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Abstract

Production scheduling is key to the profitability of an industrial production site. This
work investigates various aspects of scheduling systems with an emphasis placed on indus-
trial requirements; particularly focusing on some of the challenges associated with oper-
ating in an online industrial environment, taking into consideration cost-related concerns
including both energy and maintenance costs. This work builds upon the generic Resource
Task Network (RTN) scheduling framework (Pantelides, 1994) as it is readily adaptable
to the ISA-95 industrial standard for production scheduling (ANSI/ISA-95.00.03-2005,
2005).

This work begins with a general discussion of online scheduling. First it is shown
that faster rescheduling generally results in better closed-loop performance. This precipi-
tates the needs for fast scheduling solution algorithms as the faster a schedule can be com-
puted, the more flexibility one has regarding rescheduling. Next, end of horizon effects and
scheduling nervousness are discussed qualitatively, and it is argued that scheduling models
should be developed with these concerns in mind.

The next chapter focuses on addressing some of these online scheduling concerns for
the RTN scheduling model. Firstly, an iterative combined heuristic/Mixed Integer Linear
Programming (MILP) solution algorithm is proposed to solve RTN-based scheduling prob-
lems. The algorithm is initialized with a constructive heuristic solution. Information from
this solution is used to limit the domain of the MILP such that the problem size is reduced
while still allowing for better solutions to be found. This is performed iteratively until the
algorithm has converged. Results show that the new algorithm can find good quality solu-
tions orders of magnitude faster than a full-space RTN model directly solved using a MILP
solver. Furthermore, the algorithm is suitable for online use as it provides a feasible solu-
tion at every iteration meaning that even in the presence of extremely stringent computation
times a solution is still returned. Next the topic of scheduling nervousness is addressed in
relation to the RTN model. A set of penalties are proposed to enforce scheduling stabil-
ity between subsequent iterations of the schedule. An overlying algorithm is used to set
the magnitude of the penalties. Results show that the approach can efficiently balance the
trade-off between scheduling stability and optimality.

A couple of aspects that are becoming increasingly important for the profitability of
the process industries are energy management, via Demand Side Management (DSM),
and equipment condition and maintenance. A novel DSM formulation, built on top of the
RTN, is proposed in this work that combines the problems of following a previously com-
mitted load, with purchasing decisions for future use. The formulation is shown to have
two benefits, firstly additional flexibility is unlocked as production can be shifted around
with updates to future purchasing decisions. Secondly, the formulation is more suitable
for online use as it avoids the sharp drop in electricity consumption towards the end of
the scheduling horizon as is characteristic of current state-of-the-art DSM formulations.
Further, condition-based maintenance is incorporated into the RTN model by tracking the
Remaining Useful Lifetime (RUL) of a process unit. When the RUL of a unit has been
depleted a maintenance-action is needed to restore it. The RUL in this case can be tied to
the intensity at which the corresponding equipment is operated at, creating a close coupling
between batch timing and batch length, resource consumption, and need for maintenance.
Revisiting the steelmaking application, it is shown that the formulation can effectively bal-
ance these trade-offs and is suitable for online scheduling use.



Zusammenfassung

Bessere Produktionsplanung ist der Schliissel zu Profitabilititssteigerungen in der In-
dustrie. In der vorliegende Arbeit wird Produktionsplanung mit besonderem Fokus auf in-
dustrielle Anforderungen untersucht. Die Herausforderungen, welche in dieser Arbeit be-
leuchtet werden, sind die Anforderungen der Echtzeitproduktionsplanung sowie den Ein-
fluss von Betriebskosten, zum Beispiel Energiekosten oder Instandhaltungskosten. Dabei
wird auf das Resource Task Network (RTN) Konzept (Pantelides, 1994) aufgebaut, da so
einfach auf den ISA-95 Standard fiir die industrielle Produktionsplanung aufgesetzt werden
kann (ANSI/ISA-95.00.03-2005, 2005).

Zuerst wird ein iterativer heuristischer Ansatz zur Losung von Planungsproblemen in
der Doméne der linearen gemischt-ganzzahligen Programme (MILP) entwickelt. In den
ersten Schritt wird eine heuristische Losung genutzt, um den Definitionsbereich des MILP
einzugrenzen und so den Suchraum zu verkleinern. Dieses heuristische Eingrenzen wird
bis zur Konvergenz angewendet und die Ergebnisse zeigen, dass so eine gute Losungen um
GroBenordnungen schneller als bei der Verwendung des vollen RTN Modells in Kombina-
tion mit einem MILP-Losers gefunden werden konnen. Der Algorithmus eignet sich fiir die
Anwendung in der Echtzeit-Planung, da in jeder Iteration selbst bei geringer Verfiigbarkeit
von Rechenzeit eine zuldssige Losung gefunden wird. Dariiberhinaus wird die ,,Nervositit*
der Losungsstruktur durch die Einfiihrung von Nebenbedingungen addressiert, welche eine
gewisse Konstanz zwischen den Iteration erzwingen. Dabei bestimmt ein iibergeordneter
Algorithmus den Einfluss der durch die Nebenbedingungen eingefiihrten Strafen. Die Er-
gebnisse zeigen, dass das verwendete Konzept einen effektiven Kompromiss zwischen der
Stabilitdt und der Optimalitit der Planung erreicht.

Die Problemformulierung wird im Folgenden erweitert, um auf zukiinftige Anforderun-
gen in der Produktionsplanung einzugehen: Dynamische Laststeuerung auf Verbraucher-
seite (Demand-Side Management, DSM) sowie die Einbeziehung von zustandsbasierter
Instandhaltung. Dazu wird eine Problemformulierung fiir DSM entwickelt, welche die Ein-
haltung vorher vereinbarter Verbrauchsmengen mit den Entscheidungen iiber die zukiinftigen
Verbrauchsmengen kombiniert, was folgende Vorteile liefert: Zum Einen wird zusétzliche
Flexibilitit geschaffen, da die Produktion unabhingig von zukiinftigen Einkaufsentschei-
dungen angepasst werden kann. Zum Anderen ist die Struktur fiir die Echtzeit-Planung
geeignet, da der Einfluss des Planungshorizontes verringