1. The focus of this work is to obtain and com-
pare different MPC schemes. Therefore, a generic wind speed
to power function (6.14) was chosen. In real-world setups, this
function would probably be replaced by the wind speed to
power curves of the employed units to obtain more accurate
estimates. The same holds for the irradiance to power curve
used in Section 6.5.
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Figure 6.7: Autocorrelation
of the wind speed forecast
training data.For the forecast of wind speed, v̂r,i, different models were

trained using 154 d of wind data from [12] at an interval of
30 min. Thus, 7 392 data points were used. Suitable models
were identified via a hyperparameter search as described in
Section 6.2.4. No significant seasonality of the wind speed
measurements could be observed (see Figure 6.7). There-
fore, non-seasonal ARIMA models were considered for the
wind speed forecast. The hyperparameter search space cre-
ated to train and test ARIMA model candidates was derived
by combining the model parameters NAR ∈ {0, . . . , 20},
NI ∈ {0, . . . , 5} and NMA ∈ {0, . . . , 20}. This resulted in a

Using the augmented
Dickey–Fuller test [59]
with a 5 % significance level,
we could not accept the
hypothesis that the wind
speed forecast training data
time-series is stationary.

search space that included 2 646 model structures. The train-
ing algorithm could not identify suitable parameters for 141
of the model structure candidates. Still, 2 505 models were
successfully trained and tested on a data set of 21 d with a
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prediction interval of 30 min and a prediction horizon of 12
steps. To assess the forecast performance, PRMSE12 of all
models was compared.6 Here, the ARIMA(16, 0, 6) model 6 Note that the PRMSE was

calculated for the available
wind power ŵr,i .

exhibited the lowest mean PRMSE12 (0.072 pu) while pass-
ing the Ljung-Box test [33] for uncorrelatedness of residuals
(p-value 0.974).

0 0.1 0.2 0.3 0.4 0.5

Persistence
ARIMA(2, 0, 0)

ARIMA(16, 0, 6)

PRMSE12 [pu]

Figure 6.8: PRMSE12 of wind
power forecast over 1 008
predictions, i.e., 21 d of test
data.

In Figure 6.8, the ARIMA(16, 0, 6) model is compared to a
persistence forecast and the ARIMA(0, 0, 2) model identified
in [176]. It can be noted that the 1st quartile and the median
of all approaches are very close to each other. Yet, the 3rd
quartile and the right whisker of the ARIMA(16, 0, 6) model
are closer to zero than those of the others, indicating that
more accurate forecasts can be obtained with it.

Technique Mean [pu] Std. dev. [pu]

ARIMA(16, 0, 6) 0.072 0.072
ARIMA(2, 0, 0) 0.074 0.076

Persistence 0.075 0.075

Table 6.2: Mean and stan-
dard deviation of PRMSE12
for different wind power
forecast models.

Similar conclusions can be drawn from Table 6.2. Here, the
ARIMA(16, 0, 6) model also outperforms the other methods in
terms of mean value and standard deviation. In general, the
difference in forecast quality is not as significant as it is for
the load forecast in Section 6.3 and the forecast of available
PV power in Section 6.5. This indicates that less complex
models are also acceptable for the wind power forecast. Still,
as the best model is identified, it is also used in the remainder
of this thesis.

Figure 6.9: Example of
wind power forecast with
ARIMA(16, 0, 6) model.

In Figure 6.9, one of the forecasts used in the evaluation of
the forecast accuracy is shown. For many prediction steps, the
forecast scenarios do not follow a normal distribution. This
could also be noted applying the Kolmogorov-Smirnov test
[153] for a Gaussian distribution which did not pass the 5 %
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significance level for some predictions performed on the test
data set. This motivates the use of control approaches that
allow for non-Gaussian forecast probability distributions.

6.5 Photovoltaic power plant
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Figure 6.10: Available PV
power plant infeed as
function of irradiance for
pmin

r,i = 0 pu, pmax
r,i = 1 pu.

The forecast of available power ŵr,i of PV power plant i is ob-
tained in two steps. First, a time-series forecast of irradiance
Îr,i is performed. Then, the available power is obtained from
irradiance via

ŵr,i( Îr,i) =

⎧⎪⎪⎨⎪⎪⎩
pmin

r,i , if Îr,i < 0 W/m2

Îr,i
pmax

r,i
1 000 W/m2 , if 0 W/m2 ≤ Îr,i ≤ 1 000 W/m2,

pmax
r,i , if Îr,i > 1 000 W/m2.

(6.15)
Irradiance values above 1 000 W/m2 or below 0 W/m2 are very
unlikely to occur on the earth’s surface. The limitation via
(6.15) is still required as the Gaussian error distribution
used to generate the collection of forecast scenarios (see Sec-
tion 6.1.4) can lead to irradiance values above or below these
limits. To ensure that the available power of every power
plant remains within the limits of the unit, (6.15), which is
illustrated in Figure 6.10, is employed.
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Figure 6.11: Autocorrelation
of the irradiance forecast
training data.For the forecast of irradiance Îr,i, different models were

trained using 154 d of irradiance data from [12] with an in-
terval of 30 min. Thus, 7 392 data points were used. Suit-
able models were identified via a hyperparameter search as
described in Section 6.2.4. Motivated by high autocorrela-
tion for the lags 48, 96, . . . (see Figure 6.11), a seasonality of
Np = 48, i.e., 1 d, was selected. Moreover, the model param-
eters NAR ∈ {0, . . . , 10}, NI ∈ {0, . . . , 5}, NMA ∈ {0, . . . , 10},
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NSAR ∈ {1, 7}, NSMA ∈ {1, 7} and NSI = 1 were considered
which resulted in 2 904 seasonal ARIMA model structure can-

Using the augmented
Dickey–Fuller test [59]
with a 5 % significance level,
we could not accept the
hypothesis that the irradi-
ance forecast training data
time-series is stationary.

didates. The training algorithm could not identify suitable
parameters for 245 of the model structure candidates. Still,
2 659 models were successfully trained and tested on a data
set of 21 d with a prediction interval of 30 min and a predic-
tion horizon of 12 steps. To assess the forecast performance,
the resulting PRMSE12 of all models was compared.7 Here, 7 Note that the PRMSE was

calculated for the available
PV power ŵr,i .

the ARIMA(6, 1, 2)(1, 1, 1)48 model exhibited the lowest mean
PRMSE12 (0.065 pu) while passing the Ljung-Box test [33] for
uncorrelatedness of residuals (p-value 0.957).

0 0.1 0.2 0.3 0.4 0.5 0.6

Persistence
Seas. persist., 1 d

Seas. ARIMA

PRMSE12 [pu]

Figure 6.12: PRMSE12 of
PV power forecast over
1 008 predictions, i.e., 21 d
of test data. The seasonal
ARIMA model has the form
ARIMA(6, 1, 2)(1, 1, 1)48.

In Figure 6.12, box plots for the ARIMA(6, 1, 2)(1, 1, 1)48,
the persistence and the seasonal persistence forecasts are
shown. It can be noted that the median and the third quartile
of the seasonal ARIMA model are smaller than those of the
other methods. Thus, the additional effort of using a seasonal
ARIMA model pays off.

Technique Mean [pu] Std. dev. [pu]

ARIMA(6, 1, 2)(1, 1, 1)48 0.065 0.072
Seasonal persistence, 1 d 0.103 0.113

Persistence 0.217 0.192

Table 6.3: Mean and stan-
dard deviation of PRMSE12
for different PV infeed
forecast models.

Similar conclusions can be drawn when comparing mean
and standard deviation of PRMSE12 in Table 6.3. Here, the
ARIMA(6, 1, 2)(1, 1, 1)48 model significantly outperforms the
persistence methods in terms of both indicators.

Figure 6.13: Example of
PV power forecast with
ARIMA(10, 0, 4) model.

In Figure 6.13, one of the forecasts used in the evaluation of
the forecast accuracy is shown. For some prediction steps, the
forecast scenarios do not follow a normal distribution. This
could also be noted applying the Kolmogorov-Smirnov test
[153] for a Gaussian distribution which did not pass the 5 %
significance level for some predictions performed on the test
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data set. This motivates the use of control approaches that
allow for non-Gaussian forecast probability distributions.

6.6 Summary

In this chapter time-series forecast models for load, wind
turbines and PV power plants were derived. Based on a sys-
tematic hyperparameter search, suitable ARIMA models were
identified. Using these models and simple representations
of a PV power plant and a wind turbine, nominal forecasts
as well as collections of independent forecast scenarios were
derived.

The Kolmogorov-Smirnov test for a Gaussian forecast dis-
tribution did not always pass the 5 % significance level for the
predictions of available renewable power. Therefore, control
approaches that require normally distributed uncertainties
appear unsuitable. However, the models derived in this chap-
ter can be used for other MPC formulations that do not rely
on such distributions: In Chapter 7 the nominal forecast is
employed to formulate a certainty equivalence MPC. Based
on the collections of independent forecast scenarios from this
chapter, the bounds of robust forecast intervals are employed
to formulate a minimax MPC approach in Chapter 8. More-
over, the collections of independent forecast scenarios are
used to generate scenario trees in Chapter 9 which serve as a
basis for the scenario-based MPC formulations in Chapters 10
and 11.





7
Certainty equivalence MPC

In Chapter 5, a prescient MPC approach for the operation of
islanded MG was posed for the hypothetical case where the
uncertain input is perfectly known. Unfortunately, in deter-
ministic real-world setups, this is never the case and forecasts
of the uncertain input (see Chapter 6) need to be employed.
In this chapter such an MPC approach is deduced, assuming
that the uncertain input equals the nominal forecast.

The main contribution of this chapters is the derivation of
a deterministic certainty equivalence MPC scheme. The for- An overview of certainty

equivalence approaches in
MG operation control can be
found in Section 1.3.1.

mulation is based on the model from Chapter 4 and therefore
intended for islanded MGs with high share of RES. Using the
cost function from Chapter 5, it is posed as an MIQP which
can be solved by available software. Motivated by [172, 180],
we assume that the uncertain input follows the nominal fore-
cast. The large number of publications on the operation of
MG with certainty equivalence MPC (see Section 1.3.1) indi-
cates that this is a widely adopted assumption. Therefore, the
scheme derived in this chapter can be seen as the state-of-the-
art for MG operation control.

This chapter is based on [89] and structured as follows.
First, the relation of model variables is discussed in Sec-
tion 7.1. Then, a certainty equivalence MPC problem is posed
in Section 7.2 and used in a simulation example in Section 7.3.

7.1 Model variables

The certainty equivalence approach relies on the assumption
that the future is certain [23, 24, 89, 186]. More precisely, it
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assumes that the nominal forecast is certain. This forecast can
be obtained using, e.g., the ARIMA models from Chapter 6.

j j + 1

v(k + j|k)

ŵ(k + j + 1|k)

z(k + j + 1|k)

j j + 1

x(k + j|k)

x(k + j + 1|k)

Figure 7.1: Temporal relation
of variables in certainty
equivalence MPC.

In Figure 7.1 the forecast of the uncertain input performed
at time instant k for the time between j and j + 1 is repre-
sented by the dark blue line next to ŵ(k + j + 1|k). As dis-
cussed in Section 5.1, the uncertain input during this time
interval, ŵ(k + j + 1|k), is associated with the state that it
directly affects, x(k + j + 1|k). The control input during this
period is v(k + j|k) and the auxiliary vector during this pe-
riod is z(k + j + 1|k). As discussed in Chapter 5, the vector
of auxiliary variables z(k + j + 1|k) changes with the control
input v(k + j|k) and the prediction of the uncertain input
ŵ(k + j + 1|k).1 Similarly, the state x(k + j + 1|k) is a func-

1 Note that z(k + j + 1|k) is
linked with v(k + j|k) and
ŵ(k + j + 1|k) through (5.1c)
and (5.1d).

tion of the previous state x(k + j|k) and z(k + j + 1), i.e.,
x(k + j + 1|k) = fx(x(k + j|k), z(k + j + 1|k)).2 With these

2 Note that fx can be derived
from constraint (5.1a).

relations, the following MPC problem can be derived.

7.2 MPC problem formulation

The MPC problem combines the overall cost (5.2) with the
constraints that represent the islanded MG (5.1). As stated

Recall from Section 5.3
that γ ∈ (0, 1] is a discount
factor that is used em-
phasize decisions in the
near future. Further recall
that the decision variables
are v = [v(k + j|k)]J−1

j=0 ,

x = [x(k + j|k)]Jj=1 and

z = [z(k + j|k)]Jj=1.

in Section 7.1, the nominal forecasts of load and available re-
newable infeed, collected in ŵ(k + j + 1|k), are assumed to be
certain over the entire prediction horizon. With this assump-
tion, the following certainty equivalence MPC approach with
decision variables v, x and z can be formulated.

Problem 3 (Certainty equivalence MPC of islanded MGs).
Solve the optimization problem

min
v,x,z

J−1

∑
j=0

�
(
v(k + j − 1|k), v(k + j|k), z(k + j + 1|k), x(k + j + 1|k))γj+1

subject to

x(k + j + 1|k) = Ax(k + j|k) + B̃z(k + j + 1|k),
h1 ≤ H1 x(k + j + 1|k),
h2 ≤ H2

[
v(k + j|k)
 z(k + j + 1|k)
 ŵ(k + j + 1|k)
]
,

g = G
[
v(k + j|k)
 z(k + j + 1|k)
 ŵ(k + j + 1|k)
]
,

∀j = 0, . . . , J − 1,
with given initial conditions x(k|k) = xk and v(k − 1|k) = vk−1.



certainty equivalence mpc 95

Cert. equival.
MPC

Microgrid

Uncertain RES
& load w(k)

Forecast

Historic RES &
load [w(j)]kj=0

Input

v(k) = v�(k|k)
Measurement

xk, vk−1

Nominal forecast
of RES & load

[ŵ(k + j|k)]Jj=1

Figure 7.2: Certainty equiv-
alence MPC scheme for
operation of islanded MGs at
time instant k.

Note that Problem 3 is almost identical to Problem 2. The
only difference between the problems is that the future un-
certain inputs w(k + j + 1) are replaced by the corresponding
nominal forecasts ŵ(k + j + 1|k).
Remark 7.2.1. One major drawback of the certainty equiva-
lent approach is that the assumption of a perfect forecast, in
particular for islanded MG with high share of RES, does not
hold. In the closed loop, this leads to violations of constraints
and to undesired states of charge. This is discussed in more
detail in Sections 12.2.2 and 12.3.2. Here, the certainty equiv-
alence approach is shown to be unsuitable for the operation
of islanded MG with high renewable share as it does not en-
sure robustness to uncertain renewable generation and load
as desired in Section 2.3.6. Furthermore, the approach does
not provide robustness to misestimated forecasts as required
in Section 2.3.7.

7.2.1 MPC scheme

As illustrated in Figure 7.2, from the resulting optimal control
input trajectory, the first predicted value v�(k|k) is applied
to the plant. At the next sampling time instant, Problem 3
is solved repeatedly in a receding horizon fashion (see, e.g.,
[18, 23, 204] and Section 3.2) using updated initial conditions
and updated forecasts of renewable infeed and load. An
example solution of Problem 3 is discussed next.

7.3 Example

In Figure 7.3, the trajectories of uncertain inputs, power, set-
points and stored energy are shown. They were derived by
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Figure 7.3: Open-loop
trajectories of certainty
equivalence MPC.

solving Problem 3 for initial conditions xk = 0.5 pu h and
δt(k − 1|k) = 0. The forecasts were obtained using the models
identified in Chapter 6 considering a rated wind power of
2 pu. As MG model, the example from Figure 4.1 was used.3 3 The unit parameters and

the weights of the cost
function can be found in
Tables 12.1 and 12.2.

In Figure 7.3, the forecasts of load and available renewable
infeed are shown shown in the first row of the plot. It can be
observed that the load varies a little. The available power of
the wind turbine shows a slight trend towards lower power
values. The load demand is smaller than the predicted avail-
able wind power. Therefore, the load can be fully served by
the wind turbine and the conventional generator remains
disabled over the entire prediction horizon. The renewable
power setpoints is always greater than or equal to the pre-
dicted available power. This results in a predicted power for
the wind turbine that identical to the available wind power.

The difference in load and renewable power is used to
charge the battery. In the Figure 7.3, this can be noted by
negative power values of the storage unit and an increase in
stored energy from 0.5 pu h to 2.7 pu h.
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7.4 Summary

In this chapter a certainty equivalence MPC approach for
islanded MGs was derived. The approach assumes that the
uncertain input follows the nominal forecast of load and
available renewable infeed. This assumption unfortunately
does not hold for islanded MG with high share of renewable
infeed. In such grids, load and available renewable power
can significantly differ from their nominal forecasts. As in
islanded operation all fluctuations need to be covered locally,
this can lead to violations of power and energy limits in the
closed loop, as illustrated in Chapter 12. To address this,
a robust minimax MPC approach that assumes a bounded
uncertain input with a forecast in the form of time-varying
prediction intervals is derived in the next chapter.





8
Minimax MPC

In the last chapter, a certainty equivalence approach that as-
sumes that the uncertain available renewable infeed and load
follow their nominal forecasts was presented. Unfortunately,
this approach can lead to constraint violations in the closed
loop, as the uncertain input can significantly differ from the
nominal forecast in MGs with high share of RES. To overcome
this drawback, more complex forecasts, e.g., time-varying
prediction intervals, need to be considered.

The main contributions of this chapter are as follows. Mo- An overview of robust
approaches in MG operation
control can be found in
Section 1.3.2.

tivated by [104, 128], a robust minimax MPC formulation
for the operation of islanded MG is derived. This formula-
tion minimizes the worst-case cost assuming a forecast of
the uncertain input in the form of time-varying lower and
upper bounds [19, 20, 31, 139]. The formulation is based on
the model from Chapter 4 and therefore allows to control is-
landed MGs with high share of RES. Using the cost function
from Chapter 5, the MPC problem is formulated as a mixed-
integer quadratically-constrained program (MIQCP) that can
be solved by available numerical solvers. Unlike other robust
formulations [13, 104], the presented MPC problem includes a
possible limitation of renewable infeed, storage dynamics and
power sharing of grid-forming units. Opposed to the certainty
equivalence approach in Chapter 7, it guarantees robustness
with respect to the uncertain inputs.

The majority of this chapter is based on [89] and structured
as follows. First, the derivation of robust forecast intervals
from forecast scenarios is discussed in Section 8.1. More-
over, a general minimax MPC problem for the operation of
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Figure 8.1: Example of
robust forecast intervals of
available wind power and
load. The intervals on the
right were derived via the
stage-wise maximum and
minimum of the collections
of independent forecast
scenarios on the left.

islanded MGs is posed. As this problem is hard to solve, a
tractable alternative is deduced in the subsequent sections. In
Section 8.2 the relation of model variables in the alternative
minimax MPC approach is discussed. Then, in Section 8.3 the
cost function is reformulated. Finally, in Section 8.4 a tractable
minimax MPC problem for the operation of islanded MG is
posed and used in a simulation example in Section 8.5.

8.1 Introduction

In this section, the derivation of forecasts in the form of lower
and upper bounds is illustrated. Moreover, a minimax MPC
problem that employs these bounds is posed.

8.1.1 Forecast of uncertain input

The bounds of the robust forecast intervals are derived as
follows. Consider NΩ forecast scenarios (see Section 6.1.4) for
each renewable unit and each load.1 Then, for each renewable 1 Naturally, this approach

would also work if we would
assume different numbers of
forecast scenarios for each
load and each renewable
unit.

unit i ∈ N[1,Nr] the maximum available renewable infeed of
all NΩ forecast scenarios ŵl

r,i(k + j|k), l ∈ I = N[1,NΩ ], at
prediction time instant k + j and time instant k is

wr,i(k + j|k) = max
l∈I

ŵl
r,i(k + j|k) (8.1a)
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and the minumum at the same prediction time instant is

wr,i(k + j|k) = min
l∈I

ŵl
r,i(k + j|k). (8.1b)

Similarly, for each load i ∈ N[1,Nd]
, the maximum of all sce-

narios is

wd,i(k + j|k) = max
l∈I

ŵl
d,i(k + j|k) (8.1c)

and the minumum at the same prediction time instant is

wd,i(k + j|k) = min
l∈I

ŵl
d,i(k + j|k). (8.1d)

Combining (8.1a) and (8.1c), the vector of upper bounds
can be derived as

w(k + j|k) = [wr,1(k + j|k), . . . , wr,Nr(k + j|k),
wd,1(k + j|k), . . . , wd,Nd

(k + j|k)]
. (8.2a)

Similarly, the vector of lower bounds can be derived as

w(k + j|k) = [wr,1(k + j|k), . . . , wr,Nr(k + j|k),
wd,1(k + j|k), . . . , wd,Nd

(k + j|k)]
 (8.2b)

by combining (8.1b) and (8.1d). With (8.2), we can formulate a
robust interval for the uncertain input, [w(k + j|k), w(k + j|k)].
In minimax MPC, it is assumed that the uncertain input
ŵ(k + j|k) can take any value in this interval, i.e.,

ŵ(k + j|k) ∈ [w(k + j|k), w(k + j|k)]. (8.3)

Remark 8.1.1. As an alternative to (8.3), one could also con-
sider a confidence region that captures the dependency of
some uncertain variables. This way, correlation between the
available renewable infeed of wind turbines or PV power
plants that are geographically close to each other could be
employed to reduce the complexity of the associated minimax
MPC approaches and potentially decrease the conservative-
ness of resulting control actions. However, for simplicity and
generality this alternative was not considered in this thesis.

8.1.2 Minmax MPC problem formulation

We can easily formulate a minimax MPC problem that consid-
ers a bounded uncertain input within the intervals from (8.3).
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Therefore, we define ŵ = [ŵ(k + j|k)]J−1
j=0 , w = [w(k + j|k)]J−1

j=0 , Recall from Section 5.3
that γ ∈ (0, 1] is a discount
factor that is used em-
phasize decisions in the
near future. Further recall
that the decision variables
are v = [v(k + j|k)]J−1

j=0 ,

x = [x(k + j|k)]Jj=1 and

z = [z(k + j|k)]Jj=1.

and w = [w(k + j|k)]J−1
j=0 . Using these vectors, the minimax

MPC problem can be stated as follows.

Problem 4 (Minimax MPC of islanded MGs). Solve the opti-
mization problem

min
v,x,z

max
ŵ∈[w,w]

J−1

∑
j=0

�
(
v(k + j − 1|k), v(k + j|k),

z(k + j + 1|k), x(k + j + 1|k))γj+1

subject to

x(k + j + 1|k) = Ax(k + j|k) + B̃z(k + j + 1|k),
h1 ≤ H1 x(k + j + 1|k),
h2 ≤ H2

[
v(k + j|k)
 z(k + j + 1|k)
 ŵ(k + j + 1|k)
]
,

g = G
[
v(k + j|k)
 z(k + j + 1|k)
 ŵ(k + j + 1|k)
]
,

∀ŵ(k + j|k) ∈ [w(k + j|k), w(k + j|k)] and ∀j = 0, . . . , J − 1,
with given initial conditions x(k|k) = xk and v(k − 1) = vk−1.

Problem 4 is hard to solve because of two reasons: (i) The
constraints in Problem 4 need to hold for any uncertain in-
put ŵ(k + j|k) in the interval [w(k + j|k), w(k + j|k)]. (ii) The
worst-case cost over all possible disturbance realizations is
minimized in Problem 4. In order to identify this worst-case
cost, all combinations of minimum and maximum stage costs
over the prediction horizon need to be enumerated. Con-
sequently, the number of worst-case cost candidates grows
exponentially in the prediction horizon, which can make it
hard to solve Problem 4 for longer horizons.

In the next sections, we will see how to formulate an al-
ternative minimax MPC problem that is easier to solve than
Problem 4. Therefore, in Section 8.2 the constraints of Prob-
lem 4 will be equivalently posed using only combinations
extreme values from the interval [w(k + j|k), w(k + j|k)]. Then,
in Section 8.3 an alternative cost function that avoids an exces-
sive enumeration of all candidates will be posed. Finally, in
Section 8.4 the alternative MPC problem will be posed.
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8.2 Model variables

In what follows, the model variables and constraints of the
alternative MPC problem are introduced. First, constraints
related to the power and energy of the units are provided.
Then, power flow over the lines in the context of minimax
MPC is discussed.

8.2.1 Power of units

We consider a minimax approach that approximately follows
the model with additive disturbance in [138]. Thus, we as-
sume a bounded uncertain input of the form (8.3) and a single
control input trajectory v(k|k), . . . , v(k + J|k). In the formu-
lation, we do not consider feedback in the predicted control
inputs, i.e., for every step j ∈ N[0,J−1] only one control input
is assumed [72, 283]. Formulations that disregard feedback
in the prediction are often referred to as open-loop schemes
[138, 204].2 In contrast, formulations that consider feedback 2 Even though these formu-

lations are referred to as
open-loop schemes, they are
used in a closed-loop control
setting (see Figure 8.6). The
term “open-loop” only refers
to the fact that no feedback
is considered in the MPC
formulation.

in the problem formulation are often referred to as closed-
loop schemes. Unfortunately, closed-loop formulations that
consider state feedback can lead to nonlinear optimization
problems or problems that grow exponentially in the length
of the prediction horizon [90, 139, 236].3 Therefore, only an

3 There exist so-called “ap-
proximate closed-loop”
schemes [90, 139] that con-
sider disturbance feedback
in the problem formulation
and can be solved more
easily than “real” closed-
loop schemes. However,
for simplicity they were not
considered in this thesis.

open-loop minimax scheme, which can be formulated as an
MIQCP, is considered in this thesis.

As only a single input trajectory v(k|k), . . . , v(k + J|k) is
considered, the control variables δt(k + j|k) and u(k + j|k)
for j = 0, . . . , J − 1 are not directly affected by the uncer-
tain input. In contrast, the variables in z(k + j + 1|k), i.e.,
p(k + j + 1|k), δr(k + j + 1|k) and μ(k + j + 1|k), are influenced
by ŵ(k + j + 1|k).

Load wd(k + j + 1|k) and renewable infeed pr(k + j + 1|k)
are both monotonically increasing in ŵ(k + j + 1|k) because
of (4.2) and (4.12). Furthermore, μ(k + j + 1|k) is a function of In the context of this chapter,

(4.12) has the form

pr(k + j + 1|k) =
min(ur(k + j|k),

ŵr(k + j + 1|k)).

the uncertain input. This can be seen using (4.28b), i.e.,

0 = 1

Nt

pt(k + j + 1|k) + 1

Ns

ps(k + j + 1|k)+
1


Nr
pr(k + j + 1|k) + 1


Nd
wd(k + j + 1|k). (8.4a)
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With (4.37), this can be rewritten as

0 = μ(k + j + 1|k)(1

Nt

K−1
t δt(k + j|k) + 1


Ns
K−1

s 1Ns

)
+

1

Nt

ut(k + j + 1|k) + 1

Ns

us(k + j + 1|k)+
1


Nr
pr(k + j + 1|k) + 1


Nd
wd(k + j + 1|k). (8.4b)

Recall that Kt and Ks are diagonal matrices with positive

In the context of this chapter,
(4.37) becomes

Ks(ps(k + j + 1|k)−
us(k + j|k)) =

μ(k + j + 1|k)1Ns ,

and

Kt(pt(k + j + 1|k)−
ut(k + j|k)) =

μ(k + j + 1|k)δt(k + j|k).
diagonal entries. Therefore, μ(k + j + 1|k) must be mono-
tonically decreasing in ŵ(k + j + 1|k) to ensure that (8.4b)
holds. Because of (4.37), the power vectors of conventional
and storage units, pt(k + j + 1|k) and ps(k + j + 1|k), are both
monotonically increasing in μ(k + j + 1|k). Consequently,
pt(k + j + 1|k) and ps(k + j + 1|k) are monotonically decreas-
ing in ŵ(k + j + 1|k).

In conclusion, all elements of z(k + j + 1|k) are either
monotonically increasing or decreasing in ŵ(k + j + 1|k).
Therefore, the extreme values of the auxiliary vector can be
deduced by considering the minimum and maximum distur-
bance. Replacing z(k + j + 1|k) by z(k + j + 1|k) ∈ RNz and
z(k + j + 1|k) ∈ RNz the extreme values can be indirectly
obtained via the constraints

h2 ≤ H2
[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1|k)
]
,

(8.5a)

g = G
[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1|k)
]
,

(8.5b)

and

h2 ≤ H2
[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1|k)
]
,

(8.5c)

g = G
[
v(k + j|k)
 z(k + j + 1|k)
 w(k + j + 1|k)
]
,

(8.5d)

which are both based on (5.1c) and (5.1d). Note that the vec-
tor z(k + j + 1|k) contains the extreme values associated with
w(k + j + 1|k). Thus, some entries of z(k + j + 1|k) are at their
minimum and others are at their maximum. For example,
z(k + j + 1|k) comprises the minimum value of pr(k + j + 1|k)
and the maximum value of ps(k + j + 1|k). The same holds for
z(k + j + 1|k).
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If z(k + j + 1|k) and z(k + j + 1|k) satisfy unit power and
power sharing constraints of the form (5.1c) and (5.1d), then
the intermediate power values between these extremes also
satisfy these constraints because of their monotonicity in
ŵ(k + j + 1|k). Thus, if (8.5) holds, then the power-related
constraints, except for the line power, are satisfied for all
ŵ(k + j + 1|k) in [w(k + j + 1|k), w(k + j + 1|k)].

j j + 1

w(k + j + 1|k)

w(k + j + 1|k)

z(k + j + 1|k)

z(k + j + 1|k)

v(k + j|k)

j j + 1

x(k + j|k)

x(k + j|k) x(k + j + 1|k)

x(k + j + 1|k)

Figure 8.2: Temporal relation
variables in minimax MPC.

In Figure 8.2, the relation of the different variables is illus-
trated. Here, the forecast of the uncertain input performed at
time instant k for the prediction interval between j and j + 1 is
represented by the bounds w(k + j + 1|k), w(k + j + 1|k) and
the area in between. As pointed out in Section 5.1, the control
input during this prediction interval is v(k + j|k).
Example 8.2.1 (Relation of uncertain input, control input and
power). Consider the MG topology from Figure 4.1. For the
time period from j = 0 to j = 1, the uncertain input, is
known to be between w(k + 1|k) = [wr(k + 1|k) wd(k + 1|k)]

and w(k + 1|k) = [wr(k + 1|k) wd(k + 1|k)]
. For the same
time period, an optimal control decision v(k|k) needs to be
made without knowing which w(k + 1|k) from the inter-
val [w(k + 1|k), w(k + 1|k)] occurs. Thus, the control input
v(k|k) = [ut(k|k) us(k|k) ur(k|k) δt(k|k)]
 must be feasible for
all possible uncertain inputs from this interval. The bounded
uncertain input affects the power of the units. Therefore, the
unit power is also given in the form of an interval with a
lower and an upper bound.

In what follows, three combinations of uncertain input,
control input and unit power will be discussed. In these ex-
amples, only stage 0 to 1 will be considered.

1. Let us start with the uncertain inputs and power setpoints
in Figure 8.3. Here, the bounds of available renewable
power, wr(k + 1|k) and wr(k + 1|k), are both above the
power setpoint ur(k|k). Consequently, following (4.12), the
power bounds of the wind turbine become

pr(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = ur(k|k), (8.6a)

p
r
(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = ur(k|k). (8.6b)

Power and power setpoint of the conventional unit are
forced to zero by δt(k|k) = 0 via (4.7), i.e., ut(k|k) = 0 and
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Figure 8.3: Unit power in
minimax MPC with high
available renewable infeed
and disabled conventional
generator.

p
t
(k + 1|k) = pt(k + 1|k) = 0. Therefore, the storage unit

must cover all fluctuations of the load and the renewable
unit. This is reflected by the power balance equation (4.28b)
which with p

t
(k + 1|k) = pt(k + 1|k) = 0 becomes

ps(k + 1|k) = −pr(k + 1|k)− wd(k + 1|k),
= −ur(k|k)− wd(k + 1|k), (8.6c)

p
s
(k + 1|k) = −p

r
(k + 1|k)− wd(k + 1|k),

= −ur(k|k)− wd(k + 1|k). (8.6d)

In Figure 8.3, this is illustrated by a storage power which
changes depending on the uncertain input. If the load
power is at the lower bound wd(k + 1|k), then the storage
power p

s
(k + 1|k) is zero. If the load power is at the upper

bound wd(k + 1|k), then the storage unit is slightly charged
with ps(k + 1|k) < 0. For intermediate values of load
power, the storage power is between these bounds.

2. Let us now consider the uncertain inputs and power set-
points in Figure 8.4. Here, the bounds of the available
renewable infeed wr(k + 1|k) and wr(k + 1|k) are both below
the maximum allowed renewable infeed ur(k|k). Conse-
quently, in this case renewable infeed is not curtailed.4 4 An operation with uncur-

tailed RES can also be found
in grids with a low share
of RES where a limitation
renewable infeed is not
required.

Following (4.12), the power of the renewable units therefore
is within the bounds

pr(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = wr(k + 1|k),
(8.7a)



minimax mpc 107

Figure 8.4: Unit power in
minimax MPC with low
available renewable infeed
and enabled conventional
generator.

p
r
(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = wr(k + 1|k).

(8.7b)

The power of conventional and storage unit are determined
through power sharing (4.35), which for χs = χt = 1 reads

us(k|k)− ps(k + 1|k) = ut(k|k)− pt(k + 1|k), (8.7c)

us(k|k)− p
s
(k + 1|k) = ut(k|k)− p

t
(k + 1|k). (8.7d)

Together with the power balance equations (4.28b), i.e.,

0 = pt(k + 1|k) + ps(k + 1|k) + pr(k + 1|k) + wd(k + 1|k),
(8.7e)

0 = p
t
(k + 1|k) + p

s
(k + 1|k) + p

r
(k + 1|k) + wd(k + 1|k),

(8.7f)

this can be transformed into5 5 See, e.g., Example 4.8.2
for a detailed derivation of
equations (8.7g)–(8.7j).pt(k + 1|k) = ut(k|k)− us(k|k)− pr(k + 1|k)− wd(k + 1|k)

2
,

(8.7g)

p
t
(k + 1|k) =

ut(k|k)− us(k|k)− p
r
(k + 1|k)− wd(k + 1|k)
2

.

(8.7h)

The storage unit’s bounds can be similarly deduced as

ps(k + 1|k) = us(k|k)− ut(k|k)− pr(k + 1|k)− wd(k + 1|k)
2

,

(8.7i)
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Figure 8.5: Unit power in
minimax MPC with medium
available renewable infeed
and disabled conventional
generator.

p
s
(k + 1|k) =

us(k|k)− ut(k|k)− p
r
(k + 1|k)− wd(k + 1|k)
2

.

(8.7j)

In Figure 8.4, it can be seen that the power bounds of
the storage and the conventional unit change with the
uncertain input. For p

r
(k + 1|k) = wr(k + 1|k) and

wd(k + 1|k) where the absolute value of the load is high
and infeed from the wind turbine is low, the storage unit
is charged less aggressively with p

s
(k + 1|k) and the

conventional unit provides more power p
t
(k + 1|k). For

pr(k + 1|k) = wr(k + 1|k) and wd(k + 1|k), where the ab-
solute value of the load is small and infeed from the wind
turbine is high, the storage unit is charged more aggres-
sively with ps(k + 1|k) and the conventional unit provides
less power pt(k + 1|k). For intermediate load and renew-
able power values, the power of the storage and conven-
tional unit lies between the bounds given by (8.7g)–(8.7j).

Note that for χs = χt = 1, the distance between power and
setpoints is equal for the storage and the conventional unit.
Using this relation, one can modify the power of the units
by increasing or decreasing the individual setpoints.

3. In this last example, the wind turbine’s setpoint ur(k|k)
is between the bounds wr(k + 1|k) and wr(k + 1|k) (see
Figure 8.5). Following (4.12), the power of the renewable
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units therefore in the interval [p
r
(k + 1|k), pr(k + 1|k)] with

pr(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = ur(k|k), (8.8a)

p
r
(k + 1|k) = min(ur(k|k), wr(k + 1|k)) = wr(k + 1|k).

(8.8b)

Power and setpoint of the conventional unit are forced Note that the inequalities

pr(k + 1|k) ≤ ur(k|k),
pr(k + 1|k) ≤ wr(k + 1|k),
p

r
(k + 1|k) ≤ ur(k|k),

p
r
(k + 1|k) ≤ wr(k + 1|k),

do not model to the same
behavior as (8.8a) and
(8.8b). Using the above
inequalities would, among
other undesired effects, allow
for power values that are
below the forecast of the
uncertain input without the
need to reduce the power
setpoint. In the closed
loop, this could result in
large power setpoints (and
therefore in large power
values for the plant) even
though, lower power values
were considered in the MPC.
In conclusion, only the min
operator can ensure that
a limitation of available
renewable power is modeled
correctly in the minimax
MPC formulations.

to zero by δt(k|k) = 0 via (4.7), i.e., ut(k|k) = 0 and
p

t
(k + 1|k) = pt(k + 1|k) = 0. The bounds of the storage

unit’s power are determined by the power balance equation
(4.28b) which with p

t
(k + 1|k) = pt(k + 1|k) = 0 reads

ps(k + 1|k) = −pr(k + 1|k)− wd(k + 1|k),
= −wr(k + 1|k)− wd(k + 1|k), (8.8c)

p
s
(k + 1|k) = −p

r
(k + 1|k)− wd(k + 1|k),

= −ur(k|k)− wd(k + 1|k). (8.8d)

In Figure 8.5, it can be seen that the power of the storage
unit changes with the uncertain input. If renewable infeed
is low, p

r
(k + 1|k) = wr(k + 1|k), and the absolute value

of the load is large, wd(k + 1|k), then the storage unit is
discharged with p

s
(k + 1|k). For pr(k + 1|k) = ur(k|k)

and wd(k + 1|k), where the absolute value of the load is
small and renewable infeed is large, the storage unit is
charged with ps(k + 1|k). For intermediate values, of load
and renewable infeed, the storage power is between these
bounds.

One last important thing to note in this example is that
the power of the storage unit is independent from the
power setpoint and only depends on the power of the
renewable unit and the load. The reason for this is that we
are in islanded operation where a local power equilibrium
needs to be maintained at all times. Because the storage
is the only enabled6 grid-forming unit, it has to cover all 6 Recall that the grid forming

conventional generator is
disabled in this last example.

fluctuations, independent of its power setpoint. The same
naturally hods for the first example (see Figure 8.3).

8.2.2 Energy of units

The bounds of the predicted state can be derived from the
bounds of the storage power. As the state depends linearly on
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the storage power, the bounds can be derived from (5.1a) as

x(k + j + 1|k) = Ax(k + j|k) + B̃z(k + j|k), (8.9a)

x(k + j + 1|k) = Ax(k + j|k) + B̃z(k + j|k), (8.9b)

with initial values x(k|k) = x(k|k) = xk. The evolution
of the states is illustrated in Figure 8.2. Here, the gray area
represents the robust interval with bounds given by (8.9). For
both bounds, constraint (5.1b) must hold, i.e.,

h1 ≤ H1 x(k + j + 1|k), (8.10a)

h1 ≤ H1 x(k + j + 1|k). (8.10b)

8.2.3 Power flow

The maximum line power cannot always be deduced from
one of the extreme cases w(k + j + 1|k) or w(k + j + 1|k). This
is illustrated in the following section.

Based on (4.28a), the power flow constraints can be formu-
lated as

pmin
e ≤ pe(k + j + 1|k) ≤ pmax

e , (8.11a)

where the predicted power of the lines is given by (4.27), i.e.,

pe(k + j + 1|k) =

⎡⎢⎢⎣
f̃t,1 f̃s,1 f̃r,1 f̃d,1
...

...
...

...
f̃t,Ne f̃s,Ne f̃r,Ne f̃d,Ne

⎤⎥⎥⎦
︸ ︷︷ ︸

F̃U

⎡⎢⎢⎢⎣
pt(k + j + 1|k)
ps(k + j + 1|k)
pr(k + j + 1|k)
wd(k + j + 1|k)

⎤⎥⎥⎥⎦
(8.11b)

with the row vectors f̃t,i ∈ R1×Nt , f̃s,i ∈ R1×Ns , f̃r,i ∈ R1×Nr ,
and f̃d,i ∈ R1×Nd for i ∈ N[1,Ne]. Using these vectors, the
predicted power of transmission line i is

pe,i(k + j + 1|k) = f̃t,i pt(k + j + 1|k) + f̃s,i ps(k + j + 1|k)+
f̃r,i pr(k + j + 1|k) + f̃d,iwd(k + j + 1|k). (8.12a)



minimax mpc 111

With (4.37), this can be rewritten as

pe,i(k + j + 1|k) =
f̃t,i
(
K−1

t μ(k + j + 1|k)δt(k + j|k) + ut(k + j|k))+
f̃s,i
(
K−1

s μ(k + j + 1|k)1Ns + us(k + j|k))+
f̃r,i pr(k + j + 1|k) + f̃d,iwd(k + j + 1|k)

(8.12b)

⇐⇒ pe,i(k + j + 1|k) =
μ(k + j + 1|k)( f̃t,iK−1

t δt(k + j|k) + f̃s,iK−1
s 1Ns

)
+

f̃t,iut(k + j|k) + f̃s,ius(k + j|k)+
f̃r,i pr(k + j + 1|k) + f̃d,iwd(k + j + 1|k).

(8.12c)

The right hand side of (8.12c) represents a linear combina-
tion of values that depend on the uncertain input. For (8.11a)
to hold for all ŵ(k + j + 1|k) ∈ [w(k + j + 1|k), w(k + j + 1|k)],
it is required to show that the maximum and minimum val-
ues of pe,i(k + j + 1|k) are within the limit. Due to positive
and negative coefficients in F̃U, the extreme values of the
line power are not necessarily given for the extreme values
w(k + j + 1|k) or w(k + j + 1|k).7 However, we know that 7 For given δt(k + j|k), the

extreme combinations of
disturbances that lead the
maximum an minimum
line power could be easily
identified offline. However,
as δt(k + j|k) is an unknown
decision variable this is not
possible.

the minimum and maximum are given for combinations of
minimum and maximum disturbance values.

In what follows, W(k + j + 1|k) denotes the set of all vec-
tors of combinations of minimum and maximum values ex-
cept for ŵ(k + j + 1|k) = w(k + j + 1|k) and ŵ(k + j + 1|k) =
w(k + j + 1|k) which are already considered in (8.5). Thus,
W(k + j + 1|k) includes Nμ̃ = (2(Nr+Nd) − 2) vectors in
R(Nr+Nd).8 8 Note that the number of

scenarios Nμ̃ can be reduced
by exploiting the structure
of F̃U. This can be done,
for example, by searching
for rows in F̃U that exhibit
the same combinations of
negative, positive and zero
entries.

Each combination of minimum and maximum values, i.e.,
each vector w(l)(k + j + 1|k) ∈ W(k + j + 1|k), l ∈ N[1,Nμ̃ ]

can result in a different μ(l)(k + j + 1|k) ∈ R because
of (8.4b). The values of μ(l)(k + j + 1|k) are collected in

μ̃(k + j + 1|k) = [μ(l)(k + j + 1|k)]Nμ̃

l=1. Moreover, for given
v(k + j|k), each combination w(l)(k + j + 1|k) can result in a
different vector of renewable infeed p(l)r (k + j + 1|k). The ele-
ments of p(l)r (k + j + 1|k) are either elements of z(k + j + 1|k)
or of z(k + j + 1|k). Therefore, no additional decision variables
need to be introduced to obtain p(l)r (k + j + 1|k). Thus, the
constraints for every combination l ∈ N[1,Nμ̃ ] of disturbances
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w(l)(k + j + 1|k) = [w(l)
r (k + j + 1|k)
 w(l)

d (k + j + 1|k)
]
,
w(l)(k + j + 1|k) ∈ W(k + j + 1|k) are

pmin
e ≤ F̃U

⎡⎢⎢⎢⎢⎣
K−1

t μ(l)(k + j + 1|k)δt(k + j|k) + ut(k + j|k)
K−1

s μ(l)(k + j + 1|k)1Ns + us(k + j|k)
p(l)r (k + j + 1|k)
w(l)

d (k + j + 1|k)

⎤⎥⎥⎥⎥⎦≤ pmax
e

(8.13a)

and

0 = μ(l)(k + j + 1|k)(1

Nt

K−1
t δt(k + j|k) + 1


Ns
K−1

s 1Ns

)
+

1

Nt

ut(k + j|k) + 1

Ns

us(k + j|k)+
1


Nr
p(l)r (k + j + 1|k) + 1


Nd
w(l)

d (k + j + 1|k). (8.13b)

In order to formulate a problem that can be solved by
an MIQCP solver, we need to remove the multiplication
of the decision variables μ(l)(k + j + 1|k) and δt(k + j|k).
This is done by introducing the additional decision vari-
able ζ(l)(k + j + 1|k) ∈ RNt which is a column of the matrix
ζ(k + j + 1|k) = [ζ(l)(k + j + 1|k) · · · ζ(Nμ̃)(k + j + 1|k)] and
using the constraint

ζ(l)(k + j + 1|k) = μ(l)(k + j + 1|k)δt(k + j|k). (8.14)

In a similar fashion as (4.39), this can be reformulated as

ζ(l)(k + j + 1|k) ≤ Mtδt(k + j|k), (8.15a)

ζ(l)(k + j + 1|k) ≥ mtδt(k + j|k), (8.15b)

ζ(l)(k + j + 1|k) ≤ 1Nt μ
(l)(k + j + 1|k)− mt(1Nt − δt(k + j|k)),

(8.15c)

ζ(l)(k + j + 1|k) ≥ 1Nt μ
(l)(k + j + 1|k)− Mt(1Nt − δt(k + j|k)).

(8.15d)

Using ζ(l)(k + j + 1|k), we can further reformulate (8.13) into
the affine constraints

pmin
e ≤ F̃U

⎡⎢⎢⎢⎢⎣
K−1

t ζ(l)(k + j + 1|k) + ut(k + j|k)
K−1

s μ(l)(k + j + 1|k)1Ns + us(k + j|k)
p(l)r (k + j + 1|k)
w(l)

d (k + j + 1|k)

⎤⎥⎥⎥⎥⎦ ≤ pmax
e

(8.15e)
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and

0 = 1

Nt

K−1
t ζ(l)(k + j + 1|k) + 1


Ns
K−1

s μ(l)(k + j + 1|k)1Ns+

1

Nt

ut(k + j|k) + 1

Ns

us(k + j|k)+
1


Nr
p(l)r (k + j + 1|k) + 1


Nd
w(l)

d (k + j + 1|k). (8.15f)

Example 8.2.2. For the running example in Figure 4.1, and the
set W(k + j + 1|k) is

W(k + j + 1|k) =
{[

wr(k + j + 1|k)
wd(k + j + 1|k)

]
,

[
wr(k + j + 1|k)
wd(k + j + 1|k)

]}
.

8.3 Cost function

The goal of the presented minimax MPC approach is to
minimize the worst-case cost over prediction horizon J for
ŵ(k + j|k) ∈ [w(k + j|k), w(k + j|k)]. As the stage cost (5.2) is
convex with respect to the disturbance, the worst-case stage
cost is the maximum of

�(k + j + 1|k) = �
(
v(k + j − 1|k), v(k + j|k),

z(k + j + 1|k), x(k + j + 1|k)) (8.16a)

and

�(k + j + 1|k) = �
(
v(k + j − 1|k), v(k + j|k),

z(k + j + 1|k), x(k + j + 1|k)). (8.16b)

Using the epigraph reformulation from Lemma 3.3.2, the
maximum stage cost can be described as

max(�(k+ j+ 1|k), �(k+ j+ 1|k)) = min
�(k+j+1|k)≤t(k+j+1|k)
�(k+j+1|k)≤t(k+j+1|k)

t(k+ j+ 1|k),

(8.17)
with the additional free variable t(k + j + 1|k) ∈ R.

In minimax MPC, the worst-case cost over all possible
realizations of uncertain inputs shall be minimized. This in-
cludes the case where the uncertain input is always at the
maximum and the case where it is always at the minimum.
Unfortunately it also includes cases where the maximum cost
is obtained by considering the maximum uncertain input at



114 operation control of islanded microgrids

some stages and the minimum at others. Thus, to identify the
overall worst-case cost, all combinations of (8.16a) and (8.16b)
need to be enumerated over the prediction horizon.9 Conse- 9 Examples of such combina-

tions are

�(k + 1|k)γ1+

�(k + 2|k)γ2 + . . . ,

�(k + 1|k)γ1+

�(k + 2|k)γ2 + . . .

and

�(k + 1|k)γ1+

�(k + 2|k)γ2 + . . . .

quently, the number of worst-case cost candidates grows ex-
ponentially in the prediction horizon. It is therefore desirable
to find an alternative cost function and avoid an enumera-
tion of all candidates. One such alternative which provides a
bound to the worst-case costs can be found by combining the
stage-wise maximum cost. This can be formulated by a cost
∑J−1

j=0 t(k + j + 1|k)γj+1 and the constraints

t(k + j + 1|k) ≥ �(k + j + 1|k), (8.18a)

t(k + j + 1|k) ≥ �(k + j + 1|k) (8.18b)

for all j ∈ N[0,J−1]. With this cost and constraints from the
previous sections, we can now formulate a minimax MPC
problem.

8.4 MPC problem formulation

The MPC problem combines the overall cost with the con-
straints that model an islanded MG. In the problem formu-
lation, the forecast intervals [w(k + j + 1|k), w(k + j + 1|k)]
from Section 8.2 are used. Hence, the minimax MPC prob-
lem with decision variables z = [z(k + j|k) z(k + j|k)]Jj=1,

x = [x(k + j|k) x(k + j|k)]Jj=1, v = [v(k + j|k)]J−1
j=0 ,

μ̃ = [μ̃(k + j|k)]Jj=1, ζ = [ζ(k + j|k)]Jj=1 and t = [t(k + j|k)]Jj=1
reads as follows.

Recall from Section 5.3 that
γ ∈ (0, 1] is a discount factor
that is used emphasize
decisions in the near future.

Problem 5 (Alternative minimax MPC of islanded MGs).
Solve the optimization problem

min
v,x,z,μ̃,ζ,t

J−1

∑
j=0

t(k + j + 1|k)γj+1

subject to

constraints (8.5), (8.9), (8.10), (8.18)

as well as (8.15) ∀ŵ(k + j|k) ∈ W(k + j|k),
∀j = 0, . . . , J − 1,

with given initial conditions x(k|k) = x(k|k) = xk

and v(k − 1|k) = vk−1.
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Minimax
MPC

Microgrid

Uncertain RES
& load w(k)

Forecast

Historic RES &
load [w(j)]kj=0

Input

v(k) = v�(k|k)
Measurement

xk, vk−1

Robust intervals
of RES & load

[w(k + j|k)]Jj=1

[w(k + j|k)]Jj=1

Figure 8.6: Minimax MPC
scheme for operation of is-
landed MG at time instant k.8.4.1 MPC scheme

For the operation of an islanded MGs, Problem 5 is embed-
ded into the control scheme in Figure 8.6. Before solving the
minimax MPC problem, robust forecast intervals of load and
available renewable infeed are obtained as described in Sec-
tion 8.1.1. Together with the measurements of the current
state xk and the control input vk−1 that was applied in the
most recent time instant, they are used as an input to the min-
imax MPC. For these inputs, Problem 5 is solved. From the
resulting optimal input trajectory the value associated with
the first prediction instant v�(k|k) is applied to the MG. At
the next sampling time instant the robust intervals and the
measurements are updated and Problem 5 is solved repeat-
edly in a receding horizon fashion (see, e.g., [18, 23, 204] and
Section 3.2).

8.5 Example

In Figure 8.7 on page 116, the forecasts of the uncertain in-
put, power, setpoints and stored energy are shown. They
were derived by solving Problem 5 with initial conditions
xk = 0.5 pu h and δt(k−1|k) = 0. In the problem, the running
example in Figure 4.1 was considered.10 As uncertain input, 10 The unit parameters and

the weights of the cost
function can be found in
Tables 12.1 and 12.2.

the forecast intervals from Figure 8.1 were scaled for a rated
wind turbine power of 2 pu.

As described in Section 8.2, only one setpoint is considered
for each unit and each time instant. Power and energy are
given in the form of time-varying intervals.

The results in Figure 8.7 illustrate that the solution of Prob-
lem 5 leads to power setpoints where the worst-case, i.e., low
available wind power and high load are considered. In direct
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Figure 8.7: Open-loop
trajectories of minimax MPC.

comparison with the results of the certainty equivalence ap-
proach from Section 7.3, it can be noted in Table 8.1 that the
power setpoint for the wind turbine is much smaller for the
minimax MPC. Furthermore, the conventional generator is
enabled many times in Figure 8.7, whereas in the certainty
equivalence approach it was not enabled at all. This also indi-
cates that the increased security associated with robust fore-
cast intervals comes at the price of very conservative power
setpoints in the minimax approach.

Table 8.1: Power setpoints
of certainty equivalence and
minimax MPC.

Cert. Mini-
equiv. max

ut(k) 0 0.68
us(k) −0.81 −0.62
ur(k) 1.38 0.54

8.6 Summary

In this chapter a minimax MPC approach for islanded MGs
was derived. The approach is based on the assumption that
the prediction of the uncertain input is given in the form of
time-varying lower and upper bounds. Compared to the cer-
tainty equivalence MPC in Chapter 7, it provides the robust-
ness required in Sections 2.3.6 and 2.3.7. As no probabilistic
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information is considered, the worst-case cost with respect to
the given forecast interval is minimized in the approach.

The use of robust forecast intervals leads to a safe opera-
tion in the sense that no constraint violations occur in closed-
loop simulations in Chapter 12. However, considering only
a robust interval with no probabilistic information can lead
to overly conservative control actions and high costs in the
closed loop as the worst-case is very unlikely to occur. Ad-
ditionally, using only a single control input trajectory for all
possible values of the uncertain input can further increase the
conservativeness of the controller.

To cope with these drawbacks, in Chapters 10 and 11 a
risk-neutral stochastic and a risk-averse MPC approach are
derived. Both approaches consider multiple forecast scenar-
ios, where each scenario is associated with a certain proba-
bility. Furthermore, they model feedback within the MPC,
i.e., depending on the forecast of the uncertain input and the
resulting state, different control actions are considered in the
optimal control problems. Both approaches consider prob-
ability distributions in the form of scenario trees which are
introduced in the next chapter.





9
Scenario trees

In the previous chapters, a certainty equivalence and a mini-
max MPC formulation were presented. The certainty equiv-
alence approach, however, was found to lack robustness and
the minimax MPC came with overly conservative control ac-
tions. Both drawbacks can be addressed at the same time by
using scenario-based MPC. Here, a large number of indepen-
dent forecast scenarios of load and available renewable infeed
is desired to resemble the underlying probability distribution
sufficiently accurate. Unfortunately, this leads to a large num-
ber of decision variables which increases the computational
complexity of associated MPC problems. The use of scenario
trees, which can be interpreted as a discrete approximation
of probability distributions, can lead to a good compromise
in the form of manageable computational complexity and
sufficiently accurate forecast probability distributions.

This chapter aims to provide some basics on scenario trees.
It is based on [91, 93, 96, 169] and structured as follows. First,
a formal description of scenario trees is given in Section 9.1.
Then, the relation of model variables is discussed in Sec-
tion 9.2. Finally, one possible method to derive a scenario tree
from a collection of independent forecast scenarios is sketched
in Section 9.3.

9.1 Formal description of scenario trees

In what follows, first the relation of the different nodes in
the tree is outlined. Then, the probabilities of the nodes and
probability distributions on scenario trees are discussed.
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j = 0 j = 1 j = 2

v(0−) 0
x(0)

v(0)

1
x(1)

v(1)

2
x(2) v(2)

3
x(3)

4
x(4)

5
x(5)

ŵ(1) , z(1
) , π

(1)

ŵ (2), z (2), π (2)

ŵ(3) , z(3) , π
(3)

ŵ (4), z (4), π (4)

ŵ(5), z(5), π(5)

Figure 9.1: Example of a
scenario tree with states x(i),
control inputs v(i), uncer-
tain inputs ŵ(i), auxiliary
vectors z(i), and probabili-
ties π(i). Source: [93].

9.1.1 Relation of nodes

The following relation of nodes in a scenario tree employs a
notation that is very similar to the one in [51, 241]. Related
notations can also be found in [25, 186, 192, 212, 219, 222].

A scenario tree is a collection of Nn ∈ N nodes. Each node
is associated with a unique index i = 0, . . . , Nn − 1. The nodes
can be partitioned according to their prediction time instant,
i.e., the stages j = 0, . . . , J, with prediction horizon J ∈ N.
For the example in Figure 9.1, Nn = 6 and J = 2. The subset
that includes exactly the elements of stage j is denoted by
nodes(j) ⊆ N[0,Nn−1]. The stage of a node can be accessed via
stage(i) ∈ N[0,J]. In Figure 9.1, the stage-wise partitions are
nodes(0) = {0}, nodes(1) = {1, 2} and nodes(2) = {3, 4, 5}.
Furthermore, stage(0) = 0, stage(1) = stage(2) = 1 and
stage(3) = stage(4) = stage(5) = 2 (see also Table 9.1).

The nodes at stage J are called leaf nodes and the unique
node i = 0 at stage j = 0 is called root node. In Figure 9.1,
the set of leaf nodes is {3, 4, 5}. All non-leaf nodes, i.e.,
the elements of N[1,Nn] \ nodes(J) are connected to child
nodes. The set that includes all child nodes of i ∈ nodes(j)
is child(i) ⊆ nodes(j + 1). Similarly, all non-root nodes
i ∈ nodes(j), j ∈ N[1,J] are connected to a single ances-
tor node at stage j − 1. This ancestor can be accessed via
anc(i) ∈ nodes(stage(i)− 1). In Figure 9.1, child(0) = {1, 2},
child(1) = {3, 4} and child(2) = {5}. The ancestors are
anc(1) = anc(2) = 0, anc(3) = anc(4) = 1 and anc(5) = 2.

A sequence of nodes (s0, . . . , sJ) with sJ ∈ nodes(J), s0 = 0
and anc(sj) = sj−1 for all j = 1, . . . , J is called a scenario. Each
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Node i 0 1 2 3 4 5

Stage stage(i) 0 1 1 2 2 2
Set of children child(i) {1, 2} {3, 4} {5} ∅ ∅ ∅

Ancestor anc(i) n/a 0 0 1 1 2

Probability π(i) 1 π(1) π(2) π(3) π(4) π(5)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
∑ = 1 ∑ = π(1) = π(2)

State x(i) x(0) x(1) x(2) x(3) z(4) x(5)

Control input v(i) v(0) v(1) v(2) n/a n/a n/a
Uncertain input ŵ(i) n/a ŵ(1) ŵ(2) ŵ(3) ŵ(4) ŵ(5)

Auxiliary vector z(i) n/a z(1) z(2) z(3) z(4) z(5)

Table 9.1: Operators, proba-
bilities and model variables
of scenario tree in Figure 9.1.
Note that fields where corre-
sponding variables were not
required are marked n/a.

scenario ends with a unique leaf node. Therefore, the number
of scenarios equals the number of leaf nodes and every sce-
nario can be uniquely identified by its leaf node. The set of
all nodes that form the scenario that ends with sJ is denoted
by scen(sJ). The scenarios in Figure 9.1 are (0, 1, 3), (0, 1, 4)
and (0, 2, 5) with scen(3) = {0, 1, 3}, scen(4) = {0, 1, 4} and
scen(5) = {0, 2, 5}.

9.1.2 Probabilities

This section follows the notation introduced in [93, 222].1 1 If required the notation
could be easily transformed
into, for example, the one in
[241].

Each node i is associated with a probability π(i) ∈ (0, 1]. For
the probabilities of all nodes of stage j it holds that

∑i∈nodes(j) π(i) = 1. (9.1)

Furthermore, for every non-leaf node

π(i) = ∑i+∈child(i) π(i+) (9.2)

holds. For Figure 9.1, this means that π(0) = 1, π(1) + π(2) = 1
and π(3) + π(4) + π(5) = 1 as well as π(3) + π(4) = π(1) and
π(5) = π(2).

9.1.3 Probability distributions

Let us assume a time-varying discrete probability distribution
in the form of a scenario tree. For every stage j ∈ N[1,J], the
sample space of this distribution is nodes(j).2 Each element

2 Note that nodes(j) orig-
inates from a common
probability space for the
entire scenario tree using the
concept of filtration [241].i ∈ nodes(j) is associated with a probability π(i) > 0. As
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described in Section 9.1.2, it holds that ∑i∈nodes(j) π(i) = 1. Let
us denote the vector of all probabilities associated with stage
j by πj = [π(i)]i∈nodes(j). For the example in Figure 9.1, the
sample spaces are nodes(1) = {1, 2} and nodes(2) = {3, 4, 5}
with π1 = [π(1) π(2)]
 and π2 = [π(3) π(4) π(5)]
. At all
stages j = 0, . . . , J, the probability vectors πj are elements of

Dj =

{
π′ ∈ R

| nodes(j)|
≥0

∣∣∣∣ | nodes(j)|
∑
i=1

π′
i = 1

}
. (9.3)

This set is called probability simplex. The probability sim-
plex of a sample space with three elements is illustrated in
Figure 9.2.

Figure 9.2: Probability
simplex of probability
space with | nodes(j)| = 3.
Source: [93].

j = 0 j = 1 j = 2

0

1

2

3

4
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�
(1) , π

(1)

� (2), π (2)

�(
3) , π

(3)

� (4), π (4)

�(5), π(5)

Figure 9.3: Example of
scenario tree with costs �(i)

and probabilities π(i).

In the context of scenario-based optimization, a random
variable on nodes(j) is a function �̃j : nodes(j) → R with
�̃j(i) = �(i). In our case, �(i) represents the operating cost3

3 More details on the cost �(i)

can be found in Section 9.2.

from Section 5.2 that is associated with node i. The values
of �̃j are collected in �j = [�(i)]i∈nodes(j). Thus, for the sce-
nario tree in Figure 9.3, the vectors �1 = [�(1) �(2)]
 and
�2 = [�(3) �(4) �(5)]
 can be formed. Using the sample space
nodes(j), the events collected in �j and the probabilities col-
lected in πj, a probability space of dimension nodes(j) can be
formed.

Conditional probability distributions on scenario trees. We can
define conditional probability distributions on the space
nodes(j + 1), given that at stage j node i ∈ nodes(j) is visited
[241]. Therefore, we partition the set of nodes at stage j + 1
according to their ancestors at stage j. The resulting partitions
are disjoint sets child(i) ⊆ nodes(j + 1) for all i ∈ nodes(j)
with

nodes(j + 1) =
⋃

i∈nodes(j)

child(i). (9.4)

In this context, conditional probability means that given we
are at non-leaf node i ∈ N[0,Nn−1] \ nodes(J), the probability
of node i+ ∈ child(i) is π(i+)/π(i) [25, 241]. This allows to
form a probability space on child(i) using the conditional
probabilities of the child nodes of i,

π[i] =
1

π(i)

[
π(i+)

]
i+∈child(i), (9.5a)
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and random variables with vectors

�[i] =
[
�(i+)

]
i+∈child(i). (9.5b)

Note that due to (9.2), the sum over all elements in π[i] is 1.
In Figure 9.3 the probability space nodes(2) can be par-

titioned into child(1) and child(2). These spaces then have
probability vectors π[1] = 1/π(1)[π(3) π(4)]
, π[2] = 1/π(2)[π(5)]

and random variables with values �[1] = [�(3) �(4)]
 and
�[2] = [�(5)].

9.2 Model variables

Each node in a scenario tree is associated with decision vari-
ables and forecasts of load and available renewable infeed. In
what follows, the relation of these variables on a scenario tree
is discussed.

All non-leaf nodes i ∈ N[0,Nn−1] \ nodes(J) are associated
with a vector of control inputs v(i). For v(i), the uncertain
input, i.e., load and available renewable infeed, can take dif-
ferent values. More precisely, all uncertain inputs ŵ(i+) with
i+ ∈ child(i) can occur. Hence, the control input v(i) has to be
suitable for all possible values of ŵ(i+). The auxiliary vector
z(i+) changes with the control input v(i) and the predicted un-
certain input ŵ(i+). To indicate that v(i) is considered for the
same prediction time instant as all ŵ(i+), the control input v(i)

is positioned between the edges of the children of node i in
Figure 9.1. For node 0 of Figure 9.1, the relation of variables is
illustrated in Figure 9.4. Here, z(1) depends on (v(0), ŵ(1)) and
z(2) depends on (v(0), ŵ(2)).

j = 0 j = 1

v(0)
ŵ(2)

ŵ(1)

z(2)

z(1)

j = 0 j = 1

x(0)

x(2)

x(1)

Figure 9.4: Temporal relation
of variables on scenario tree.
Source: [93].Each node i is associated with state x(i) where x(0) corre-

sponds to an initially measured state. State x(i+) is a function
of the auxiliary vector z(i+) and the state of its ancestor, i.e.,

x(i+) = fx(x(i), z(i+)), (9.6)

with i = anc(i+). Note that via (9.6), the state x(i+) of each
node is associated with the auxiliary vector z(i+) and thereby
also with the uncertain input ŵ(i+).

Remark 9.2.1 (Nonanticipativity). In multistage stochas-
tic optimization problems, the decisions taken at each stage
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should be made without knowledge about the exact outcome
of the uncertain input. Thus, the decisions taken at stage k + j
should only depend on the knowledge available up to that
stage. This concept is typically referred to as nonanticipa-
tivity [55, 214, 241]. In the context of this thesis, the relation
of variables on the scenario trees is designed such that nonan-
ticipativity is automatically encoded into each scenario-based
problem. In detail, the control decision v(i) needs to take all
uncertain inputs, i.e., all elements of the set {ŵ(i+)}i+∈child(i),
into consideration without knowing which one will occur.

A prominent alternative to this strategy is to initially ig-
nore nonanticipativity in the design of the scenario tree, i.e.,
in the relation of variables, and enforce it later using equality
constraints. This leads to optimization problems with a larger
number of decision variables than the ones presented in this
thesis which, in the end, model the same system behavior.
Such a strategy is, for example, employed in [55].

Example 9.2.2 (Relation of uncertain input, control input and
power). Consider the MG topology from Figure 4.1 and the
scenario tree in Figure 9.1. For the time period from j = 0 to
j = 1, two realizations of uncertain inputs, w(1) = [w(1)

r w(1)
d ]


and w(2) = [w(2)
r w(2)

d ]
, are considered (see Figure 9.5).
For the same time period, an optimal control decision v(0)

needs to be made without knowing whether w(1) or w(2) will
occur. Thus, the control input v(0) = [u(0)

t u(0)
s u(0)

r δ
(0)
t ]


needs to lead to a feasible solution for both possible uncertain
inputs w(1) and w(2). This includes feasible power values
which depend on the uncertain input and the control input.
Therefore, in scenario-based MPC, for each realization of the
uncertain input, a vector of power values is considered.

j = 0 j = 1

[u(0)
t u(0)

s u(0)
r δ

(0)
t ]
0

1

2

[p
(1)
t

p
(1)
s

p
(1)
r
]


[w
(1)
r

w
(1)
d
]


[w (2)r w (2)
d ] 
[p (2)

t p (2)s p (2)r ] 


Figure 9.5: Scenario tree with
power-related variables.

In what follows, three examples with different uncertain
input, control input and unit power will be discussed. The
focus of these examples lies on stages 0 and 1 of the scenario
tree in Figure 9.1. However, the example works similarly for
any node with two child nodes, e.g., node 1 in Figure 9.1.

1. Let us first consider the uncertain inputs and power set-
points in Figure 9.6. Here, both forecasts of available re-
newable power, w(1)

r and w(2)
r , are above the power setpoint

u(0)
r . Consequently, following (4.12), the power of the re-
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Storage Figure 9.6: Unit power on
scenario tree with high
available renewable infeed
and disabled conventional
generator.

newable units becomes

p(1)r = min(u(0)
r , w(1)

r ) = u(0)
r , (9.7a)

p(2)r = min(u(0)
r , w(2)

r ) = u(0)
r . (9.7b)

The power and the power setpoint of the conventional unit
are forced to zero by δ

(0)
t = 0 via (4.7), i.e., u(0)

t = 0 and

p(1)t = p(2)t = 0. Hence, the storage unit needs to cover all
fluctuations of the load and the renewable generator. This
is reflected by the power balance equation (4.28b) which
with p(1)t = p(2)t = 0 becomes

p(1)s = −p(1)r − w(1)
d = −u(0)

r − w(1)
d , (9.7c)

p(2)s = −p(2)r − w(2)
d = −u(0)

r − w(2)
d . (9.7d)

In Figure 9.6, it is shown how the storage power changes
with the uncertain input. For a large absolute load power
w(1)

d , the storage power p(1)s is zero. For a lower absolute

load power w(2)
d , the storage is slightly charged with p(2)s .

2. Let us now consider the uncertain inputs and power set-
points in Figure 9.7. Here, both forecasts of available re-
newable power, w(1)

r and w(2)
r , are below the maximum

allowed renewable infeed u(0)
r . Consequently, in this case,

renewable infeed is not curtailed.4 Following (4.12), the

4 An operation with uncur-
tailed RES can also be found
in grids with a low share
of RES where a limitation
renewable infeed is not
required.
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Storage Figure 9.7: Unit power
on scenario tree with low
available renewable infeed
and enabled conventional
generator.

power of the renewable units therefore becomes

p(1)r = min(u(0)
r , w(1)

r ) = w(1)
r , (9.8a)

p(2)r = min(u(0)
r , w(2)

r ) = w(2)
r . (9.8b)

The power of the conventional and the storage unit are
determined by power sharing (4.35). For χs = χt = 1, the
equations in this example read

u(0)
s − p(1)s = u(0)

t − p(1)t , (9.8c)

u(0)
s − p(2)s = u(0)

t − p(2)t . (9.8d)

Together with the power balance equation (4.28b), i.e.,

0 = p(1)t + p(1)s + p(1)r + w(1)
d , (9.8e)

0 = p(2)t + p(2)s + p(2)r + w(2)
d , (9.8f)

this can be transformed into5 5 See, e.g., Example 4.8.2
for a detailed derivation of
equations (9.8g)–(9.8j).

p(1)t =
u(0)

t − u(0)
s − p(1)r − w(1)

d
2

, (9.8g)

p(2)t =
u(0)

t − u(0)
s − p(2)r − w(2)

d
2

. (9.8h)

The power of the storage unit can be similarly deduced as

p(1)s =
u(0)

s − u(0)
t − p(1)r − w(1)

d
2

, (9.8i)

p(2)s =
u(0)

s − u(0)
t − p(2)r − w(2)

d
2

. (9.8j)
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In Figure 9.7, it can be seen that the power of the storage
and the conventional unit changes depending on the un-
certain input. For p(1)r = w(1)

r and w(1)
d , where the absolute

value of the load is large and infeed from the wind turbine
is low, the storage unit is charged less aggressively with
p(1)s and the conventional unit provides more power p(1)t . A

similar behavior can be observed for p(2)r = w(2)
r and w(2)

d ,
where the absolute value of the load is small and infeed
from the wind turbine is high. Here, the storage unit is
charged more aggressively with p(2)s and the conventional
unit provides less power p(2)t .

Note that for χs = χt = 1, the distance between power and
power setpoints is equal for the storage and the conven-
tional unit. With this relation, one can modify the power of
the units by increasing or decreasing the power setpoints.

3. In the last example in Figure 9.8, the wind turbine’s power
setpoint u(0)

r is between w(1)
r and w(2)

r . Following (4.12), the
power of the renewable generator therefore becomes

p(1)r = min(u(0)
r , w(1)

r ) = w(1)
r , (9.9a)

p(2)r = min(u(0)
r , w(2)

r ) = u(0)
r . (9.9b)

Note that the inequalities

p(1)r ≤ u(0)
r ,

p(1)r ≤ w(1)
r ,

p(2)r ≤ u(0)
r ,

p(2)r ≤ w(2)
r ,

do not model to the same
behavior as (9.9a) and
(9.9b). Using the above
inequalities would, among
other undesired effects, allow
for power values that are
below the forecast of the
uncertain input without the
need to reduce the power
setpoint. In the closed
loop, this could result in
large power setpoints (and
therefore also large power
values for the plant) even
though, lower power values
were considered in the MPC.
In conclusion, only the min
operator can ensure that
a limitation of available
renewable power is modeled
correctly in the scenario-
based MPC formulations.

Power and power setpoint of the conventional unit are
forced to zero, i.e., u(0)

t = p(1)t = p(2)t = 0, by δ
(0)
t = 0

via (4.7). The power of the storage unit is determined by
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(4.28b) which with p(1)t = p(2)t = 0 can be transformed into

p(1)s = −p(1)r − w(1)
d = −u(0)

r − w(1)
d , (9.9c)

p(2)s = −p(2)r − w(2)
d = −w(2)

r − w(2)
d . (9.9d)

In Figure 9.8, it can be seen how the power of the storage
unit changes with the uncertain input. In case of p(1)r =

w(1)
r and w(1)

d , where the absolute value of the load is high
and infeed from the wind turbine is low, the storage unit is
discharged with p(1)s . For p(2)r = u(0)

r and w(2)
d , where the

absolute value of the load is low and renewable infeed is
high, the storage unit is charged with p(2)s .

One last important thing to note in this example is that
the power of the storage unit is independent of its set-
point and only depends on the power of the renewable
unit and the load. The reason for this is that we are in is-
landed operation where a local power equilibrium needs to
be maintained at all times. Because the storage is the one
grid-forming unit, it has to cover all fluctuations, indepen-
dent of its setpoint. The same naturally hods for the first
example in Figure 9.6.

Compact MG model for scenario-based MPC. Using the relation
of model variables discussed earlier, the constraints (5.1) can
be formulated for a scenario tree. For every non-root node
i+ ∈ N[1,Nn−1] with i = anc(i+), they are

x(i+) = Ax(i) + B̃z(i+), (9.10a)

h1 ≤ H1 x(i+), (9.10b)

h2 ≤ H2
[
v(i)
 z(i+)
 ŵ(i+)
]
, (9.10c)

g = G
[
v(i)
 z(i+)
 ŵ(i+)
]
, (9.10d)

with given initial state x(0) = xk.
The costs at every non-root node i+ ∈ N[1,Nn−1] with

i = anc(i+) and i− = anc(i) is
Recall from Section 5.3 that
γ ∈ (0, 1] is a discount factor
that is used emphasize
decisions in the near future.

�(i+) = �(v(i−), v(i), z(i+), x(i+))γstage(i+), (9.11a)

with given current input v(0−) = vk−1. Even though the cost
is associated with node i+, it mostly depends on the decision



scenario trees 129

v(i) as z(i+) and x(i+) change with v(i). Moreover, it depends
on the on/off switch of the conventional unit at ancestor node
i−. Hence, the decision at the root node v(0) also depends on
the current value of δ

(0−)
t which is part of v(0−).

Using (9.11a), the vector of costs for every stage j ∈ N[1,J] is

�j = [�(i+)]i+∈nodes(j). (9.11b)

Thus, the multi-stage cost of the entire tree can be described
by the sequence of vectors (�1, . . . , �J).

Remark 9.2.3 (Decision variables on tree). Note that (9.10)
and (9.11) do not include the control inputs at stage J, i.e.,
[v(i)]i∈nodes(J). The reason for this is that states [x(i)]i∈nodes(J)

and auxiliary vectors [z(i)]i∈nodes(J) at stage J are functions
of the inputs [v(i)]i∈nodes(J−1). Thus, the decision variables
at the leaf nodes, [v(i)]i∈nodes(J), do not affect the constraints
or the cost function in the scenario-based MPC problems in
Chapters 10 and 11. Therefore, the vector of decision variables
in these problems is v = [v(i)]i∈N[0,Nn−1]\nodes(J).

Remark 9.2.4 (Robustness to uncertain load and renewable
generation). The state and the auxiliary variables are either
monotonically increasing or decreasing in the uncertain input
(see Section 8.2). Thus, if the units’ power and energy con-
straints hold for the minimum and maximum uncertain input,
then they also hold for uncertain values that lie in between.
Unfortunately, this is not the case for the line power limits
which are therefore not automatically guaranteed to be satis-
fied (see Section 8.2.3). For scenario trees that exhibits a suf-
ficiently large number of scenarios, the line power limits are
approximately accounted for via samples that implicitly nu-
merate extreme values of line power. To explicitly implement
robust line power constraints, scenario-based MPC problems
could be robustified in a similar fashion as in Section 8.2.3.
The closed-loop simulations in Chapter 12, however, showed
no violation of line limits when only using the samples in the
scenario tree. Therefore, in what follows the power flow limits
are only checked at the discrete values ŵ(i), i ∈ N[1,Nn] and
are consequently only approximately accounted for.
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Example 9.2.5. In Figure 9.1, the dynamics (9.10a) are

x(0) = xk, (9.12a)

x(1) = Ax(0) + B̃z(1), (9.12b)

x(2) = Ax(0) + B̃z(2), (9.12c)

x(3) = Ax(1) + B̃z(3), (9.12d)

x(4) = Ax(1) + B̃z(4), (9.12e)

x(5) = Ax(2) + B̃z(5), (9.12f)

with state limits (9.10b)

h1 ≤ H1x(1), (9.12g)

h1 ≤ H1x(2), (9.12h)

h1 ≤ H1x(3), (9.12i)

h1 ≤ H1x(4), (9.12j)

h1 ≤ H1x(5). (9.12k)

Moreover, the inequality constraints (9.10c) are

h2 ≤ H2
[
(v(0)
 z(1)
 ŵ(1)
]
, (9.12l)

h2 ≤ H2
[
(v(0)
 z(2)
 ŵ(2)
]
, (9.12m)

h2 ≤ H2
[
(v(1)
 z(3)
 ŵ(3)
]
, (9.12n)

h2 ≤ H2
[
(v(1)
 z(4)
 ŵ(4)
]
, (9.12o)

h2 ≤ H2
[
(v(2)
 z(5)
 ŵ(5)
]
, (9.12p)

and the equality constraints (9.10d) are

g = G
[
(v(0)
 z(1)
 ŵ(1)
]
, (9.12q)

g = G
[
(v(0)
 z(2)
 ŵ(2)
]
, (9.12r)

g = G
[
(v(1)
 z(3)
 ŵ(3)
]
, (9.12s)

g = G
[
(v(1)
 z(4)
 ŵ(4)
]
, (9.12t)

g = G
[
(v(2)
 z(5)
 ŵ(5)
]
. (9.12u)
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The cost associated with the nodes in Figure 9.1 is based on
(9.11) and given by

�(1) = �(v(0−), v(0), z(1), x(1))γ1, (9.13a)

�(2) = �(v(0−), v(0), z(2), x(2))γ1, (9.13b)

�(3) = �(v(0), v(1), z(3), x(3))γ2, (9.13c)

�(4) = �(v(0), v(1), z(4), x(4))γ2, (9.13d)

�(5) = �(v(0), v(2), z(5), x(5))γ2. (9.13e)

Using these costs, the vectors of costs for stages 1 and 2 are

�1 =
[
�(1) �(2)

]
, (9.13f)

�2 =
[
�(3) �(4) �(5)

]
. (9.13g)

Using these vectors, the multi-stage cost of the tree can be
described by the sequence (�1, �2).

9.3 Generation of scenario trees from forecast scenarios

There exist many approaches to generate scenario trees from
collections of independent forecast scenarios [21, 46, 57, 66,
84, 105, 136, 189, 193, 238]. In this thesis, especially for the
simulations in Chapter 12, a variant of forward tree construc-
tion that is close to the approaches in [58, 78, 96, 98, 99] was
chosen as an example.

The following section is based on [169] and structured as
follows. First, a general introduction is provided. Then, the
forward selection algorithm is introduced and employed to
generate scenario trees.

9.3.1 Introduction

Consider collections of NΩ independent forecast scenarios
(see Section 6.1.4) for each renewable unit and each load.
These collections are combined such that for each scenario
i ∈ I = N[1,NΩ ] and each forecast time instant j the vector

ŵi(k + j|k) = [ŵi
r,1(k + j|k), . . . , ŵi

r,Nr
(k + j|k),

ŵi
d,1(k + j|k), . . . , ŵi

d,Nd
(k + j|k)]
 (9.14)
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is formed. Thus ŵi(k + j|k) is composed of forecast scenarios
of load and weather-dependent available renewable infeed.

Consider a sample space Ω = {Ω1, . . . , ΩNΩ}, where each
element Ωi, i ∈ I has probability πi = 1/NΩ and ∑NΩ

i=1 πi = 1.
Random variables on Ω are functions w̃ : Ω → R(Nr+Nd) with
w̃(Ωi) = ŵi(k + j|k), i.e., each element Ωi is associated with a
vector of forecast scenarios ŵi(k + j|k).

The goal of scenario reduction is to find a subset of sce-
narios L ⊂ I that can be removed from the original set of
scenarios I such that the quantization error, represented by
the Wasserstein-Kantorovitch Lr-metric (see, e.g., [76, In-
troduction] or [192, Chapter 2]), which can be formulated
as in (9.15a), is minimized. If L is known, then the goal of
the reduction is to assign all elements of L to the scenarios
L = I \ L that are kept. Let us assume that the difference
between two vectors of forecast scenarios can be described by
the Euclidean distance. Then, a redistribution that minimizes
the quantization error for a given set of reduced scenarios L

has the optimal value [58, Theorem 2]

DL = ∑
l∈L

πl min
i∈L

‖ŵi(k + j|k)− ŵl(k + j|k)‖2. (9.15a)

Thus, the quantization error is minimized by assigning each
reduced scenario l ∈ L to the kept scenario i ∈ L that has
the smallest Euclidean distance to it. Let us define the set of
scenarios that are assigned to scenario i� ∈ L as

L̃(i�) =
{

l ∈ L | i� ∈ arg min
i∈L

‖ŵi(k + j|k)− ŵl(k + j|k)‖2

}
.

(9.15b)
The probabilities of the removed scenarios are added to the
probability of the kept scenario that has the smallest distance
to them. Scenario i ∈ L then has has probability

π̃i = πi + ∑
l∈L̃(i)

πl . (9.15c)

Thus, given a set L of removed scenarios, a reduced proba-
bility distribution with values ŵi(k + j|k) and probabilities π̃i

for i ∈ L can be formed. Note that in what follows, (9.15) is
referred to as “optimal redistribution” as it optimally assigns
the reduced scenarios in L to kept scenarios in L.

For optimal redistribution to be applied, the index set of
reduced scenario L needs to be identified. If the number of
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kept scenarios bd
j ∈ N is known, then finding a suitable set

of removed scenarios L can be formulated as the set covering
problem [96, 98]

min
L⊂I

|L|=NΩ−bd
j

DL. (9.16)

This optimization problem can be formulated as an integer
program [167] which is known to be NP-hard. Therefore,
instead of solving the original combinatorial optimization
problem, fast heuristics such as “simultaneous backward
reduction” (see, e.g., [96, Algorithm 2.2]) or “fast forward
selection” [96, Algorithm 2.4] can be used. If the number of
scenarios that are kept, bd

j , is much smaller than the number
of initial scenarios, NΩ, then the computational complexity of
forward selection is lower [96]. As we aim to reduce a large
number of forecast scenarios to a small number of scenarios
in the tree, forward selection appears beneficial in our case.

9.3.2 Forward selection

In what follows, basics on forward selection are introduced.
Note that this introduction is heavily based on [96, 169].

If only one a priori unknown scenario n ∈ I is kept, i.e.,
|L| = NΩ − 1, then (9.16) becomes

min
n∈I
L=I\{n}

DL. (9.17)

With L = I \ {n}, L = {n} and (9.15a), this becomes

min
n∈I

∑
l∈L

πl min
i∈{n}

‖ŵi(k + j|k)− ŵl(k + j|k)‖2 (9.18a)

⇐⇒ min
n∈I

∑
l∈I\{n}

πl‖ŵn(k + j|k)− ŵl(k + j|k)‖2. (9.18b)

Thus, the scenario n� ∈ I that is kept is

n� ∈ arg min
n∈I

∑
l∈I\{n}

πl‖ŵn(k + j|k)− ŵl(k + j|k)‖2. (9.19)

In forward selection, this strategy is repetitively applied by
successively adding scenarios to the set of kept ones L. This
principle is sketched in Algorithm 2.

In Algorithm 2, first the set of all scenarios, I is initialized.
Furthermore, the set of initially removed scenarios, L0, is
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Algorithm 2: Forward se-
lection according to [169,
Algorithm 4].

1: I ← N[1,NΩ ]

2: L0 ← I

3: for i = 1, . . . , bd
j do

4: L
i−1 ← I \ Li−1

5: ni ∈ arg min
n∈Li−1

DLi−1\{n}

6: Li ← Li−1 \ {ni}
7: Apply optimal redistribution (9.15) to L

bd
j

set to contain all scenarios. Then, in line 4 the set of kept Note that in Chapter 12,
fast forward selection as de-
scribed in [96, Algorithm 2.4]
and [78, Algorithm 2] was
used. Fast forward selection
is an implementation of
Algorithm 2 that has lower
computational complex-
ity but is a solution of the
forward selection principle
(see [96, Theorem 2.5]).

scenarios L
i−1 is updated. For i = 1, this is L

0
= ∅, for i = 2,

this is L
1
= {n1}, n1 ∈ I, for i = 3, this is L

2
= {n1, n2},

n2 ∈ I, and so on. Then, in line 5 an additional scenario ni ∈ I

that leads to a minimum quantization error is identified. With
(9.15a), line 5 has the form

ni ∈ arg min
n∈Li−1

∑
l∈Li−1\{n}

πl min
ñ∈L

i−1∪{n}
‖wñ(k + j|k)− wl(k + j|k)‖2.

(9.20)
Then, in line 6 the current set of reduced scenarios Li is deter-
mined by excluding ni from Li−1.

In Figure 9.9, Algorithm 2 is illustrated. Here, the num-
ber of initial scenarios is NΩ = 11 and the number of kept
scenarios is bd

j = 4. The identified scenarios are n1 = 7,
n2 = 10, n3 = 11, n4 = 1 as indicated in Figure 9.9(b) by the
red color. After the scenarios are identified, optimal redistri-

bution (9.15) is applied to L
bd

j = {1, . . . , 11} \ {1, 7, 10, 11}.
Using (9.15b), the sets of optimally assigned scenarios are de-
termined as L̃(1) = {5, 6, 9}, L̃(7) = {2, 3, 4, 8, 12}, L̃(10) = ∅
and L̃(11) = ∅. In Figure 9.9(c), this assignment is indicated
by arrows. With (9.15c), the probabilities of the selected sce-
narios are then determined as π̃1 = 4/12, π̃7 = 6/12, π̃10 = 1/12

and π̃11 = 1/12. In Figure 9.9(d), the updated probabilities are
illustrated by different dot sizes.

9.3.3 Forward tree construction

The forward selection strategy described in the last section
can now be used to construct scenario trees from collections
of independent forecast scenarios. More precisely, it can be
used to construct scenario trees from multi-stage scenarios
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Figure 9.9: Forward selection
following [169, Algorithm 4]
for bd

j = 4. The kept scenar-

ios are L
4
= {1, 7, 10, 11}.

Figure motivated by [183].

ŵi(k + j|k) for i ∈ N[1,NΩ ] and j = 1, . . . , J. The algorithm
presented here is closely related to [97, Algorithm 4], [98,
Algorithm 4.5] and [99, Algorithm 3.2]. However, these al-
gorithms determine the number of scenarios using a fixed
tolerance between the original probability distribution and
the one of the tree. Opposed to this, we use a fixed number
of branches bd

j at prediction instant j to explicitly shape the
scenario tree’s structure.

Algorithm 3: Forward tree
construction following [169,
Algorithm 5].

1: I1
1 ← {1, . . . , NΩ}, I1 ← {I1

1}
2: for j = 1, . . . , J do
3: Ij+1 ← ∅, i ← 0

4: for l = 1, . . . , |Ij| do � Note that Ij =
{

I1
j , . . . , I

|Ij |
j
}

5: L
l
j ← scenario reduction for I = Il

j and |Ll
j| = bd

j

6: for n ∈ L
l
j do

7: i ← i + 1
8: Ii

j+1 ← {n} ∪ L̃l
j(n)

9: Ij+1 ← Ij+1 ∪ {Ii
j+1}

The idea behind forward tree construction, as sketched
in Algorithm 3, is to repeatedly apply scenario reduction
to nodes with a common ancestor. In the algorithm, Il

j is
the set of nodes that are part of cluster l ∈ N at prediction
step j ∈ N[1,J], i.e., nodes that share the same ancestor at
j − 1. Moreover, the set of all clusters at prediction step j is

Ij = {I1
j , . . . , I

|Ij |
j }. Note that the scenario reduction in line 5

only leads to |Ll
j| = bd

j if Il
j includes a sufficient number of

elements. If that is not the case, then L
l
j = Il

j.
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Figure 9.10: Forward tree
construction following
[169, Algorithm 5]. The
scenario tree was deter-
mined for branching factors
[bd
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3 ]
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.

Figure motivated by [183].

In what follows, Algorithm 3 is discussed for the scenarios
and the resulting tree in Figure 9.10. First, the set I1 is initial-
ized with the cluster I1

1 as illustrated in Figure 9.10(a). Then,
in line 3 I2 is initialized as an empty set and the iterator i is
set to 0. Afterwards, scenario reduction is applied to Il

1 for
scenarios in the set {ŵi(k + 1|k)}i∈I1

1
and a branching factor

bd
1 = 3 using, e.g., forward selection (see Algorithm 2). This

results in the set of reduced and kept scenarios, L1
1 and L

1
1 as

illustrated in Figure 9.10(b). Based on these sets, the clusters
for j = 2 can be determined by iterating through all kept
nodes in L

1
1 and successively assigning nodes with the small-

est distance to the kept node to the sets Ii
2 in line 8. These are

identified using a modified version of (9.15b) that reads

L̃l
j(n

�)=
{

m ∈ Ll
j | n� ∈ arg min

n∈L
l
j

‖ŵn(k + j|k)− ŵm(k + j|k)‖2

}
.

(9.21)
In Figure 9.10(b) this is illustrated for the sets I1

2, I2
2, I3

2. Fi-
nally, the resulting sets are used to form I2 = {I1

2, I2
2, I3

2}.
Then, the same procedure is applied for j = 2. First, I3

is initialized as an empty set and the iterator i is set to 0.
Then, scenario reduction is applied for all clusters in I2 in
line 5 of Algorithm 3. For each cluster l = 1, . . . , |I2|, the
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Figure 9.11: Independent
forecast scenarios of wind
turbine, PV power plant
and load as well as result-
ing scenarios tree. The tree
was generated from 500
forecast scenarios, a pre-
diction horizon of J = 12
and branching factors
[bd

j ]
12
j=1 = [6, 2, 1, 1, . . . , 1]
.

resulting sets of kept nodes L
l
2 are then used to form clusters

Ii
3 which become elements of the set I3. This is illustrated in

Figure 9.10(c) for a branching factor bd
2 = 2 and resulting set

of clusters I3 = {I1
3, . . . , I6

3}.
This procedure is then repeated for the remaining time

instants until the leaf nodes at prediction time instant J are
determined. In Figure 9.10(d) this is shown for J = 3 and a
branching factor bd

3 = 1.

Note that for j = J, the
calculation of clusters for
prediction time instant J + 1
in lines 6–9 is not required
and was only kept for
readability in Algorithm 3.The resulting tree can now be transformed into a scenario

tree that follows the notation in Section 9.1. Therefore, the
sets L

l
j and Il

j for j = 1, . . . , J and l = 1, . . . , |Ij| can be
used to number the nodes and formulate the functions anc(·)
and child(·) for every node. The stage(·) function can be
formulated using the fact that all sets are indexed by stage
j. Furthermore, together with the number of scenarios, NΩ

and the sets L
l
j, Il

j, the probabilities π(·) of the nodes can be

calculated. The values the nodes ŵ(·) can be determined from
the known ŵi(j + k|k) for all kept nodes.

Example 9.3.1 (Forward tree generation). In Figure 9.11,
Algorithm 3 was used to construct a scenario tree for the
independent forecast scenarios from Figures 6.5 and 6.9. For
easier understanding, the forecast scenarios from these figures
are shown in the left plots. In the right plots, the values of the
scenario trees are shown. Note that the disturbance at node 0
was set to ŵ(0) = [wr,1(k) wd,1(k)]
 to illustrate that all nodes
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have a common root node. However, the values of the root
node are not used in the scenario-based MPC formulations as
discussed in Section 9.2.

9.4 Summary

In this chapter, scenario trees were introduced. The relation
of the nodes and the associated probabilities as well as the
relation of decision variables and costs were discussed. Fur-
thermore, the generation of scenario trees from independent
forecast scenarios was sketched.

With the introduction given in this chapter, different
scenario-based MPC approaches can be deduced: In Chap-
ter 10, a risk-neutral stochastic MPC scheme that minimizes
the expected cost is presented. Furthermore, a risk-averse ap-
proach that allows to continuously interpolate between worst-
case and risk-neutral stochastic MPC is derived in Chapter 11.



10
Risk-neutral stochastic MPC

In Chapter 8, a minimax approach that assumes forecasts of
the uncertain available renewable infeed and load in the form
of robust intervals was presented. This approach minimizes
the worst-case cost considering bounded uncertain forecast
intervals. One drawback of the approach is that it tends to be
overly conservative as the worst-case disturbance might only
occur very rarely. This conservativeness can be overcome by
considering more complex forecast probability distributions,
e.g., the scenario trees introduced in Chapter 9.

The main contributions of this chapter are as follows. Mo-
tivated by [22, 103, 158, 178], a scenario-based risk-neutral
stochastic MPC formulation for the operation of islanded
MG is derived. Based on the model from Chapter 4, the MPC An overview of risk-neutral

stochastic approaches in
MG operation control can be
found in Section 1.3.3.

problem is formulated as an MIQP that can be solved by
available numerical solvers. In the MPC, the expected cost
from Chapter 5 is minimized assuming forecast probability
distributions of load and available renewable infeed in the
form of scenario trees as introduced in Chapter 9. The pre-
sented scenario-based approach is fundamentally different
from the controllers derived in the previous chapters. As op-
posed to the certainty equivalence MPC from Chapter 7, the
approach provides robustness to uncertain load and available
renewable infeed by considering multiple forecast scenarios.
Moreover, compared to the minimax MPC from Chapter 8
and the certainty equivalence MPC, a more complex1 forecast

1 Recall that only the mean
value of the forecasts was
considered in the certainty
equivalence MPC in Chap-
ter 7. Further recall that
in the minimax MPC in
Chapter 8, forecast intervals
without any probabilistic
information were employed.

probability distribution in the form of scenarios is consid-
ered. Furthermore, as opposed to both approaches, feedback
is taken into account in the MPC formulation by considering
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different control input trajectories. We will see that these dif-
ferences will lead to less conservative control actions that are
robust to uncertain load and renewable infeed.

In what follows, a scenario-based risk-neutral stochas-
tic MPC formulation that can be used for the operation of
islanded MGs is derived. First, an introduction of the expec-
tation operator and expectation mappings in the context of
scenario trees is given in Section 10.1. Then, a risk-neutral
stochastic MPC problem is formulated in Section 10.2. This
formulation employs conditional expectation mappings on
scenario trees and thereby allows to minimize the expected
multi-stage cost. Finally the risk-neutral stochastic MPC is
used in a small simulation example in Section 10.3.

Please note that Section 10.1.2 is based on the author’s
work [93, Section VI]. Further, note that the MPC formulation
in Section 10.2 was published in the author’s work [91].

10.1 Expectation

In the risk-neutral stochastic MPC formulation presented in
this chapter, the expected cost over all scenarios is minimized.
To formulate this cost, stage-wise expectation and conditional
expectation on scenario trees need to be introduced.

10.1.1 Stage-wise expectation

Consider a scenario tree with stage-wise discrete probability
distributions as introduced in Section 9.1.3. The probability
distribution at stage j ∈ N[0,J], has sample space nodes(j), a
random variable with corresponding vector �j = [�(i)]i∈nodes(j)

and probabilities πj = [π(i)]i∈nodes(j). Then, the stage-wise
Recall from Section 9.2 that
�(i) represents the cost at
node i ∈ N[1,Nn ].expected cost is [25]

Eπj(�j) = ∑
i∈nodes(j)

π(i)�(i) = π


j �j. (10.1)

10.1.2 Conditional expectation on scenario trees

Using the expected cost for sample space nodes(j) in (10.1),
we can deduce conditional expectation mappings on scenario
trees. These mappings allow to model how the expected
cost at stage j ∈ N[0,J−1] of a scenario tree depends on the
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expected cost at stage j + 1 using conditional expectation
[240, 241]. In detail, they allow to model the fact that the
decision at every non-leaf node i ∈ nodes(j), also depends on
the decisions taken at the children of i.

Recall that at each stage j ∈ N[0,J−1], a probability space
can be formed. This probability space is composed of the
sample space nodes(j), random variables with values col-
lected in �j and corresponding probabilities collected in
πj. Naturally, the same can be done with the sample space
nodes(j + 1), costs �j+1 and probabilities πj+1. Conditional
expectation mappings are used to link the probability space at
stage j + 1 to the probability space at stage j. Such a mapping
at stage j has the general form

Ej : R| nodes(j+1)| → R| nodes(j)|. (10.2)

As described in Section 9.1.3, we can partition the probabil-
ity space associated with stage j + 1 into disjoint probability
spaces child(i), i ∈ nodes(j) with corresponding vectors of
costs and probabilities of the child nodes, �[i] and π[i]. For Recall from (9.5) that

π[i] = 1
π(i)

[
π(i+)

]
i+∈child(i),

�[i] =
[
�(i+)

]
i+∈child(i).

every subspace we can compute the expectation Eπ[i] (�[i]).
Combining Eπ[i] (�[i]) for all subspaces, i.e., for all i ∈ nodes(j),
we can define the conditional expectation conditioned at stage
j ∈ N[0,J−1] as

Ej(�j+1) =
[

Eπ[i] (�
[i])
]

i∈nodes(j). (10.3)

Roughly speaking, based on the probability distribution asso-
ciated with �j+1, the mapping (10.3) provides a vector where
the ith entry represents the expected cost of the child nodes
given that node i ∈ nodes(j) is visited. In the following exam-
ple, this is discussed for the tree in Figure 10.1.

Example 10.1.1. Consider the simple scenario tree in Fig-
ure 10.1. Here the vector associated with the probability space
at stage j = 2 is �2 = [�(3) · · · �(7)]
. Following the tree
structure, nodes(2) is partitioned into child(1) = {3, 4, 5}
and child(2) = {6, 7}. Consequently, we can from two prob-
ability subspaces with vectors �[1] = [�(3) �(4) �(5)]
 and
π[1] = 1/π(1)[π(3) π(4) π(5)]
 as well as �[2] = [�(6) �(7)]
 and
π[2] = 1/π(2)[π(6) π(7)]
. Using the expectation operator, we
can determine the expected cost of the child nodes given that



142 operation control of islanded microgrids

j = 0 j = 1 j = 2

0

1

2

3

4

5

6

7

Eπ[1] (�[1]) with

�[1] = [�(3) �(4) �(5)]


Eπ[2] (�[2]) with

�[2] = [�(6) �(7)]


E1(�2) = [Eπ[1] (�[1]) Eπ[2] (�[2])]


�
(3)

�
(4)

�
(5)

π
(i+

)

π
(1)

�
(6)

�
(7)

π
(i+

)

π
(2)

Figure 10.1: Example of sce-
nario tree with conditional
probability mapping condi-
tioned at stage 1. Motivated
by [93].

node 1 is visited as

Eπ[1] (�
[1]) = Eπ[1] ([�

(3) �(4) �(5)]
) (10.4a)

and the expected cost of the child nodes given that node 2 is
visited as

Eπ[2] (�
[2]) = Eπ[1] ([�

(6) �(7)]
). (10.4b)

Combining (10.4a) and (10.4b), the conditional expectation
conditioned at stage 1 can be derived as

E1(�2) = E1([�
(3) · · · �(7)]
) =

[
Eπ[1] ([�(3) �(4) �(5)]
)

Eπ[2] ([�(6) �(7)]
)

]
.

(10.4c)

10.2 MPC problem formulation

Broadly speaking, the expected cost at each node i ∈ nodes(j)
of stage j ∈ N[1,J−1] is composed of the expected cost of the
node itself and the expected cost of the nodes that follow this
node, i.e., the child nodes, their children, and so on. For the
sequence of random variables with associated cost vectors
(�1, . . . , �J) from (9.11), this is captured in the nested multi-
stage expectation [241], which is defined as

ẼJ(�1, . . . , �J) = E0
(
�1 + E1

(
�2 + . . . + EJ−1(�J)

)
. . .
)

. (10.5)

Note that this equation makes extensive use of conditional
expectation mappings of the form (10.3).
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Example 10.2.1. For the simple scenario tree in Figure 10.1,
the nested multi-stage expectation (10.5) is

Ẽ2(�1, �2) = E0(�1 + E1(�2)) (10.6a)

with

E1(�2) =

[
Eπ[1] ([�(3) �(4) �(5)]
)

Eπ[2] ([�(6) �(7)]
)

]
. (10.6b)

From (10.3) it follows that E0(�1) =
[

Eπ[i] (�[i])
]

i∈nodes(0),

i.e., E0(�1) = Eπ[0] (�[0]) with π[0] = 1/π(0)[π(1) π(2)] and
�[0] = [�(1) �(2)]
. Thus, (10.6a) can be transformed into

Ẽ2(�1, �2) = Eπ[0]

([
�(1) + Eπ[1] ([�(3) �(4) �(5)]
)

�(2) + Eπ[2] ([�(6) �(7)]
)

])
.

(10.6c)
Using (10.1) and π(0) = 1, this becomes

Ẽ2(�1, �2) =
[π(1) π(2)]

π(0)

⎡⎣�(1) + π(3)�(3)+π(4)�(4)+π(5)�(5)

π(1)

�(2) + π(3)�(6)+π(7)�(7)

π(2)

⎤⎦
=

7

∑
i=1

π(i)�(i) = Eπ1(�1) + Eπ2(�2). (10.6d)

This motivates the formulation of the following proposition.

Proposition 10.2.2. The nested multi-stage expectation (10.5)
can be equally expressed as

ẼJ(�1, . . . , �J) =
J

∑
j=1

Eπj(�j). (10.7)

Proof. As the expectation operator is linear [25], we can
equally state (10.5) as

ẼJ(�1, . . . , �J) = E0(�1) + E0
(
E1
(
�2 + . . . + EJ−1(�J)

)
. . .
)

(10.8a)

...

= E0(�1) + E0(E1(�2))+

. . . + E0(E1(. . . EJ−2(EJ−1(�J)) . . .)).
(10.8b)

Moreover, because of the way the conditional expectation
mapping (10.3) is defined, we have that

Eπj(�j) = E0(E1(. . . Ej−2(Ej−1(�j)) . . .))
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Risk-neutral
MPC

Microgrid

Uncertain RES
& load w(k)

Scenario
reduction

Forecast

Historic RES
& load data

Input

v(k) = v�(0)

Measurement
xk, vk−1

Scenario fan
of RES & load[

[ŵi(k + j|k)]NΩ
i=1
]J

j=1

Scenario tree
of RES & load

[w(i), π(i)]Nn−1
i=1

Figure 10.2: Risk-neutral
stochastic MPC scheme for
operation of islanded MGs at
time instant k.

which is known as the tower property of conditional expecta-
tion [192, 241]. Therefore, (10.8b) can be equally stated as

ẼJ(�1, . . . , �J) = Eπ1(�1) + Eπ2(�2) + . . . + EπJ (�J). (10.9)

which is equivalent to (10.7) completing the proof.

With (10.7), we can formulate a risk-neutral MPC problem
for the operation of islanded MG. Therefore, we consider a
forecast of load and available renewable infeed in the form
of a scenario tree. Thus, the constraints that model the is-
landed MG are given by (9.10) and the decision variables
are the control inputs v = [v(i)]i∈N[0,Nn−1]\nodes(J) as well

as the states x = [x(i)]i∈N[1,Nn−1]
and the auxiliary variables

As discussed in Re-
mark 9.2.3, the control
input [v(i)]i∈nodes(J) is not
part of the MPC problem.z = [z(i)]i∈N[1,Nn−1]

. This results in the following risk-neutral
stochastic MPC problem.

Problem 6 (Risk-neutral stochastic MPC of islanded MGs).
Solve the optimization problem

min
v,x,z

J

∑
j=1

Eπj(�j)

subject to

constraints (9.10),

∀i+ ∈ N[1,Nn−1] and i = anc(i+),

with given initial conditions x(0) = xk and v(0−) = vk−1.

10.2.1 MPC scheme

For the operation of an islanded MG, Problem 6 is embedded
into the control scheme in Figure 10.2. Before solving the risk-
neutral stochastic MPC problem, a new collection of forecast
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scenarios of load and available renewable infeed is obtained
(see Chapter 6). These scenarios are then transformed into
a scenario tree using scenario reduction (see Chapter 9). To-
gether with the measurements of the current state xk and the
control input vk−1 that was applied in the most recent time
instant, the scenario tree is used as an input to the MPC. For
these inputs, the risk-neutral stochastic MPC formulation in
Problem 6 is then solved. From the resulting optimal input
trajectory, the value associated with the first prediction instant
v�(0) is applied to the MG plant. At the next sampling instant,
the scenario tree and the measurements are updated and
Problem 6 is solved repeatedly in a receding horizon fashion
(see, e.g., [18, 23, 204] and Section 3.2). An example of optimal
trajectories obtained via Problem 6 is discussed in the next
section.

10.3 Example

In Figure 10.3 on page 146, the forecast of the uncertain input,
power, power setpoints and stored energy are shown. They
were derived by solving Problem 6 with initial conditions
δ
(0−)
t = 0 and x(0) = 0.5 pu h for the running example2 in 2 The unit parameters and

the weights of the cost
function can be found in
Tables 12.1 and 12.2.

Figure 4.1. The scenario tree was generated from the collec-
tions of independent forecast scenarios in Figure 9.11. Before
deducing the scenario tree, the independent forecast scenarios
of available renewable power were scaled for a rated wind
turbine power of 2 pu.

It can be observed in Figure 10.3 that, as discussed in Sec-
tion 9.2, there only exists one power setpoint for each unit
between j = 0 and j = 1. Furthermore, it can be observed that
between j = 0 and j = 1 multiple forecasts of the uncertain in-
put as well as multiple power values exist. Moreover, different
state trajectories result from these power values.

Comparing the optimal trajectories of this example with
the ones from the minimax MPC in Section 8.5, it can be
noted that the power setpoints of the risk-neutral stochastic
approach lead to scenarios with a higher share of renewable
infeed. For the risk-neutral stochastic MPC, there is not a
single scenario where the conventional generator needs to be
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Figure 10.3: Open-loop
trajectories of risk-neutral
stochastic MPC.enabled, whereas for the minimax MPC it is enabled in the

first time instant right away. Table 10.1: Power setpoints
of minimax and risk-neutral
stochastic MPC.

Mini- Risk-n.
max stoch.

ut(k) 0.68 0
us(k) −0.62 −0.51
ur(k) 0.54 1.11

Considering the worst case in the minimax MPC also re-
sults in lower limits for the renewable unit. As shown in
Table 10.1, the power setpoint ur(k) of the renewable unit in-
creases significantly when using the risk-neutral stochastic
approach instead.

10.4 Summary

In this chapter a scenario-based risk-neutral stochastic MPC
problem was formulated. This problem minimizes the ex-
pected multi-stage cost assuming a known probability distri-
bution provided in the form of a scenario tree.

To derive the MPC problem, first the expected value of
a probability distribution was introduced and conditional
expectation mappings were discussed. These mappings allow
to model how the expected cost is linked between the stages
of a scenario trees. Using them, a scenario-based risk-neutral
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stochastic MPC problem was posed as an MIQP that can be
solved by off-the-shelf software.

The presented approach satisfies the desired robustness to
uncertain renewable generation in load that was requested
in Section 2.3.6. However, it relies on an accurate forecast
probability distribution of the scenario tree. In practical ap-
plications such as the operation of MG, these may not always
be present (see Section 2.3.7). Therefore, a risk-averse MPC
approach that allows to consider ambiguity in forecast proba-
bility distributions is derived in the next chapter.





11
Risk-averse MPC

In the previous chapter, a risk-neutral stochastic approach
that employs scenario trees was presented. In the approach,
the probability distribution of the scenario tree is fully trusted
and the expected cost is minimized. For real-world applica-
tions it is desirable to use controllers that provide a certain
robustness to misestimated probability distribution. Such
approaches are often referred to as risk-averse.

In this chapter, a scenario-based risk-averse MPC approach
is deduced. The presented controller makes use of the MG An overview of risk-averse

approaches in power systems
can be found in Section 1.3.4.

model from Chapter 4, the cost function from Chapter 5, and
the scenario trees from Chapter 9. The main contributions of
this chapter are twofold.

1. Motivated by [48, 118], a risk-averse MPC scheme that al-
lows to consider uncertain probability values in scenario
trees is derived. In this scheme, one can explicitly tune the
trust in the probability distribution of the scenario trees by
seamlessly interpolating between risk-neutral stochastic
[91] where the probability distribution of the tree is fully
trusted and worst-case [89] MPC where no probabilistic
information is used. Additionally, risk-averse approaches
come with the following benefits. (i) They render MPC
suitable for applications where the probability distribution
changes over time or is not exactly known. (ii) The provide
robustness against poor forecast models and high-effect
low-probability events. (iii) Scenario trees with fewer nodes
can be used as the MPC considers uncertainty in the under-
lying probability distribution.



150 operation control of islanded microgrids

2. Following [247], an epigraph relaxation is used to for-
mulate a risk-averse MPC approach in a computationally
tractable way. The resulting MPC problem is posed as an
MIQCP which can be solved online by existing software.
This allows for sufficiently fast computing times such that
the controller can be used for real-time operation control of
islanded MG. Compared to other risk-averse approaches
[32, 148, 160, 282], the presented formulation considers a
multi-stage MPC problem that models how the risk of the
different prediction steps is linked.

In what follows, a risk-averse MPC scheme for the oper-
ation of islanded MGs is derived. First, risk measures are
introduced in Section 11.1. This includes a discussion on co-
herent risk measures such as AVaR. Then, a risk-averse MPC
problem is posed in Section 11.2. Here, conditional risk map-
pings are employed to formulate a risk-averse MPC problem
with nested risk mappings which is then posed as an MIQCP.
Finally, in Section 11.3, the risk-averse MPC scheme is used
in a small example assuming different rates of uncertainties
in the probability distribution. Note that the results of this
Chapter were published in the author’s work [93].

11.1 Measuring risk

In this section we introduce the notion of risk measures and
provide a few examples thereof. Furthermore, we will discuss
one specific risk measure: the average value-at-risk (AVaR).
Finally, conditional risk mappings are introduced.

11.1.1 Introduction

Roughly speaking, a risk measure can quantify the impor-
tance of extreme scenarios that have a low probability. More
precisely, considering a discrete probability distribution
formed from the nodes at stage j of a scenario tree (see Sec-
tion 9.1.3), it is a mapping ρ : R| nodes(j)| → R. Two widely
known risk measures are the expectation operator and the
maximum operator.
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Recall from (10.1) that the expectation operator has the
form

Eπj(�j) = ∑
i∈nodes(j)

π(i)�(i) = π


j �j. (11.1)

The expectation operator is a risk-neutral risk measure [241]
in the sense that no uncertainty regarding the probabilities πj,
i.e., no ambiguity1, is assumed. 1 In what follows, uncertainty

regarding the probabilities
πj will be referred to as
ambiguity.

The maximum operator is another risk measure. It pro-
vides the worst case of all possible values in �j, i.e.,

max(�j) = max
i∈nodes(j)

�(i). (11.2)

The maximum operator considers maximum uncertainty
regarding the probabilities πj, i.e., maximum ambiguity.

With the probability simplex Dj from (9.3) and the ex-
pectation operator (11.1), the maximum operator can also be
formulated as

max(�j) = max
π′∈Dj

Eπ′(�j). (11.3)

Here, the maximum expectation over all probability vectors
π′ ∈ Dj is provided, i.e., (11.3) returns the highest cost of all
possible probability distributions. Using a similar notation as
in (11.3), we can express the expectation operator by

Eπj(�j) = max
π′∈{πj}

Eπ′(�j). (11.4)

Coherent risk measures. In this work we focus on coherent risk
measures. Following [10, 218, 241], a risk measure is called
coherent if it satisfies the following axioms.

Definition 11.1.1 (Coherent risk measure). Consider two ran-
dom variables on nodes(j) with corresponding vectors �j and
�′j. A risk measure ρ : R| nodes(j)| → R is said to be coherent if
it satisfies the following conditions [241, Definition 6.4.].

1. Convexity: ρ(λ�j + (1− λ)�′j) ≤ λρ(�j) + (1− λ)ρ(�′j) for all
λ ∈ [0, 1].

2. Monotonicity: If �j ≤ �′j, then ρ(�j) ≤ ρ(�′j).

3. Translation equivariance: ρ(a + �j) = a + ρ(�j) for all a ∈ R.

4. Positive Homogeneity: ρ(a�j) = aρ(�j) for all a ∈ R≥0.
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As stated in [241, Theorem 6.5], all coherent risk measures
can be posed in a way that resembles (11.3) and (11.4) as

ρ(�j) = max
π′∈Aj

Eπ′(�j). (11.5)

Here, the set Aj ⊆ Dj is called ambiguity set of ρ. If Aj is
a closed and convex set that contains πj, then and only then
(11.5) is coherent [241, Theorem 6.7]. Equation (11.5) pro-
vides the maximum expectation with respect to the uncertain
probability vector π′ ∈ Aj. Thus, we obtain the worst-case
expectation of �j over all probabilities π′ in Aj [262].

Figure 11.1: Ambiguity sets
Aα

j on three dimensional
probability space with
πj = [0.3 0.3 0.4]
. Note that
for α = 0, the ambiguity set
covers the entire probability
simplex. For α = 1, the
ambiguity set only covers the
point {πj}. Source: [93].

The maximum operator (11.2) can be obtained from (11.5)
by assuming maximum ambiguity, i.e., the largest possible
ambiguity set Aj = Dj (see Figure 11.1(a)). The expectation
operator can be obtained from (11.5) by assuming no ambigu-
ity, i.e., the smallest possible ambiguity set with Aj = {πj}
(see Figure 11.1(c)). Thus, the maximum and the expecta-
tion operator represent two extreme cases of coherent risk
measures, one where the ambiguity set has maximum size,
Aj = Dj, and one where it has minimum size, Aj = {πj}.
It is further possible to construct ambiguity sets of intermedi-
ate size to account for a certain ambiguity in the probability
distribution, i.e., to consider distributions with probabilities
that are within a certain range around πj. The AVaR is a risk
measure that includes such ambiguity sets of intermediate
size as will be discussed in the next section.

11.1.2 Average value-at-risk

The average value-at-risk [191, 213, 241] is a widely adopted
coherent risk measure. It is given in a form reminiscent of

Other coherent risk mea-
sures are, for example,
the entropic value-at-risk
[1] and the mean-upper-
semideviation of order p
[241].

(11.5) as
ρ(�j) = AV@Rα(�j) = max

π′∈Aα
j

Eπ′(�j). (11.6a)

Here, for α ∈ [0, 1] ⊂ R, the ambiguity set is defined as

Aα
j =

⎧⎨⎩{π′ ∈ Dj | π′ ≤ 1
α πj}, if α ∈ (0, 1],

Dj, if α = 0.
(11.6b)

In Figure 11.1, ambiguity sets of a three dimensional prob-
ability space for different values of α are shown. For α = 0,
the ambiguity set A0

j covers the entire probability simplex,
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i.e., A0
j = Dj and AV@R0(�j) = maxπ′∈Dj

Eπ′(�j) = max(�j)

(see (11.3)). For α = 1, the ambiguity set A1
j only includes the

point {πj} and AV@R1(�j) = maxπ′∈{πj} Eπ′(�j) = Eπj(�j)

(see (11.4)). For α = 0.5, the ambiguity set covers some parts
of the probability simplex. As can be seen in Figure 11.1, for
α1 ≥ α2 it holds that A

α1
j ⊆ A

α2
j . As illustrated in [241, Exam-

ple 6.19], with the additional free variable t ∈ R and convex
duality arguments, (11.6) can be transformed into

AV@Rα(�j)=

⎧⎨⎩min
(

t + Eπj

(
max(

�j−t
α , 0)

))
, if α ∈ (0, 1],

max(�j), if α = 0.
(11.7)

To facilitate the solution of the risk-averse optimal control
problem in Section 11.2.2, another equivalent representation
is now introduced. Note that the following proposition was
published as part of the author’s work [93, Proposition V.1].

Proposition 11.1.2. The AVaR at level α ∈ [0, 1] is given by

AV@Rα(�j) = min
ξ≥0

αξ≥�j−t

(t + Eπj(ξ)). (11.8)

Proof. Let α ∈ (0, 1]. Using the epigraph reformulation of
max(·, 0) from Lemma 3.3.2, we have that

max(y, 0) = min
ξ≥0
ξ≥y

ξ, (11.9)

for all y ∈ RK and slack variable ξ ∈ RK. Therefore,

AV@Rα(�j) =min
(

t + Eπj

(
max(

�j−t
α , 0)

))
(11.10a)

=min
(

t + Eπj

(
min
ξ≥0

ξ≥ �j−t
α

ξ
))

(11.10b)

=min
(

t + Eπj

(
min
ξ≥0

αξ≥�j−t

ξ
))

, (11.10c)

where (11.10b) is derived via (11.9). Using [241, Proposi-
tion 6.60], we interchange the expectation Eπ and the mini-
mum operator to arrive at (11.8).
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The right-hand side of (11.8) is well defined for α = 0 as

AV@R0(�j) = min
ξ≥0
t≥�j

(t + Eπ(ξ)) (11.11a)

= min
t≥�j

t + min
ξ≥0

Eπ(ξ) (11.11b)

= min
t≥�j

t + 0 (11.11c)

= max(�j). (11.11d)

Consequently, (11.8) holds for all α ∈ [0, 1].

11.1.3 Conditional risk on scenario trees

In the last section, risk measures were defined separately for For more information on
conditional risk mappings,
the reader is kindly referred
to [191, 192, 241].

each stage j of a scenario tree, i.e., for each sample space
nodes(j). In what follows, we will see how risk at stage
j ∈ N[0,J−1] of a scenario tree depends on risk at stage j + 1
using conditional risk mappings. These mappings gener-
alize conditional expectation [217, 241] from Section 10.1.2
and model the fact that the decision at every non-leaf node
i ∈ nodes(j), depends on the knowledge of the probability
distribution at its child nodes.

Recall that the set nodes(j) at stage j ∈ N[0,J−1] is associ-
ated with a probability space with costs �j and probabilities
πj. Similarly, the set nodes(j + 1) is associated with a prob-
ability space with costs �j+1 and probabilities πj+1. Condi-
tional risk mappings link the probability space at stage j + 1
to the probability space at stage j. Generally speaking, the
mapping at stage j has the form

ρj : R| nodes(j+1)| → R| nodes(j)| (11.12)

and is composed as follows.
As described in Section 9.1.3, the probability space asso-

ciated with stage j + 1 can be partitioned into disjoint sub-
spaces child(i) with vectors �[i] and π[i]. For every subspace, Recall from (9.5) that

π[i] = 1
π(i)

[
π(i+)

]
i+∈child(i),

�[i] =
[
�(i+)

]
i+∈child(i).

we compute the risk ρ(�[i]) using a coherent risk measure
ρ : R| child(i)| → R. Combining the risk of all subspaces,
we define the conditional risk mapping conditioned at stage
j ∈ N[0,J−1] as

ρj(�j+1) =
[
ρ(�[i])

]
i∈nodes(j). (11.13)
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j = 0 j = 1 j = 2

0

1

2

3

4

5

6

7

ρ(�[1]) with

�[1] = [�(3) �(4) �(5)]


ρ(�[2]) with

�[2] = [�(6) �(7)]


ρ1(�2) = [ρ(�[1]) ρ(�[2])]


�
(3)

�
(4)

�
(5)

π
(i+

)

π
(1)

�
(6)

�
(7)

π
(i+

)

π
(2)

Figure 11.2: Example of sce-
nario tree with conditional
risk mapping conditioned at
stage 1. Source: [93].

Thus, based on the probability distribution associated with
�j+1, (11.13) provides a vector where the entry associated with
node i ∈ nodes(j) represents the risk of the child nodes given
that i is visited.

Example 11.1.3. Consider the simple scenario tree in Fig-
ure 11.2. Here the vector associated with the probability space
at stage j = 2 is �2 = [�(3) · · · �(7)]
. Following the tree
structure, nodes(2) is partitioned into child(1) = {3, 4, 5}
and child(2) = {6, 7}. Consequently, we can form two
probability subspaces with corresponding vectors �[1] =

[�(3) �(4) �(5)]
 and π[1] = 1/π(1)[π(3) π(4) π(5)]
 as well as
�[2] = [�(6) �(7)]
 and π[2] = 1/π(2)[π(6) π(7)]
. Using any
coherent risk measure ρ (see Definition 11.1.1), we can deter-
mine the risk of the child nodes given that node 1 is visited
as ρ(�[1]) = ρ([�(3) �(4) �(5)]
) and the risk of the child nodes
given that node 2 is visited as ρ(�[2]) = ρ([�(6) �(7)]
). Com-
bining them, the conditional risk mapping (11.12) conditioned
at stage j = 1 is

ρ1(�2) = ρ1([�
(3) · · · �(7)]
) =

[
ρ([�(3) �(4) �(5)]
)

ρ([�(6) �(7)]
)

]
.

Remark 11.1.4. One coherent risk measure that can be used
in conditional risk mappings is AV@Rα (see Section 11.1.2).
Using AV@Rα from (11.8), the risk associated with �[i] for
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i ∈ nodes(j) and j ∈ N[0,J−1] is

ρ(�[i]) = min
ξ [i]≥0

αξ [i]≥�[i]−t(i)

(
t(i) + Eπ[i] (ξ

[i])
)
. (11.14a)

Here, t(i) ∈ R and ξ [i] = [ξ(i+)]i+∈child(i) with ξ(i+) ∈ R

for all i+ ∈ child(i). As posed in (9.5a), the probabilities as-
sociated with the subspace child(i), i.e., the probabilities of
the child nodes given that node i is visited, are collected in
π[i] = [π(i+)/π(i)]i+∈child(i). Therefore, (11.14a) is equivalent to

ρ(�[i]) = min
ξ [i]≥0

αξ [i]≥�[i]−t(i)

(
t(i) + ∑

i+∈child(i)

π(i+)

π(i) ξ(i+)
)

. (11.14b)

Using conditional risk mappings, we can now compose
multi-stage risk measures. These provide a risk-measure
that considers random variables with vectors �1, . . . , �J at all
stages.

11.2 MPC problem formulation

In this section we formulate a tractable risk-averse MPC prob-
lem. Therefore, an MPC problem with nested conditional risk
mappings is posed. This problem is then reformulated as an
MIQCP that can be solved by available software.

11.2.1 Risk-averse optimal control

Broadly speaking, the risk at every node i ∈ nodes(j) of stage
j ∈ N[1,J−1] is composed of the risk of the node itself and the
risk of the nodes that follow, i.e., the risk of the child nodes,
their children, and so on. For a sequence of random variables
with associated cost vectors �1, . . . , �J from (9.11), this relation
is captured by the nested multi-stage risk measure [48, 217,
241, 247] which is defined analogously to (10.5) as

�J(�1, . . . , �J) = ρ0
(
�1 + ρ1

(
�2 + . . . + ρJ−1(�J)

)
. . .
)

(11.15)

by making extensive use of conditional risk mappings.

Example 11.2.1. For the simple scenario tree in Figure 11.2,
the nested multi-stage risk measure is

�2(�1, �2) = ρ0(�1 + ρ1(�2)) (11.16)



risk-averse mpc 157

with

ρ1(�2) =

[
ρ([�(3) �(4) �(5)]
)

ρ([�(6) �(7)]
)

]
. (11.17)

From (11.13) follows that ρ0(�1) =
[
ρ(�[i])

]
i∈nodes(0) = ρ(�[0])

with �[0] = [�(1) �(2)]
. Hence, (11.16) can be transformed into

�2(�1, �2) = ρ

([
�(1) + ρ([�(3) �(4) �(5)]
)

�(2) + ρ([�(6) �(7)]
)

])
. (11.18)

The nested structure of multi-stage risk measures of the
form (11.15) can be hard to handle. Still, multi-stage risk
measures enjoy desirable properties that render them very
suitable for MPC formulations. These are, as stated in [93]:

1. They measure how risk propagates over time and are suit-
able for multi-stage formulations.

2. They are coherent risk measures over the space
R| nodes(1)| × · · · × R| nodes(N)| [241, Section 6.8].

3. The give rise to optimal control problems which are ame-
nable to dynamic programming formulations [239].

4. They allow for MPC formulations with closed-loop stability
guarantees [48, 247].

Using (11.15), we can formulate a risk-averse MPC prob-
lem. Using the decision variables from Chapter 10, the opti-
mal control problem reads as follows.

Problem 7 (Risk-averse MPC of islanded MGs with nested
conditional risk mappings). Solve the optimization problem

Recall the decision variables
from Chapter 10:

v = [v(i)]i∈N[0,Nn−1]\nodes(J),

x = [x(i)]i∈N[1,Nn−1]
,

z = [z(i)]i∈N[1,Nn−1]
.

min
v,x,z

�J(�1, . . . , �J)

subject to

constraints (9.10),

∀i+ ∈ N[1,Nn−1] and i = anc(i+),

with given initial conditions x(0) = xk and v(0−) = vk−1.

One big drawback this formulation is that �J(�1, . . . , �J) is
a composition of typically nonsmooth mappings. Problems
of this kind are often solved using cutting plane methods
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[11, 50]. However, these only allow to solve problems with
linear stage costs and short prediction horizons. Another
way to solve such problems is multiparametric piecewise
quadratic programming [185] which is unfortunately only
applicable to systems with a short prediction horizon and a
small number of states [184]. To model systems with a larger
number of states, longer prediction horizons and quadratic
cost functions, we use the approach presented in [247] and
extended in [248], which will enable us to pose Problem 7 as
an MIQCP.

11.2.2 Reformulation as MIQCP

In what follows, we will reformulate Problem 7 as an MIQCP
for the case where ρi is AVaR. This reformulation will allow
us to solve the risk-averse optimal control problem using off-
the-shelf numerical solvers, such as, Gurobi [85] or CPLEX
[107]. Before posing the reformulation, some new variables
are introduced.

Define the objective in the conditional risk mapping with
AVaR in (11.14a) as

Ψ(i) = t(i) + Eπ[i] (ξ
[i]) (11.19)

Here, t(i) ∈ R for all non-leaf nodes i ∈ N[0,Nn] \ nodes(J)
and ξ [i] = [ξ(i+)]i+∈child(i) with ξ(i+) ∈ R for all i+ ∈ child(i).
Using (11.19), the conditional risk mapping (11.14b) of AVaR
reads

ρ(�[i]) = min
ξ [i]≥0

αξ [i]≥�[i]−t(i)

Ψ(i). (11.20)

Let us form the vectors t = [t(i)]i∈N[0,Nn−1]\nodes(J) as well as

ξ = [ξ(i)]i∈N[1,Nn−1]
. These allow us to pose the following

theorem. Please note that this theorem was published in
author’s work [93, Theorem VI.2].

Theorem 11.2.2. Suppose that Problem 7 is feasible and has
at least one minimizer. If the underlying risk measure is AVaR
with α ∈ [0, 1], then Problem 7 is equivalent to the following
problem, in the sense that both result in equal optimal values.
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Problem 8 (Risk-averse MPC of islanded MGs). Solve the
optimization problem

min
v,x,z,t,ξ

Ψ(0)

subject to

ξ [i] ≥ 0,

αξ [i] ≥
⎧⎨⎩�[i] + Ψ[i] − t(i), if stage(i) < J − 1,

�[i] − t(i), if stage(i) = J − 1,

and constraints (9.10),

∀i+ ∈ N[1,Nn−1] and i = anc(i+),

with given initial conditions x(0) = xk and v(0−) = vk−1,

where Ψ[i] = [Ψ(i+)]i+∈child(i) with Ψ(i+) = t(i+) + E
π[i+] (ξ [i+])

for all i+ ∈ ⋃J−1
j=1 nodes(j).

Proof. We want to show that Problem 7 is equivalent to
Problem 8 in the sense that both result in equal optimal
values. Therefore, let us first associate every non-leaf node
i ∈ N[0,Nn−1] \ nodes(J) with a value Φ(i) ∈ R. All of these
values are collected in Φ ∈ RNn−| nodes(J)|. Analogously to �j,
we segment this vector stage-wise into Φj = [Φ(i)]i∈nodes(j).

At stage J − 1 we define ΦJ−1 to be equal to the conditional
risk mapping conditioned at stage J − 1, i.e.,

ΦJ−1 = ρJ−1(�J). (11.21a)

Following (11.13), ΦJ−1 is composed of elements ρ(�[i]) for all
i ∈ nodes(J − 1) and with �[i] = [�(i+)]i+∈child(i). Using (11.20),
for AVaR the elements of ΦJ−1 are

Φ(i) = ρ(�[i]) = min
ξ [i]≥0

αξ [i]≥�[i]−t(i)

Ψ(i), (11.21b)

i ∈ nodes(J − 1). We can now replace ρJ−1(�J) by ΦJ−1 in
(11.15), i.e.,

�J(�1, . . . , �J) = ρ0(�1 + ρ1(�2 + . . . + ρJ−2(�J−1 + ΦJ−1)) . . .).
(11.22)

At stage 0, . . . , J − 2, the risk at every node is composed
of the risk of the cost associated with the node and the risk
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of its child nodes (see Section 11.2.1). We can include this by
using �j+1 and the risk of the child nodes, Φj+1, as inputs to
the conditional risk mapping conditioned at stage j ∈ N[0,J−2]
by recursively defining

Φj = ρj(�j+1 + Φj+1). (11.23a)

Following (11.13), Φj is composed of elements ρ(�[i] + Φ[i])

with �[i] = [�(i+)]i+∈child(i) and Φ[i] = [Φ(i+)]i+∈child(i) for
i ∈ nodes(j). Using (11.20), for AVaR the elements of Φj are Note the difference to

(11.21b) in the second con-
straint below the minimiza-
tion.

Φ(i) = ρ(�[i] + Φ[i]) = min
ξ [i]≥0

αξ [i]≥�[i]+Φ[i]−t(i)

Ψ(i), (11.23b)

i ∈ ⋃J−2
j=0 nodes(j).

Using (11.23a), we can now equally express (11.22) as

�J(�1, . . . , �J) = ρ0(�1 + ρ1(�2 + . . . + ρJ−2(�J−1 + ΦJ−1)︸ ︷︷ ︸
ΦJ−2

) . . .)
...

= ρ0(�1 + ρ1(�2 + Φ2))

= ρ0(�1 + Φ1)

= Φ0. (11.24)

Let us assume, without loss of generality2, that J > 1. 2 If J = 1, then

min �1(�1) = min Φ0

= min
ξ [0]≥0

αξ [0]≥�[0]−t(0)

Ψ(0).

This is equivalent to (11.29)
for J = 1, i.e., (11.25)–(11.28)
can be skipped in this case.

Then, we can reformulate the minimization of Problem 7 as

min �J(�1, . . . , �J) = min Φ0 = min min
ξ [0]≥0

αξ [0]≥�[0]+Φ[0]−t(0)

Ψ(0) (11.25a)

= min
ξ [0]≥0

αξ [0]≥�[0]+Φ[0]−t(0)

Ψ(0). (11.25b)

Let us now assume, without loss of generality3, that 3 If stage(0) < J − 2, i.e., if
J = 2, then (11.26)–(11.28)
can be skipped.

stage(0) < J − 2. For any node i ∈ ⋃J−3
j=0 nodes(j), we can

use (11.23b) to transform αξ [i] ≥ �[i] + Φ[i] − t(i) into

αξ [i] ≥ �[i] − t(i) +

[
min
ξ [i+]≥0

αξ [i+]≥�[i+]+Φ[i+]−t(i+)

Ψ(i+)
]

i+∈child(i)

.

Lemma 3.3.1 allows to equivalently state this as

αξ [i] ≥ �[i] + Ψ[i] − t(i),

ξ [i+] ≥ 0,

αξ [i+] ≥ �[i+] + Φ[i+] − t(i+),

∀i+ ∈ child(i).
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Consequently, with (11.23b) and Lemma 3.3.1, we can equiva-
lently state (11.25b) as

min �J(�1, . . . , �J) = min
ξ [0]≥0

αξ [0]≥�[0]+Ψ[0]−t(0)

ξ [i+]≥0
αξ [i+]≥�[i+]+Φ[i+]−t(i+)

∀i+∈child(0)

Ψ(0). (11.26)

In the above equation, child(0) = nodes(1), i.e., the con-
straints in (11.26) must hold for all nodes i+ ∈ nodes(1).

Let us now assume, without loss of generality4, that 4 If stage(1) < J − 2, i.e.,
if J = 3, then (11.27) and
(11.28) can be skipped.

stage(1) < J − 2. Then, we can apply the same transforma-
tion as before on (11.26) which yields

min �J(�1, . . . , �J) = min
ξ [i]≥0

αξ [i]≥�[i]+Ψ[i]−t(i)

∀i∈⋃1
j=0 nodes(j)

ξ [i+]≥0
αξ [i+]≥�[i+]+Φ[i+]−t(i+)

∀i+∈nodes(2)

Ψ(0). (11.27)

Note that
⋃

i∈nodes(j) child(i) = nodes(j + 1) for all stages
j = 0, . . . , J − 1. Therefore,

⋃
i∈nodes(1) child(i) = nodes(2) and

we can formulate the constraints in terms of stages instead of
child nodes.

We can now apply the equivalence transformation from
before recursively until we reach

min �J(�1, . . . , �J) = min
ξ [i]≥0

αξ [i]≥�[i]+Ψ[i]−t(i)

∀i∈⋃J−3
j=0 nodes(j)

ξ [i+]≥0
αξ [i+]≥�[i+]+Φ[i+]−t(i+)

∀i+∈nodes(J−2)

Ψ(0). (11.28)

Note that the elements of Φ[i+] for i+ ∈ nodes(J − 2) are
given by (11.21b). Therefore, we can equivalently state (11.28)
with Lemma 3.3.1 as5

5 For node i ∈ nodes(J − 2),
we can use (11.21b) to refor-
mulate αξ [i] ≥ �[i] + Φ[i] − t(i)

as

αξ [i] ≥ �[i] − t(i)

+

[
min

ξ [i+]≥0
αξ [i+]≥�[i+]−t(i+)

Ψ(i+)
]

i+∈child(i)

.

Lemma 3.3.1 allows to
equivalently state this as

αξ [i] ≥ �[i] + Ψ[i] − t(i),

ξ [i+] ≥ 0,

αξ [i+] ≥ �[i+] − t(i+),

∀i+ ∈ child(i).

min �J(�1, . . . , �J) = min
ξ [i]≥0

αξ [i]≥�[i]+Ψ[i]−t(i)

∀i∈⋃J−2
j=0 nodes(j)

ξ [i+]≥0
αξ [i+]≥�[i+]−t(i+)

∀i+∈nodes(J−1)

Ψ(0). (11.29)
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Adding the constraints below the minimization in (11.29) and
the new decision variables ξ, t to Problem 7 and replacing
�J(�1, . . . , �J) by Ψ(0) makes Problem 7 an equivalent repre-
sentation of Problem 8. This completes the proof.

Note that the quadratic cost �[i] from Section 5.2 is part
of the constraints in Problem 8. This and the fact that the
problem includes real-valued and Boolean variables makes
Problem 8 into an MIQCP. In Chapter 12, it will be demon-
strated that this formulation can be solved sufficiently fast by
off-the-shelf numerical solvers.

Remark 11.2.3 (Risk-averse MPC for α = 1). As discussed
in Section 11.1.2, for α = 1, AV@R1(·) provides the expected
value of the function argument. In this case, the nested multi-
stage risk measure (11.15) is equal to the nested multi-stage
expectation (10.5). Consequently, for α = 1 the risk-averse
MPC in Problem 8 is identical to the risk-neutral stochastic
MPC in Problem 6 in the sense that both provide the same
optimal cost.

Remark 11.2.4 (Risk-averse MPC for α = 0). As discussed in
Section 11.1.2, for α = 0, AV@R0(·) provides the maximum
of the function argument. In this case, the conditional risk
mapping (11.13) becomes

ρj(�j+1) =
[

max(�[i])
]

i∈nodes(j), (11.30a)

i.e., ρj(�j+1) provides the maximum cost of the child nodes
of i ∈ nodes(j) for j = 0, . . . , J − 1. In this case, the condi-
tional risk mapping (11.15) is composed of nested maximum
operators. Due to the nested structure, where the mapping
at every stage provides the maximum cost of the children of
each node, Problem 8 then minimizes the maximum cost of all
scenarios scen(i), i ∈ nodes(J) of the tree for α = 0.

For the example in Figure 11.2, the maximum operator
leads to the multi-stage risk

�2(�1, �2) = max([�(1) + max(�[1]) �(2) + max(�[2])]
)

(11.30b)

= max

([
�(1) + max([�(3) �(4) �(5)]
)

�(2) + max([�(6) �(7)]
)

])
.

(11.30c)
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Risk-averse
MPC

Microgrid

Uncertain RES
& load w(k)

Scenario
reduction

Forecast

Historic RES
& load data

Input

v(k) = v�(0)

Measurement
xk, vk−1

Scenario fan
of RES & load[

[ŵi(k + j|k)]NΩ
i=1
]J

j=1

Scenario tree
of RES & load

[w(i), π(i)]Nn−1
i=1

Figure 11.3: Control scheme
with risk-averse MPC at time
instant k.This can be transformed into

�2(�1, �2) = max([�(1) + �(3) �(1) + �(4) �(1) + �(5)

�(2) + �(6) �(2) + �(7)]
) (11.30d)

which corresponds to the maximum cost, i.e., the worst-case,
of all scenarios in the tree.

11.2.3 MPC scheme

For the operation of islanded MGs, Problem 8 is embedded
into the control scheme in Figure 11.3. Before solving the
MPC problem, a new collection of forecast scenarios of load
and available renewable infeed is obtained (see Chapter 6).
These scenarios are then transformed into a scenario tree
using scenario reduction (see Chapter 9). Together with the
measurement of the current state xk and the control input
vk−1 that was applied in the last time instant, the scenario
tree is provided to the MPC. For these inputs, Problem 8 is
solved. From the resulting optimal input trajectory, the value
associated with the first prediction instant, v�(0), is applied to
the MG plant. At the next sampling time instant, the scenario
tree and the measurements are updated and Problem 8 is
solved repeatedly in a receding horizon fashion (see, e.g.,
[18, 23, 204] and Section 3.2). Some trajectories obtained by
solving Problem 8 for different values of α are discussed next.

11.3 Example

In Figures 11.4 to 11.6, the forecasts of the uncertain input,
power, setpoints and stored energy are shown. The trajecto-
ries were derived by solving Problem 8 for different values of
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Figure 11.4: Open-loop
trajectories of risk-averse
MPC (α = 0).

α with initial conditions x(0) = 0.5 pu h as well as δ
(0−)
t = 0

for the running example in Figure 4.1.6 The scenario tree was 6 The unit parameters and
the weights of the cost
function can be found in
Tables 12.1 and 12.2.

generated from the collections of independent forecast sce-
narios in Figure 9.11. Before deducing the scenario tree, the
independent forecast scenarios of available power were scaled
for a rated wind turbine power of 2 pu.

Comparing Figures 11.4 to 11.6, it can be noted that with
increasing α, the power setpoints become less conservative, as
less ambiguity in the probability distribution is considered.
For the risk-averse MPC with α = 1.0, where the probability
distribution is fully trusted, there is not a single scenario
where the conventional unit is enabled. With decreasing α,
the number of nodes with enabled conventional generator
increases. In Figures 11.4 and 11.5 this can be noted by a
larger number of nonzero setpoints of this unit.

Table 11.1: Power setpoints
of risk-averse MPC for
different values of α.

α =

0.0 0.5 1.0

us(k) −0.2 −0.43−0.51
ur(k) 0.79 1.03 1.11

Considering uncertainty in the probability distribution by
choosing smaller values of α also affects renewable infeed.
As shown in Table 11.1, the power setpoints ur(k) applied
to the renewable unit increase with α. A similar effect can
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Figure 11.5: Open-loop
trajectories of risk-averse
MPC (α = 0.5).be observed for the storage unit which is charged less for

smaller α (see Table 11.1). Furthermore, the forecast scenarios
of stored energy are closer to each other for smaller α. This
illustrates how the considered ambiguity affects the optimal
control decisions.

11.4 Summary

In this chapter a risk-averse MPC problem was formulated. It
allows to model ambiguity in the forecast probability distribu-
tions of load and available renewable infeed and satisfies all
requirements formulated in Section 2.3.

To derive a tractable MPC problem formulation, first the
notion of risk measures was introduced. Furthermore, coher-
ent risk measures were discussed and some examples thereof
were given. Among these examples was the AVaR that allows
to include ambiguity in probability distributions. To formu-
late a multi-stage risk-averse MPC problem, conditional risk
mappings in the context of scenario trees were introduced.
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Figure 11.6: Open-loop
trajectories of risk-averse
MPC (α = 1).These mappings allow to model how risk propagates, i.e.,

how the risk of the different prediction steps is interlinked.
Employing conditional risk mappings, a nested formulation of
the risk-averse MPC problem was posed and reformulated as
an MIQCP that can be solved by off-the-shelf software.

The MPC formulation derived in this chapter is now used
to control different islanded MGs in Chapter 12. Here, risk-
averse controllers with different values of α are compared
to each other and to the controllers derived in Chapters 7, 8
and 10.7

7 Note that for α = 1,
the controller derived in
this chapter is identical to
the risk-neutral stochastic
controller from Chapter 10
(see Remark 11.2.3).



12
Case study

In the past chapters, different MPC schemes for the operation
of islanded MGs were introduced. In this chapter, their prop-
erties are compared to each other in closed-loop simulations.

The contributions of this chapter are as follows. A numeri-
cal case study is conducted where different islanded MGs are
operated using (i) the prescient MPC from Chapter 5, (ii) the
certainty equivalence MPC from Chapter 7, (iii) the minimax
MPC from Chapter 8, (iv) the scenario-based risk-neutral
stochastic MPC from Chapter 10 and (v) the scenario-based
risk-averse MPC from Chapter 11. In the closed-loop simu-
lations, the forecast models identified in Chapter 6 are used
to simulate real-world setups with no prior knowledge about
the future infeed and load.1 Two MGs are operated for one 1 Except for the prescient

MPC that has full informa-
tion about future load and
renewable infeed.

week with each controller. The MGs considered have a large
amount of installed renewable power such that, in some cases,
a renewable share of more than 90 % is achieved. In addition
to nominal simulations, a sensitivity analysis is conducted.
This analysis investigates the robustness of the approaches to
misestimated forecast probability distributions.

The remainder of this chapter is partly based on [89–91, 93]
and structured as follows. First, the simulation setup is dis-
cussed in Section 12.1. Then, a simulation case study that em-
ploys the running example will be presented in Section 12.2.
This includes nominal simulations in Section 12.2.2 and a
sensitivity analysis in Section 12.2.3. Moreover, the results
of a single simulation run with a more complex MG will be
discussed in Section 12.3.



168 operation control of islanded microgrids

12.1 Simulation setup

For the simulation, the control schemes from Figures 5.5, 7.2,
8.6, 10.2 and 11.3 were implemented in MATLAB 2015a. Basic
components of the simulations are ARIMA forecasts, scenario
reduction, model predictive controllers and microgrid mod-
els. These components will be discussed in more detail after
outlining the hardware used to run the simulations.

Hardware. The simulations—except for the sensitivity analy-
sis in Section 12.2.3—were preformed on a small server with
an Intel® Xeon® E5-1620 v2 processor @3.70 GHz with 4 CPU
cores and 32 GB RAM. To emulate real-world setups where
one dedicated controller is used to operate a single MG, only
one simulation was performed at the time.

12.1.1 Forecast

The forecasts of load demand, wind speed and irradiance,
which include the nominal forecasts and the collections of
500 independent forecast scenarios, were derived using the
MATLAB Econometrics toolbox. Here, the models that were
identified in Chapter 6 were employed. For all forecasts, a Recall that the following

models were derived in
Chapter 6:

• ARIMA(10, 0, 8)(7, 1, 7)48
for load,

• ARIMA(16, 0, 6) for wind
speed, and

• ARIMA(6, 1, 2)(1, 1, 1)48
for irradiance.

sampling time Ts = 1/2 h and a prediction horizon of J = 12
were chosen to cover a possible full charge of discharge of
the storage unit with the largest capacity. The forecasts of
weather-dependent available power of the wind turbines was
derived from wind speed using (6.14). Likewise, the forecasts
of available power of the PV plant were deduced from irra-
diance using (6.15). For the certainty equivalence MPC, the
nominal forecast was used. For the minimax MPC, the robust
forecast intervals were identified from the collections 500 of
independent forecast scenarios using the stage wise minimum
and maximum, i.e., the 100 % interval. For the scenario-based
approaches, a new scenario tree was derived at every simula-
tion step via scenario reduction.

12.1.2 Scenario reduction

The scenario trees were deduced using a variant of forward
tree construction (see Algorithm 3) with branching factors
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[bd
j ]

12
j=1 = [6, 2, 1, 1, . . . , 1]
. To increase robustness, scenarios

where the first prediction step represents an extreme combi-
nation of load and available renewable infeed were artificially
added to the tree. Namely, these are maximum available
renewable infeed and minimum load as well as maximum
load and minimum available renewable infeed. The result-
ing scenarios have a very low probability as they combine
extreme cases for demand and renewable infeed. Therefore,
they have minor influence on the cost of the risk-averse MPC
for α = 1 and only come to bear for smaller values of α (see
Sections 12.2.2 and 12.3.2).2 2 Note that, even for α = 1,

these scenarios increase the
robustness regarding the
units’ power and energy con-
straints (see Remark 9.2.4).

Remark 12.1.1 (Probabilities of additional scenarios). In the
simulations, the probabilities of the additional scenarios were
assumed to be 1/5002, i.e., 4 · 10−6. Lower probabilities were
tested as well. Unfortunately, they led to numerical problems
of the solver which are probably caused by coefficients in
the cost function that are orders of magnitude away from
each other. These emerge as follows. On one end there are
probabilities of the original tree with values up to 0.5 and
on the other end there are the very small probabilities of the
additional scenarios. Both are multiplied with the weights
of the cost function that range from 100 to 10−3. This leads
to effective coefficients in the cost function that are orders
of magnitude away from each other. Therefore, 4 · 10−6 was
chosen as a compromise between an accurate reproduction of
the actual probabilities and a solvable problem formulation.

Remark 12.1.2 (Structure of scenario tree). The structure
of the scenario tree has an impact on the quantization error
between the initial probability distribution in the form of
independent forecast scenarios and the reduced probability
distribution in the form of a scenario tree. In the context of
this thesis, the structure of the scenario trees was implicitly
decided by heuristically choosing the branching factors [bd

j ]
12
j=1

with the following considerations in mind.
There is a trade-off between solve times (which typically

increase with the number of scenarios) and the approximation
accuracy with respect to the underlying probability distri-
bution (which typically becomes worse as the number of
scenarios decreases). Another important point to consider is
that only the first control input is applied to the plant. There-
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fore, it is desirable to use a large number of scenarios right in
the beginning to include as much probabilistic information
as possible when searching for optimal control inputs for the
first prediction step. Finally, it is important to keep in mind is
that a smaller number of scenarios can be acceptable in risk-
averse approaches which can provide robustness to inaccurate
forecast probability distributions.

12.1.3 Model predictive controllers

The MPC problems were formulated in MATLAB using
YALMIP [140] (Release R20180817) and solved numerically
with Gurobi 7.5.2 [85]. The problems were formulated using a
forgetting factor of γ = 0.95.

Remark 12.1.3 (Warm-start of optimization solver). To reduce
the solve time, the results from the previous executions of the
controllers were used in the closed-loop simulations with the
scenario-based and minimax MPC to warm-start the numeri-
cal solver. In detail, for each node i and each prediction step j,
the initial value was chosen to be identical to the result from
the previous execution of the controller. Naturally, this was
only possible if the scenario trees had an identical structure
and if a result from the previous execution was present.

Remark 12.1.4 (Simplification of scenario-based controllers).
The computational complexity of the scenario-based ap-
proaches, i.e., the risk-neutral stochastic and the risk-averse
MPC, was reduced by relaxing the switch variable of the
conventional generators for stages greater than or equal
to 4, i.e., δ

(i)
t ∈ [0, 1]Nt ⊂ RNt for all nodes i ∈ nodes(j)

with j ≥ 4. The same relaxation was performed on δ
(i)
r , i.e.,

δ
(i)
r ∈ [0, 1]Nr ⊂ RNr , for all nodes i that are singletons.

Remark 12.1.5 (Solve times). For the sampling time of 30 min
considered in this case study, the solve times were found to be
sufficiently small (see Sections 12.2.1 and 12.3.1). If identified
to cause problems, they could be further reduced by employ-
ing servers with more RAM and CPU cores. Moreover, the
relaxation of Boolean decision variables (see Remark 12.1.4)
could be further exploited.
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12.1.4 Microgrid simulation model

The optimal control inputs from the MPC approaches were
used to control MG models that were implemented in MAT-
LAB. The MG models, i.e., the plant models, that were used
in the closed-loop simulations strictly follow the model de-
scribed in Section 4.9. This concerns the dynamics as well the
relations of power, control input and uncertain input. Wind
and irradiance data from [12] was used to calculate the avail-
able renewable power under weather conditions based on
(6.14) and (6.15). The load power data was based on a real
power measurements from an islanded MG.3 Note that the 3 Gaussian noise with zero

mean and a small standard
deviation was added to
obfuscate the source of the
data.

uncertain input w(k) that is applied to the plant at time k is
different from the forecasts. The load, wind and irradiance
data used to deduce w(k) is, however, used to forecast the
future uncertain input for time instants k + 1 to k + J.

The closed-loop simulations were numerically assessed
using the following metrics. The average economically moti-
vated cost over simulation horizon K ∈ N is given by

Please note that the temporal
relation of variables in the
case study is identical to the
one described in Section 4.9.

�o =
1
K

K

∑
k=1

�o(v(k − 1), v(k), z(k)). (12.1)

The average cost associated with the state of charge over the
same simulation horizon is

�x =
1
K

K

∑
k=1

�x(x(k)). (12.2)

The average infeed from the conventional generators is

pt =
1
K

K

∑
k=1

Nt

∑
i=1

pt,i(k) (12.3)

and the average infeed from renewable sources is

pr =
1
K

K

∑
k=1

Nr

∑
i=1

pr,i(k). (12.4)

Finally, the average share of the RES can be determined as

pr
pt + pr

· 100 %. (12.5)
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Remark 12.1.6 (Model uncertainties). This work focuses on
the effects associated with the uncertain load and renew-
able infeed. Therefore, a plant model that strictly follows the
MG model in Chapter 4 was considered. This allows to ana-
lyze the effects of the uncertain input on the different MPC
approaches without having to worry about plant-model mis-
match. Moreover, neglecting model uncertainties directly
follows Assumptions 4.2.7 and 4.2.8 which state that the error
introduced by uncertain load and renewable infeed is much
larger than the error introduced by model uncertainties.

In the author’s work [93], a more complex plant that in-
cludes storage efficiencies and a nonlinear power flow model
was considered. The conclusions drawn from the simulations
are very similar to those presented in this thesis which further
justifies the use of a simple plant model.

12.2 Closed-loop simulations with simple MG

In what follows, simulations performed with the MG in Fig-
ure 12.1 are discussed. The main goal of this section is to
highlight properties of the different MPC approaches. There-
fore, the running example4 from Chapter 4 was considered. 4 Recall that the running

example only represents
a very small fraction of
topologies in the class of
islanded MG.

In what follows, first, the parameters of the MG and the
weights of the cost function are posed. Then, the results of
a single simulation run will be discussed. Finally, the ro-
bustness of the different approaches will be assessed in a
sensitivity analysis.

12.2.1 Grid setup
pr,1

x1

ps,1

pt,1

ut,1, δt,1

us,1ur,1

wr,1

wd,1

pd,1

3

pe,4

4

pe,3

2

pe,2

1

pe,1

Figure 12.1: Setup of simple
MG from Chapter 4.

For the simulations, the running example form Chapter 4 is
considered (see Figure 12.1). The grid contains one unit of
each kind, i.e., one conventional, one storage and one renew-
able unit and a load. The rated power of the transmission
lines that connect the units and the load is assumed to be
such that each line can transmit power between −1.3 pu and
1.3 pu. Moreover, F̃ and U from (4.33) and (4.34) are consid-
ered, i.e., all lines are assumed to have the same admittance.
Hence, the relation between the power of the transmission
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lines and the power of the units and the load is⎡⎢⎢⎢⎣
pe,1

pe,2

pe,3

pe,4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
0 1/3 −1/3 0
0 2/3 1/3 0
0 1/3 2/3 0

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

F̃U

⎡⎢⎢⎢⎣
pt,1

ps,1

pr,1

wd,1

⎤⎥⎥⎥⎦ .

Table 12.1: Unit parameters
of simple MG.

Parameter Value

pmin
t 0.4 pu

pmax
t 1 pu

pmin
s −1 pu

pmax
s 1 pu

pmin
r 0 pu

pmax
r 2 pu

xmin
1 0 pu h

xmax
1 7 pu h

x̃min
1 0.5 pu h

x̃max
1 6.5 pu h
x0 3 pu h
Kt 1
Ks 1

The parameters of the units can be found in Table 12.1.
Note that the storage unit has a relatively high capacity of
xmax = 7 pu h at a rated power of pmax

s = 1 pu. Also note that
the power sharing factors are chosen such that all fluctuations
are covered equally by both grid-forming units. The rated
power of the conventional generator is such that it can fully
serve the load at all times. The rated power of the wind tur-
bine is such that the load can be served and the storage unit
can be charged in times of high wind speed.

Table 12.2: Weights in cost
function of simple MG.

Weight Value

ct 0.1178 k$
c′t 0.751 k$/pu

c′′t 0.0048 k$/pu2

csw
t 0.1 k$
c′′s 0.05 k$/pu2

c′r 1 · 10−3 k$/pu

c′′r 1 k$/pu2

cx 1 · 103 k$/pu h

The weights of the cost function (5.2) are shown in Ta-
ble 12.2. Here, the fuel cost is based on unit 16 in [265].

Remark 12.2.1 (Penalty on renewable power setpoint). Note
that the weight associated with the cost of a large power
setpoint of the RES c′r was initially chosen much smaller. Un-
fortunately, this led to numerical problems of the optimization
solver for scenarios with low probabilities. These numerical
problems were probably caused by coefficients being orders of
magnitude away from each other: On end there are relatively
small probabilities of the additional scenarios in the range of
4 · 10−6 (see Remark 12.1.1) that are multiplied by small val-
ues of c′r which can lead to effective weights in the range of
10−9. On the other end there are probabilities in the scenario
tree of up to 0.5 that are multiplied by, for example, c′r, which
leads to effective weights in the range of 10−1. To prevent
these problems, a small value that does not cause numerical
issues was heuristically chosen for c′r. The same hold for the
weights in the cost function of the larger grid in Section 12.3.

12.2.2 Results of single simulation run

Simulations with different controllers were executed for the
time-series shown in Figure 12.2 with a sampling time of Ts =

30 min and a simulation horizon of 7 d, i.e., 336 data points.
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Figure 12.2: Time-series of
available infeed of wind
turbine and demand for
simulation with simple MG.

The simulation scenario was generated using wind speed
measurements from [12] which exhibit very high available
wind power on days three to five. The demand time-series
was based on measurements where Gaussian noise with zero
mean and a small standard deviation was added to obfuscate
the source of the data. Here, a daily pattern with high load in
the evening and low load at night can be easily identified.

The simulations were executed for the MPC approaches
presented earlier, i.e., for the

1. prescient MPC from Chapter 5,

2. certainty equivalence MPC from Chapter 7,

3. minimax MPC from Chapter 8,

4. risk-averse MPC from Chapter 11 for α = 0.0,

5. risk-neutral stochastic MPC from Chapter 10 which is
equivalent to the risk-averse MPC from Chapter 11 for
α = 1.0, and

6. risk-averse MPC from Chapter 11 for α = 0.5.

The accumulated results of the simulations are summa-
rized in Table 12.3. Here, it can be observed that the average
time required to solve the optimization problems is in the
range of seconds for all approaches. It can be further noted
that the solve times increase when using more complex mod-
els of the uncertain input. The maximum solve time of all
approaches is below 30 s. Considering a sampling time of
30 min, this seems adequately fast.
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Cert.
equiv.

Risk-averse, α =

Prescient Minimax 0.0 0.5 1.0

Mean econ. motiv. cost �o [k$] 2.7 2.78 3.2 3.18 2.79 2.72
Mean energy-related cost �x [k$] 0 3.19 0.13 0.01 0.29 0.47

Share of RES [%] 75.86 73.21 55.36 56.14 71.93 74.14

Switching actions 6 8 17 19 8 14
Power constraint violations 0 5 0 0 0 0

Mean solve time [s] 0.03 0.03 0.27 0.84 1.04 1.93
Maximum solve time [s] 0.06 0.06 1.08 3.4 6.23 26.12

Table 12.3: Results of simu-
lations performed with the
simple MG.In what follows, the results of the simulations will be dis-

cussed. Therefore, we move column-wise from left to right in
Table 12.3, i.e., from prescient to risk-averse MPC.

Prescient MPC. This approach serves as a reference. It as-
sumes a hypothetical case there the future time-series of load
and available power of the wind turbine are perfectly known
over the entire prediction horizon. As we do not consider any
modeling errors (see Remark 12.1.6), the prescient controller
represents the best result that could be achieved with a pre-
dictive controller with prediction horizon J = 12, given a
perfect forecast. The formal description of the MPC scheme is
given by Problem 2.

The closed-loop simulation results are show in Figure 12.3
on page 176. It can be noted that initially, the storage unit is
discharged due to low available power from the wind tur-
bine. When the battery is empty, the conventional generator
is enabled to provide power to the load. In the end of the pe-
riod where power is provided by the conventional generator,
its power is increased in order to charge the battery and dis-
able the conventional generator for some time. After a short
period with more available wind power, the conventional
generator is enabled again to provide power to the load. As
soon as the available power of the wind turbine is sufficient
to serve the load, the conventional generator is disabled and
the storage unit is charged. When the stored energy reaches
the upper end of the range of desired states of charge, the
setpoint of the wind turbine is selected such that the wind
power only covers the load. Thus, the stored energy approx-
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Figure 12.3: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with prescient
MPC approach.

imately remains at x̃max
1 = 6.5 pu h. At some point, the avail-

able wind power cannot cover the entire load and the storage
is discharged. The conventional generator is enabled again to
provide power to the load soon as the stored energy reaches
x̃min

1 = 0.5 pu h. In the end of the simulation, the available
renewable power increases again and the storage unit can be
charged by the wind turbine. Note that the line power in the
lower plot is within the given bounds of ±1.3 pu at all times.

As indicated in Table 12.3, the overall renewable share
of the prescient case is slightly above 75 %. The number of
constraint violations is zero, i.e., no power limit of any unit
was violated in the closed-loop simulations. The number of
switching actions is 6, i.e., the conventional generator was
enabled and disabled 3 times.

In real-world settings we never have perfect knowledge
about the uncertain future. Therefore, these simulation rep-
resent a reference that shows what would be possible with
a hypothetical perfect forecast. In what follows, closed-loop
simulations with “real” MPC schemes will be discussed.
These use real forecasts of the uncertain input and do not rely
on perfect knowledge about the future.
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Figure 12.4: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with certainty
equivalence MPC approach.

Certainty equivalence MPC. This approach can be understood
as the state of the art for the operation of islanded MGs. It is
based on the assumption that future load and and available
renewable infeed perfectly follow the nominal forecast. In
comparison to the prescient MPC, it employs the nominal
forecasts that were obtained from historic data. These were
deduced as described in Section 12.1.1 and provided to the
MPC formulation given by Problem 3.

The closed-loop simulation results are show in Figure 12.4.
It can be observed that the power and energy trajectories
slightly deviate from the prescient case. Notably, the storage
unit is not charged as fast as with the prescient MPC. Still,
the stored energy approximately follows the trajectory from
the prescient controller. Moreover, it can be noted that wind
and storage power are not as smooth as they were with the
prescient controller.

Comparing the prescient and the certainty equivalence
MPC in Table 12.3 shows that the mean economically moti-
vated cost is a little less than 3 % higher. The cost associated
with the state of charge increased to the highest value of all
control approaches, indicating a lack of robustness to uncer-
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tain renewable infeed. In total, 5 power constraint violations
could be observed. These are solely caused by the conven-
tional generator with a maximum of 0.023 pu outside the
given bounds. Considering that the conventional generator is
enabled for 88 time instants one can find that these violations
occur in 5.6 % of the time where the unit is operated. For the
transmission lines, no power constraint violation could be
observed. The number of switching actions, which is an indi-
cator for thermal stress of conventional generators, is slightly
higher than with prescient MPC.

The power constraint violations could in practice be re-
solved by artificially choosing tighter constraints. However,
this can only be done heuristically and does not guarantee
constraint satisfaction. Additionally, the cost associated with
the state of charge is much higher than in any other approach.
These drawbacks render the certainty equivalence MPC un-
suitable for the operation of MGs with high renewable share.

Minimax MPC. This approach can be seen as a logical next
step from the certainty equivalence MPC. It is based on the
assumption that load and available renewable infeed are
within bounded intervals. As indicated in Section 12.1.1,
these intervals were obtained using the stage-wise minima
and maxima from collections of 500 independent forecast
scenarios. The resulting time-varying bounds were then used
in the MPC formulation given by Problem 5.

The closed-loop simulation results are show in Figure 12.5.
Here, it can be seen that the infeed from the wind turbine is
much lower than with the prescient MPC. Furthermore, the
conventional generator is enabled more often and the storage
unit is charged slower and discharged faster than with the
prescient MPC. The reason for this behavior is, in parts, that
the worst-case cost is minimized in minimax MPC. In many
time instant, this worst-case is identical to low available re-
newable infeed and high load. Considering such a scenario,
the conventional generator is enabled because low renewable
infeed is expected. This leads to an increased conservative-
ness of the approach in the closed loop.

This conservativeness can also be noted in Table 12.3. Here,
the mean economically motivated cost is almost 19 % higher
than with the prescient controller. Furthermore, the renewable
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Figure 12.5: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with minimax
MPC approach.

share is significantly reduced by around 20 %. Compared
to the certainty equivalence approach, the cost associated
with the state of charge is lower, which indicates an increased
robustness to uncertain renewable infeed and load. Moreover,
the number of constraint violations could be reduced to 0, i.e.,
no unit or line power constraint was violated.

The major drawback of the minimax MPC is its increased
conservativeness which translates into increased costs and
decreased renewable share. One reason for this conservative-
ness is that Problem 5 represents an open-loop approach, i.e.,
feedback of the controller is not modeled in the problem for-
mulation. The simulation results when considering feedback
in the prediction is discussed next.

Risk-averse MPC (α = 0). For α = 0, the risk-averse MPC be-
comes a scenario-based worst-case MPC (see Remark 11.2.4).
One big difference compared to minimax MPC is that the
formulation allows to model possible feedback actions in the
controller. This typically leads to less conservative control
actions than with minimax MPC.
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Figure 12.6: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with risk-averse
MPC approach for α = 0.

The closed-loop simulation results are show in Figure 12.6.
It can be seen that considering feedback in the MPC formu-
lation leads to slightly less conservative control actions than
with the minimax approach. Another reason for less conser-
vative control actions is that the underlying tree only includes
the worst-case at the first stage (see Section 12.1.2). This leads
to less extreme worst-case scenarios that require less conser-
vative control actions.

The reduced conservativeness compared to the minimax
MPC can also be noted in Table 12.3. Here, the mean costs
are lower than with the minimax MPC. Still, the economically
motivated cost is more than 17 % higher and the renewable
share almost 20 % below the prescient case. The number of
switching actions is a little bit higher than with the minimax
approach. Note that the approach did not lead to any unit or
line power constraint violations.

One disadvantage of the approach is its conservativeness
which translates into increased cost and decreased renewable
share. The main reason for this is that the worst-case cost is
minimized. A different way to find suitable power setpoints is
to minimize the expected value of the cost, as discussed next.
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Figure 12.7: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with risk-averse
MPC approach for α = 1
which is equivalent to the
risk-neutral stochastic MPC.

Risk-neutral stochastic / risk-averse MPC (α = 1). Similar to
the worst-case approach from the previous paragraph, this
controller considers a forecast in the form of a scenario tree.
As discussed in Remark 11.2.3, the risk-neutral stochastic
MPC is identical to the risk-averse MPC for α = 1. Therefore,
the results of this paragraph cover both approaches.

The closed-loop simulation results are show in Figure 12.7.
It can be noted that the operation setpoints lead to a much
less conservative operation that with risk-averse MPC for
α = 0. This can be seen in the significantly increased renew-
able infeed. Moreover, the number of time instants where the
conventional generator is enabled is smaller than for α = 0.
The stored energy closely follows the trajectory of the pre-
scient controller.

The good performance is also reflected in Table 12.3: The
average economically motivated cost has the lowest value
of all approaches that consider a real forecaster and is only
0.74 % higher than the cost from the simulation with the pre-
scient controller. Unfortunately, the energy-related cost is
higher than with the other risk-averse and the minimax ap-
proaches such that the overall cost �o + �x is identical to the
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Figure 12.8: Power of units
and load as well as stored
energy and line power of
simple MG in closed-loop
simulation with risk-averse
MPC approach for α = 0.5.

one from of the risk-averse MPC with α = 0. The number
of switching actions is more than twice as high as in the pre-
scient simulation. However, no unit or line power constraint is
violated in the closed-loop simulations with this controller.

Even though this controller performs well in terms of eco-
nomically motivated costs and renewable share, it can lead to
a higher energy-related cost, especially in presence of high-
effect low-probability events. To compensate for this draw-
back, a risk-averse controller that considers some ambiguity in
the forecast probability distribution is used to operate the MG
in the next paragraph.

Risk-averse MPC (α = 0.5). Similar to other risk-averse ap-
proaches, the controller considered in this paragraph also
requires a forecast scenario tree. As discussed in Chapter 11,
for α ∈ (0, 1) the risk-averse MPC approach interpolates be-
tween worst-case MPC (α = 0) and risk-neutral stochastic
MPC (α = 1). In this example, we assume some ambiguity in
the forecast probability distribution by selecting α = 0.5.

The closed-loop simulation results are show in Figure 12.8.
It can be noted, e.g., by the charging rate of the battery, that
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the approach is more conservative than the risk-averse MPC
with α = 1 but less conservative than the risk-averse MPC
with α = 0. Another indicator of the increased conservative-
ness in comparison to the risk-averse approach with α = 1
is the larger number of time instants where the conventional
generator is enabled.5 5 Note that despite the de-

creased number of switching
actions, the conventional
generator is operated more
often for α = 0.5 than for
α = 1.

The average economically motivated costs �o for α = 0.5 lie
between those for α = 0 and α = 1 (see Table 12.3). However,
the lowest overall cost �o + �x of all approaches with real
forecasts could be achieved using the risk-averse MPC with
α = 0.5. This indicates that the risk-averse approach for
α ∈ (0, 1) can provide a good trade-off between worst-case
and risk-neutral stochastic MPC. The number of switching
action is slightly above the prescient controller. During the
simulation, no unit or line power constraints were violated.

Note that in this example, α = 0.5 was chosen to show
an operation regime between risk-neutral and worst-case.
Depending on the setup and the accuracy of the forecast
probability distribution, tuning α will most likely lead to a
better performance than the one obtained for α = 0.5.

12.2.3 Sensitivity analysis

The following analysis aims to illustrate the operation with
different control schemes in presence of misestimated forecast
probability distributions. First, the data considered in the
sensitivity analysis is introduced. Then, the simulation results
are discussed.

Data. For the sensitivity analysis, 1 000 closed-loop simu-
lations with simulation horizon K = 144 and initial state
x0 = 0.5 pu h were performed. For each closed-loop simu-
lation, a different scenario of load and available renewable
power was considered as uncertain input to the plant model,
while using the same forecasts for all scenarios.6 Thereby, a

6 Naturally, the forecast was
adapted at each simulation
step k ∈ N[1,K] by using the
nominal past values of load
and wind speed.misestimated forecast probability distribution was emulated.

Mean Std. dev.

Load −0.085 pu 0.028 pu
Wind speed −1.883 m/s 0.628 m/s

Table 12.4: Mean and stan-
dard deviation of normally
distributed errors in sensitiv-
ity analysis.
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Figure 12.9: 1 000 scenarios
of wind and load data used
in sensitivity analysis with
constant offset of 3 times the
standard deviation.

All 1 000 scenarios considered as uncertain input of the
plant model together with the original data used to obtain
the nominal forecasts are shown in Figure 12.9. The origi-
nal data of load and wind speed directly succeeds the data
considered in the nominal simulations in Figure 12.2. To em-
ulate misestimated forecast probability distributions, the data
used as uncertain input to the plant model was modified by
adding Gaussian noise. Therefore, the mean and the standard
deviation in Table 12.4 were considered. This way, the num-
ber of high-effect low-probability (HELP) events, i.e., events
that rarely occur but have a high effect on the operation cost,
was artificially increased. Note that the error of the wind tur-
bine was added to wind speed before the available renewable
power was calculated using (6.14).

Analysis. With each controller, 1 000 closed-loop simulations
were performed. For each simulation and each controller
the economically motivated cost �o and the cost associated
with the state of charge �x were deduced. The probability A brief introduction to

box plots can be found in
Section 3.1.

distributions resulting from these simulations are shown in
Figure 12.10.

For the prescient MPC from Chapter 5 which represents a
hypothetical best case the forecast data was given in form of
the noisy input to the plant model from Figure 12.9. It can be
seen in Figure 12.10 that the economically motivated cost �o

of the prescient MPC has the lowest median of all controllers.
Moreover, the energy-related cost �x with a mean of less than
0.1 · 10−12 is practically zero. The reason for the low cost is
that the uncertain input of the plant in this case is a priori
known to the MPC. Therefore, the prescient controller can
easily minimize the cost for everything that will happen.
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Figure 12.10: Probability
distributions of costs in
sensitivity analysis. The
costs were obtained from
closed-loop simulations with
different controllers where
an error with nonzero mean
was added to the uncertain
input of the plant model.

The probability distribution of the economically motivated
cost �o derived with the certainty equivalence MPC from
Chapter 7 has an almost identical standard deviation and a
slightly higher median than the distribution obtained with the
prescient controller. The energy-related cost �x has the highest
median and standard deviation of all controllers. This clearly
illustrates a lack of robustness to uncertain probability distri-
butions and HELP events and underlines that the approach is
not suitable for islanded MGs with high renewable share.

The highest median as well as the lowest standard devi-
ation of all distributions of �o can be observed for the mini-
max MPC from Chapter 8. Median and standard deviation of
�x are significantly lower than with the certainty equivalence
controller. This indicates a major increase in robustness which
results in a decreased sensitivity of �x to uncertain probabil-
ity distributions and HELP events. This robustness, however,
comes at the price of higher values of �o.

A slightly lower economically motivated cost than with the
minimax MPC can be achieved with the risk-averse approach
for α = 0. Here, the cost associated with the state of charge
�x has the lowest median and standard deviation of all ap-
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proaches with real forecasts. This indicates a small increase
in performance compared to the minimax MPC. Even though
the economically motivated cost slightly decreases compared
to the minimax approach, the increased robustness still comes
at the price of a high median of �o.

The risk-averse controller with α = 1 leads to a significantly
lower median in the distribution of �o than the controller with
α = 0. The standard deviation of this cost is more than two
times as high as for α = 0. This shows that the lower cost
comes at the price of an increased sensitivity to misestimated
forecast probability distributions. Furthermore, mean and
standard deviation of �x are higher than for α = 0. This
indicates a decreased robustness to misestimated probability
distributions compared to α = 0.

Median and standard deviation the distribution associated
with �o decrease for α = 0.5 compared to α = 1. The same
holds for cost associated with the state of charge �x. This indi-
cates an increased robustness of the controller to misestimated
forecast probability distributions and HELP events. The re-
sults also reflect that choosing α ∈ (0, 1) allows to interpolate
between worst-case and risk-neutral stochastic MPC to tune
the robustness of the controller.

In conclusion, if the number of misestimated forecasts is
expected to be very large, it is beneficial to chose α close to
zero. This can be seen in the mean value of the overall cost
�o + �x which is minimal for α = 0. The sensitivity anal-
ysis considers an extreme case that aims to illustrate how
robustness to misestimated forecasts changes with α. In se-
tups, where the forecast is not expected to exhibit a systematic
error, it is usually beneficial to choose α > 0.

12.3 Closed-loop simulations with extended MG

In this section, the results of simulations performed with the
MG in Figure 12.11 are presented. First, the parameters of
the MG and the weights of the cost function are introduced.
Then, the results of a single simulation run are discussed.
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Figure 12.11: Setup of
extended MG, motivated by
[123]. The grid includes two
conventional, two storage
and two renewable units, i.e.,
a photovoltaic (PV) power
plant and a wind turbine.
These units and the load are
connected by transmission
lines.

12.3.1 Grid setup

The extended MG considered in this section is shown in Fig-
ure 12.11. It is composed of two conventional, two storage
units, a wind turbine and a PV power plant. The units are
connected to each other and the load by transmission lines
with impedances[

y1 y2 y3 y4 y5
]
=
[
y y y/2 y y/2

]
,

where y ∈ R>0, i.e., all lines except for those that connect
the load have the same impedance. With these values and the
grid structure shown in Figure 12.11, the power of the lines
can be calculated from the power of the units and the load via

⎡⎢⎢⎢⎢⎢⎣
pe,1

pe,2

pe,3

pe,4

pe,5

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0

1/3 −1/3 1/3 −1/2 1/3 −1/2 0
2/3 1/3 2/3 1/2 2/3 1/2 0
−1/3 1/3 −1/3 −1/2 −1/3 −1/2 0
1/3 2/3 1/3 1/2 1/3 1/2 0

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

F̃U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pt,1

pt,2

ps,1

ps,2

pr,1

pr,2

wd,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The rated power of the lines is assumed to be such that each
line allows to transmit power between −1.3 pu and 1.3 pu.

Table 12.5: Transmission
line and unit parameters of
extended MG.

Parameter Value

pmin
t

[
0.6
0.4

]
pu

pmax
t

[
1
1

]
pu

pmin
s

[−1
−1

]
pu

pmax
s

[
1
1

]
pu

pmin
r

[
0
0

]
pu

pmax
r

[
2
2

]
pu

xmin
[

0
0

]
pu h

xmin
[

7
4

]
pu h

x̃min
[

0.5
0.5

]
pu h

x̃max
[

6.5
3.5

]
pu h

x0

[
3
2

]
pu h

Kt

[
1 0
0 1/2

]
Ks

[
1/4 0
0 1/8

]

The unit parameters can be found in Table 12.5. Note that
the rated power of the storage units is such that the MG can
run without requiring a conventional generator for a certain
duration. Storage unit 1 at bus 2 has a larger storage capacity
(7 pu h) than storage unit 2 at bus 4 (4 pu h). Furthermore,
storage 1 is assumed to cover less fluctuations as χs,1 = 4 is
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smaller than χs,2 = 8.7 The minimum power of the conven- 7 For the MG consid-
ered here, we have
Ks = diag([1/χs,1 1/χs,2]


),
Kt = diag([1/χt,1 1/χt,2]


).

tional generators was chosen such that unit 1 at bus 1 has a
larger minimum power than conventional unit 2 at bus 3. The
unit at bus 1 is further assumed to cover less fluctuations as
χt,1 = 1 is smaller than χt,2 = 2. Moreover, both units are
assumed to cover less fluctuations than the storage units. The
maximum power of the conventional generators is such that
the load can always be covered if both generators are running.
The rated power of the wind turbine and the PV power plant,
is such that in times of high renewable infeed the load can be
served and the storage units can be charged.

Table 12.6: Weights in cost
function of extended MG.

Weight Value

ct

[
0.1178
0.1188

]
k$

c′t
[

0.751
0.7578

]
k$/pu

c′′t
[

0.0048
0.0057

]
k$/pu2

csw
t

[
0.1

0.11

]
k$

c′′s
[

0.05
0.03

]
k$/pu2

c′r
[

0.001
0.0012

]
k$/pu

c′′r
[

1.0
1.2

]
k$/pu2

cx

[
103

103

]
k$/pu h

The weights of the cost function can be found in Table 12.6.
Here, the fuel costs are based on the costs of units 16 and 19
in [265]. For the storage units, it is assumed that the costs
for unit 1, i.e., the unit with a larger capacity, are higher than
for the other unit. The weight for the renewable power was
chosen to emphasize infeed from the PV power plant as it was
assumed to cause less operation and maintenance costs than
the wind turbine. For a brief discussion on c′r, the reader is
kindly referred to Remark 12.2.1. Finally, the weights of the
energy-related cost were chosen to be equal for both units.
Here the same value as for the small MG from Section 12.2
was selected.

12.3.2 Results of single simulation run

Simulations with different controllers were executed for the
simulation time-series shown in Figure 12.12. Using a sam-
pling time of Ts = 30 min and a simulation horizon of 7 d,
the simulation time-series consists of 336 data points. The
data was generated using the wind speed and irradiance mea-
surements from [12]. The load time-series originates from the
same source as the one from Section 12.2 and was scaled by
a factor of 1.5. As indicated in Section 12.1.4, Gaussian noise
with zero mean and a small standard deviation was added to
obfuscate the source of the load data.

The simulations were executed for the MPC approaches
presented earlier, i.e., for the

1. prescient MPC from Chapter 5,

2. certainty equivalence MPC from Chapter 7,
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Figure 12.12: Time-series
of available infeed of wind
turbine and photovoltaic
(PV) plant as well as demand
for simulation with extended
MG.

3. minimax MPC from Chapter 8,

4. risk-averse MPC from Chapter 11 for α = 0.0,

5. risk-neutral stochastic MPC from Chapter 10 which is
equivalent to the risk-averse MPC from Chapter 11 for
α = 1.0, and

6. risk-averse MPC from Chapter 11 for α = 0.5.

The accumulated results of the simulations are summa-
rized in Table 12.7 on page 190. It can be observed, that the
maximum time required to solve the problems is below 4 min
for all approaches. Considering a sampling time of 30 min,
this seems adequately fast.

In the following paragraphs the results of the simulations
are discussed in more details. Therefore, we move column-
wise from left to right in Table 12.7, i.e., from prescient to
risk-averse MPC. For compactness, only the plots of the sim-
ulation with the prescient and the risk-averse (α = 0.5) con-
troller are shown here. The remaining plots can be found in
Appendix A.

Prescient MPC. As for the simulations with the simple grid
in Section 12.2, the prescient controller is used as a reference.
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Cert.
equiv.

Risk-averse, α =

Prescient Minimax 0.0 0.5 1.0

Mean econ. motiv. cost �o [k$] 5.99 6.08 7.64 7.42 6.09 6.01
Mean energy-related cost �x [k$] 0 1.64 0.02 0.03 0.59 1.06

Share of RES [%] 95.45 92.05 49.41 56.47 93.02 93.26

Switching actions 8 10 33 59 14 12
Power constraint violations 0 3 0 0 0 0

Mean solve time [s] 0.03 0.04 4.16 3.44 2.87 4.27
Maximum solve time [s] 0.08 0.29 26.07 93.08 40.28 206.32

Table 12.7: Results of all
simulations performed with
the extended MG.

It assumes a hypothetical perfect forecast, i.e., the future load
and available renewable power are perfectly known over the
prediction horizon. As we do not consider any modeling er-
rors (see Remark 12.1.6), the prescient controller represents
a hypothetical best-case. The formal description of the con-
troller is given by Problem 2.

The results of the closed-loop simulation are show in Fig-
ure 12.13. Here, it can be seen that initially both storage units
are discharged due to low available renewable power. When
both batteries are almost empty, conventional generator 1, i.e.,
the generator with lower fuel cost, less participation in power
sharing and higher minimum power is enabled. At some
point, the available renewable power increases, such that the
conventional generator can be disabled and the batteries are
charged by the renewable units. After a period where first
conventional generator 1 and then conventional generator 2 is
enabled, the available power of the wind turbine and the PV
power plant increases and the storage units can be charged
using renewable infeed. If power from both renewable units
is available, a mix is chosen that puts an emphasis on infeed
from the PV power plant due to the choice of weights in the
cost function. By the time the storage units are fully charged,
renewable infeed is limited. Due to the seasonal pattern of
load and PV power plant, small charging cycles of the storage
units can be observed. This cycles are dominantly covered by
the smaller storage unit 2 which has a lower power-related
cost. At the end of day five, the storage units start a full dis-
charge that is caused by low available renewable infeed. After
a short period in which conventional generator 1 is enabled,
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Figure 12.13: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with prescient
MPC approach.

the available power from the PV power plant increases such
that the storage units can be charged again. Like before, the
small cycles are dominantly covered by storage unit 2.

As indicated in Table 12.7, the overall renewable share of
the prescient case is above 95 %. This is significantly higher
that the share of RES in the small grid which is only around
75 %. The reason for this increase, despite the higher storage
capacity and larger number of installed RES, is the temporal
dissimilarity of available infeed from the PV power plant and
the wind turbine. In many time instants, low available infeed
from one source is compensated by higher infeed from the
other. The number of constraint violations is zero, i.e., no
unit or line power limit of the plant model is violated in the
closed-loop simulations. The number of switching actions is 8,
i.e., conventional generators are enabled 4 times and disabled
4 times.

In the next paragraph, the certainty equivalence MPC is
used. For this controller, the perfect forecast is replaced by
a nominal forecast obtained with the ARIMA models from
Chapter 6.
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Certainty equivalence MPC. This approach represents the
state-of-the-art for the operation of MGs. It is based on the
assumption that future load and available renewable infeed
follow their nominal forecasts. These forecasts were obtained
as described in Section 12.1.1 and used in the MPC formula-
tion given by Problem 3.

In comparison to the prescient controller (see Table 12.7),
the mean economically motivated cost is around 1.5 % higher
and the renewable share 3 % lower. Furthermore, high energy-
related costs can be observed. In total, there are 3 power
constraint violations, all for violating the lower limits of the
conventional generators with a maximum violation of 5.6 ·
10−3 pu. For the transmission lines, no constraint violations
could be observed. The number of switching actions is above
the prescient controller, but still small.

Similar to the results for the simple MG in Section 12.2.2,
the violation of power constraints and the high energy-related
costs render this approach unsuitable for use in a practical
setup with a high share renewable infeed. To find power
setpoints that are robust to uncertain renewable infeed, a
minimax approach is used next.

Minimax MPC. This approach is based on the assumption
that load and available power of the wind turbine and the PV
power plant are within bounded intervals. These intervals
were obtained, as indicated in Section 12.1.1, based on real
forecasts without prior knowledge about the future. The
optimal setpoints for the MG were deduced using the MPC
formulation given by Problem 5.

The controller leads to much more conservative control
actions than the other approaches. This can be noted by an
increase in mean economically motivated costs of 27.5 % com-
pared to the prescient controller (see Table 12.7). The average
costs associated with the state of charge are almost zero. The
overall cost, �o + �x, is slightly lower than for the certainty
equivalence approach. Furthermore, the renewable share is
significantly reduced by more than 45 % and the number of
switching actions more than four times as high as with the
prescient controller. Using the minimax controller, no power
or energy constraints were violated.
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The major drawback of the minimax approach is the sig-
nificant increase in conservativeness which translates into
increased economically motivated cost and decreased renew-
able share. One reason for this is that the minimax MPC does
not consider feedback over the prediction horizon in the prob-
lem formulation. The simulation results when considering
feedback are discussed in the next paragraph.

Risk-averse MPC (α = 0). This approach can be understood
as an extension of the minimax MPC as it considers feed-
back over the prediction horizon in the MPC formulation
and thereby allows to reduce the conservativeness of the con-
troller. As posed in Remark 11.2.4, the risk-averse MPC for
α = 0 is equal to a scenario-based worst-case MPC. For the
approach, collections of independent forecast scenarios are
derived (see Section 12.1.1) and used to construct scenario
trees (see Section 12.1.2).

The reduced conservativeness of the approach in compari-
son to the minimax MPC can be noted in Table 12.7. Here, the
mean economically motivated cost is lower than with the min-
imax MPC. Still, it remains around 24 % higher than the one
of the prescient MPC. The overall cost, �o + �x, is lower than
for the minimax approach. The number of switching actions
has the largest value of all controllers. No unit or transmis-
sion line power constraints were violated with this approach.

One big disadvantage of this approach is that it is much
more conservative than the prescient MPC. This especially
shows in the increased cost and the decreased renewable
share. One major reason for this conservativeness is that
the worst-case cost is minimized. An alternative way to find
suitable power setpoints is to minimize the expected value of
the cost, as discussed next.

Risk-neutral stochastic / risk-averse MPC (α = 1). Similar
to the worst-case MPC from the previous paragraph, this
controller considers a forecast scenario tree. As indicated in
Remark 11.2.3, the scenario-based risk-neutral stochastic MPC
is identical to the risk-averse MPC with α = 1. Therefore,
the results of this paragraph cover the schemes that employ
Problems 6 and 8.
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The numerical comparison with other controllers in Ta-
ble 12.7 shows that the approach performs well in terms of
economically motivated costs and renewable share. The aver-
age cost �o is only 0.3 % above the prescient controller, which
is the lowest value of all schemes that consider real forecast-
ers. The overall costs, �o + �x, are lower than for the approach
with α = 0. The number of switching actions is higher than
with the prescient controller but still in a similar range. Dur-
ing the closed-loop simulation, no unit or line power con-
straints of the plant were violated with this approach.

Even though, the controller performs well in terms of eco-
nomically motivated costs, it can lead to higher energy-related
costs, especially if the probability distribution of the scenario
tree cannot be fully trusted. To compensate for this draw-
back, a risk-averse approach that considers ambiguity in the
forecast probability distribution is used in the next paragraph.

Risk-averse MPC (α = 0.5). The risk-averse controller for
α ∈ (0, 1) assumes some ambiguity in the forecast probability
distribution as described in Chapter 11. This can help to
reduce the impact of HELP events and misestimated forecast
probability distributions.

The results of the closed-loop simulation are show in Fig-
ure 12.14. It can be noted, e.g., by the lower charging rates of
the batteries, that the approach is more conservative than the
prescient MPC. Moreover, the storage units are not always
fully charged.

The average economically motivated cost for α = 0.5
lies between the cost for α = 0 and α = 1 (see Table 12.3).
It is about 1.7 % higher than with the prescient MPC and
about 1.3 % higher than with the risk-averse controller with
α = 1.0. The overall cost, �o + �x, has the lowest value of
all approaches with real forecasters. The renewable share
is about 2.4 % lower than with the prescient controller. The
number of switching actions is above the prescient MPC but
still in a similar region as with the certainty equivalence and
the risk-neutral stochastic MPC. During the closed-loop sim-
ulations, no unit or line power limit of the plant model was
violated using the risk-averse controller with α = 0.5.

The results indicate that the risk-averse approach for values
of α between 0 and 1 allows for a good trade-off between
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Figure 12.14: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with risk-averse
MPC approach for α = 0.5.

worst-case and risk-neutral stochastic MPC. In this example,
α = 0.5 was chosen to show the interpolation between the
two other extreme cases. Depending on the setup and the
accuracy of the forecast probability distribution, tuning α can
help to further increase the performance.

12.4 Summary

In this chapter, the use of the forecast and the controllers de-
rived in the previous chapters has been illustrated on two
different islanded MGs. The computing time of the numerical
solver was assessed indicating that all controllers are suffi-
ciently fast considering a sampling time of 30 min for both
MG setups. Furthermore, a sensitivity analysis that included
a high number of simulation runs was conducted to assess the
robustness of the approaches to uncertainties in the forecast
probability distribution.

The properties of the different controllers were analyzed
leading to the conclusion that the risk-averse controller for
α ∈ (0, 1) provides a good trade-off between performance in
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terms of cost and robustness to ambiguity in forecast proba-
bility distributions. The sensitivity analysis further indicated
that the operation costs can be reduced by assuming certain
ambiguity in the forecast probability distribution. In addi-
tion, it could be shown that the standard deviation of costs
decreases for approaches that are more averse to misestimated
forecast probability distributions. This translates into less
uncertainty about the operation cost which renders the risk-
averse MPC especially suitable for real-world applications.

For the two grid setups considered, it could be shown that
with the risk-averse approach, an economically beneficial op-
eration of islanded MG with high share of renewable sources
can be achieved. Moreover, the importance of the operation
management could be illustrated: depending on the controller
chosen for this layer, the costs, the renewable share and the
number of constraint violations significantly vary. In conclu-
sion, the choice of a suitable control scheme was shown to be
crucial for a safe and meaningful operation of MGs with high
share of renewable sources.



13
Conclusion

In this thesis, MPC approaches for the operation of islanded
MGs were deduced in computationally tractable ways and
compared to each other. These approaches can be distin-
guished by the way they model uncertain load and available
renewable infeed. In summary, the main findings of this the-
sis are as follows.

• Suitable optimization models that account for the behavior
of the lower control layers enable the design of appropriate
operation control schemes for islanded MGs with high
renewable share.

• The forecast probability distributions of renewable infeed
and load need to be explicitly considered in operation
control approaches for islanded MGs with high renewable
share.

• Risk-averse MPC allows for a safe and economically mean-
ingful MG operation that is robust to misestimated forecast
probability distributions and high-effect low-probability
events.

In what follows, first, a detailed summary is provided in
Section 13.1. Then, future research directions are highlighted
in Section 13.2.

13.1 Summary

In Chapter 2, a general introduction to MGs and hierarchical
control thereof was provided. Based on this introduction, re-
quirements for the operation control layer were formulated.
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These can be divided into requirements that concern the MG
model and requirements that concern the uncertain load and
available renewable infeed. The former include the model-
ing of power flow over the transmission lines, power sharing
between grid-forming units, and curtailment of renewable
infeed in the control scheme. The latter demand the MPC
schemes to be robust to uncertain available renewable infeed
and load as well as misestimated forecasts. The identified re-
quirements provide a basis for the formulation and evaluation
of different operation control strategies.

In Chapter 3, basic notation and reformulations from opti-
mization theory were introduced. Moreover, a general intro-
duction on power flow over transmission lines was provided.

In Chapter 4, the mathematical model of an islanded MG
was derived. This model provides the basis for various op-
eration control schemes designed for island MGs with an
arbitrary finite number of units, loads and transmission lines.
The model includes (i) renewable energy sources, where the
power infeed can be limited, e.g., if storage units are fully
charged; (ii) grid-forming storage units; and (iii) conventional
generators that can be disabled, e.g., in times of high avail-
able renewable infeed. Furthermore, it considers power flow
over the transmission lines as well as power sharing of grid-
forming units. Opposed to existing approaches, the model is
especially tailored for MGs with high share of RES. This, for
example, shows in the way the effects of uncertain renewable
infeed and load on the grid-forming storage and conventional
units are included or the fact that an operation mode without
conventional units is considered.

Using the mathematical model of an islanded MG, in
Chapter 5 a generic MPC problem was formulated. Therefore,
a cost function was derived that includes costs incurred by
fuel consumption of conventional generators and by curtail-
ment of renewable infeed. Additionally, it comprises costs re-
lated to storage losses and to the state of charge. The generic
MPC problem formulation serves as a reference for the real-
world controllers derived in the succeeding chapters.

Before designing real-world MPC schemes, in Chapter 6
different ARIMA forecast models for load and available re-
newable power of wind turbines and PV power plants were
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identified by performing an exhaustive search that included
more than 6 000 model structures. The identified ARIMA
models are required to generate forecasts of the uncertain
input for the different MPC formulations.

Based on the generic MPC formulation and the nominal
forecasts of load and available renewable infeed, a certainty
equivalence operation control scheme was obtained in Chap-
ter 7. This scheme assumes that the nominal forecasts are
certain. However, this assumption was identified to be un-
suitable for the control of an islanded MG with high share
of RES: In closed-loop simulations, the certainty equivalence
scheme led to violations of power limits and high costs in-
curred by states of charge outside the desired intervals.

To counteract the drawbacks of the certainty equivalence
MPC, a robust minimax operation control scheme was de-
rived in Chapter 8. This scheme considers a forecast in the
form of time-varying intervals that do not exhibit any prob-
abilistic information and minimizes the worst-case cost over
all possible disturbance values in these intervals. In the closed
loop, limit violations and high costs incurred by states of
charge outside the desired operating range could be avoided
at the expense of higher economically motivated costs.

The conservativeness of the minimax scheme can be re-
duced employing forecast probability distributions of loads
and renewable infeed. Scenario trees can be seen as a compact
representation of these probability distributions. In Chapter 9,
they were introduced by illustrating how constraints and costs
can be formulated on a scenario tree. Furthermore, the deriva-
tion of scenario trees from collections of independent forecast
scenarios was highlighted.

Employing scenario trees, a risk-neutral stochastic MPC
scheme for the operation of islanded MGs was derived in
Chapter 10. In this scheme, different scenarios of load and
available renewable infeed are considered in the constraints
and the cost function. The expected cost over all forecast
scenarios was minimized, assuming that the predicted prob-
ability distribution in the form of a scenario tree is certain.
For accurate forecast probability distributions, this approach
led to much less conservative control actions while avoiding
constraint violations in the closed loop.
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One drawback of the risk-neutral stochastic MPC approach
is that it relies on the forecast probability distributions to
be certain. With the risk-averse MPC approach presented in
Chapter 11, this drawback could be addressed by considering
ambiguity in the probabilities of the forecast scenario tree.
The presented risk-averse approach allows to tune the con-
troller by continuously interpolating between risk-neutral
stochastic MPC where the forecast probability distribution
is fully trusted and worst-case MPC where the distribution
is not trusted at all. By appropriately tuning the controller,
robustness to misestimated forecast probability distributions
and high-effect low-probability events could be provided.

To underline the properties of the different controllers, ex-
tensive closed-loop simulations with two MG topologies were
performed in Chapter 12. These include a sensitivity analy-
sis that illustrates the robustness of the risk-averse approach
to misestimated forecast probability distributions. The case
study showed that choosing the right operation strategy is
crucial for a safe and reliable operation of islanded MGs. Fur-
thermore, it highlighted the importance of operation control
on the real-world performance of islanded MGs: The share
of renewable infeed could be significantly increased without
adding more RES by choosing a proper operation control
strategy.

13.2 Future research directions

This work opens perspectives for various future research di-
rections. In what follows, five of them are highlighted: (i) ex-
tension of the microgrid model, (ii) modifications related to
uncertainties, (iii) augmentation of the MPC problem formu-
lation, (iv) derivation of distributed MPC approaches, and
(v) real-world application of the control schemes.

Microgrid model. The generic model of an islanded MG with
high share of RES deduced in this thesis provides a basis
for more complex control-oriented MG models. In this con-
text, the storage model could be extended to improve the
predictions of stored energy by including conversion losses
and self-discharge. This could be done, for example, using
charging and discharging efficiencies as proposed in [38, 180].



conclusion 201

Alternatively, power dependent conversion losses could be
approximated by piecewise affine functions (see, e.g., [233]).

Another extension concern the power flow. Here, the lin-
earized DC power flow model for AC grids could be replaced
by a model that includes the losses of the lines using, for ex-
ample, techniques from optimal power flow [144–146].

Moreover, the model could be extended to include a min-
imum time that a unit needs to remain on (or off) once it is
enabled (or disabled) as proposed in [180]. Furthermore, the
optimal moment for maintenance of the units could be de-
termined based on future predictions of available renewable
infeed and load using MPC. Related tasks, such as, the cal-
ibration of batteries that requires a full charge could also be
optimally scheduled using MPC.

The generic model deduced in this thesis would also allow
to add more unit types to the MG. Motivated by [142], electric
vehicles could be included. Furthermore, the model could be
modified to consider so-called “prosumer” nodes that can
provide and consume energy [251]. The model could further
be extended to represent multimodal grids that combine
thermal and electric power and energy. Such multimodal
MGs could, for example, comprise combined heat and power
plants as proposed in [16, 154] or thermal storage units as
proposed in [9].

Uncertainties. Another future research direction concern the
uncertain load and available renewable infeed. In this context,
the ARIMA model could be extended by employing different
historic time-series, e.g., load and temperature to forecast load
as in [47].

Moreover, the presented models could be extended to
include uncertain parameters, such as, an uncertain wind
speed to power curve as proposed in [199] or uncertain stor-
age dynamics. Furthermore, uncertain availability of power
lines, i.e., transmission line failures, could be included into
the model in a similar fashion as in [250]. Additionally, ro-
bustness to failures of communication channels could be
investigated, e.g., in a similar way as in [143].1

1 Note that [143] builds upon
the MG model presented in
this thesis.

MPC problem. A future research direction that would also
build upon the results of this thesis is the inclusion of chance
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constraints (see, e.g., [170]) in the operation control formula-
tions. Using them can help to decrease the conservativeness
of the approaches, for example, by ensuring only a certain
desired security of supply.

Moreover, the conservativeness of the minimax MPC could
be further reduced. One interesting path towards this goal
could be along the lines of tube-based MPC approaches (see,
e.g., [137, 157]).

Additionally, in the context of risk-averse MPC, the choice
of α should to be further investigated. Here, one could, for
example, adapt the ambiguity considered in risk-averse MPC
depending on past observations in a similar way as in [234].

Distributed MPC formulations. Based on the central MPC
problems presented in this thesis, distributed control schemes
could be developed. Simple distributed certainty equivalent
control schemes for interconnected MGs were already in-
vestigated in the author’s work [92]. One major challenge
in this context lies in approaches that consider more com-
plex forecasts, e.g., robust intervals or scenario trees. Another
open topic in this field is how to employ risk-measures in
distributed MPC schemes.

Real-world application. The schemes developed in this thesis
allow for generic MG topologies which enables their appli-
cation to control real-word or lab-scale MGs such as the ones
presented in [86, 180]. In this context, modeling assumptions
could be verified and systematic modeling errors identified
and addressed. Considering more complex MG setups that
include a higher number of units and loads would further
allow to investigate how the control approaches scale. In this
context, the application of GPUs to solve complex MPC prob-
lems, as proposed in [221] for water networks, is another open
future research topic.

In conclusion, this work opens perspectives for many en-
gineering and research questions related to the operation
control of MGs. To many of them, the generic model of an
islanded MG with high share of RES provides a wide foun-
dation upon which extensions of the MG and new control
approaches can be developed. The different MPC schemes



conclusion 203

presented in this thesis additionally provide a broad basis for
the development and refinement of operation control strate-
gies for grids with high share of uncertain renewable infeed.





A
Simulation results with extended MG

This chapter contains plots from the simulations with the ex-
tended grid. For compactness, only the plots of the prescient
and the risk-averse controller for α = 0.5 were presented in
Section 12.3. In what follows, the simulation results that led
to the accumulated values (see Table 12.7) for the other cases,
i.e., the

1. certainty equivalence MPC from Chapter 7,

2. minimax MPC from Chapter 8,

3. risk-averse MPC from Chapter 11 for α = 0.0, and

4. risk-neutral stochastic MPC from Chapter 10 which is
equivalent to the risk-averse MPC from Chapter 11 for
α = 1.0

are presented.
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Figure A.1: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with certainty
equivalence MPC approach.
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Figure A.2: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with minimax
MPC approach.
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Figure A.3: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with risk-averse
MPC approach for α = 0.
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Figure A.4: Power of units
and load as well as stored
energy and line power of
extended MG in closed-loop
simulation with risk-averse
MPC approach for α = 1
which is equivalent to the
risk-neutral stochastic MPC.
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[57] J. Dupačová, G. Consigli, and S. W. Wallace. Scenarios
for multistage stochastic programs. Annals of operations
research, 100(1-4):25–53, 2000.
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bil Susceptance between nodes i and l

χi Power sharing factor of unit i

child(i) Set of children of node i

cil Current flow from node i to node l

δr Boolean auxiliary variable of renewable units

δt Boolean control input of conventional generators

Dj Probability simplex at stage j

E Set of edges

Eπj Expectation operator considering probability vector πj

F Edge-node incidence matrix
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G Weighted, undirected, connected graph

γ Discount factor

gil Conductance between nodes i and l

I Set of all forecast scenarios

J Prediction horizon

j Discrete prediction time instant

k Discrete time instant

Ks Inverse power sharing factors of storage units

Kt Inverse power sharing factors of conventional generators

L Weighted graph Laplacian matrix

� Overall cost

�o Economically motivated cost

�x Cost associated with state of charge

�o Average economically motivated cost

�x Average cost associated with state of charge

L Set of removed forecast scenarios

L Set of kept forecast scenarios

μ Real-valued auxiliary variable

Nb Number of nodes, i.e., buses, in transmission network

Nd Number of loads

Ne Number of edges in transmission network, i.e., number of transmission lines

Nn Number of nodes in scenario tree

NΩ Number of scenarios in collection of forecasts

Nr Number of renewable units

Ns Number of storage units

Nt Number of conventional generators

Nu Number of units

Nv Number of elements in vector of control inputs

Nw Number of elements in vector of uncertain inputs

Nz Number of elements in vector of auxiliary variables

p Power of units

pe Power of transmission lines

pg Active power of nodes in transmission network

pl Load power

pr Power of renewable units

ps Power of storage units
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pt Power of conventional generators

pr Average infeed from renewable units

pt Average infeed from conventional generators

Φ Vector of minimum cost in conditional risk mapping

π(i) Probability of node i

πj Probabilities of stage j

pil Active power flow from node i to node l

Ψ Vector of cost in conditional risk mapping

qg Reactive power of nodes in transmission network

qil Reactive power flow from node i to node l

ρ Risk measure

sil Apparent power flow from node i to node l

stage(i) Stage of node i

t Auxiliary variable in reformulation of AVaR

θi Phase angle at node i

θil Phase angle difference between nodes i and l (θi − θl)

U Matrix to connect units and loads to buses of transmission network

u Power setpoints of units

ur Power setpoints, i.e., maximum power, of renewable units

us Power setpoints of storage units

ut Power setpoints of conventional generators

V Set of nodes, i.e., buses, in transmission network

v Control input vector

v(i) Control input vector at node i

v̂i Voltage amplitude at node i

w Uncertain input

w Upper bound of forecast of uncertain input

w Lower bound of forecast of uncertain input

wd Load power

ŵi Forecast of uncertain input i

ŵ(i) Forecast of uncertain input at node i

wr Available renewable infeed

x State vector

x(i) State vector at node i

x Upper bound of state vector

x Lower bound of state vector
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ξ Auxiliary variable in reformulation of AVaR

yil Admittance between nodes i and l

yn Admittance of transmission line n

z Vector of auxiliary variables

z Vector of auxiliary variables associated with w

z Vector of auxiliary variables associated with w

z(i) Vector of auxiliary variables at node i



Index

Average value-at-risk, 15, 152

Big-M reformulation, 36, 55
Minimum operator, 37, 54
Multiplication, 36, 63

Box plot, 31

Conditional expectation, 140
Conditional risk mappings, 154
Conditional value-at-risk, see Average

value-at-risk

Demand, see Load
Droop control, see also Primary control, 51

Epigraph relaxation, 34, 113, 153

Forecast, 79, 168
ARIMA, 83
Load, 85
Naive, see Persistence
Persistence, 80
Photovoltaic power plant, 89
Seasonal persistence, 80
Wind turbine, 86

Laplacian matrix, 45, 58
Load, 51f.

Model predictive control, 31, 170
Certainty equivalence, 94, 177, 192
Minimax, 102, 114, 178, 192
Prescient, 76, 175, 189
Risk-averse, 157f., 179, 181f., 193f.
Risk-neutral stochastic, 144, 181, 193
Worst-case, 162, 179, 193

MPC, see Model predictive control

Power flow, 27, 57
AC power flow, 41
DC power flow, 42, 51

Power sharing, 26, 62
Primary control, 21

Scenario trees, 119
Scenario reduction, 131, 168

Secondary control, 22

Transformer, see also Power flow, 40
Transmission line, see also Power flow, 39

Units
Conventional generator, 26, 51, 53
Grid-forming units, 24, 26, 51, 62
Renewable generator, 54, 86, 89
Storage unit, 24, 51, 55
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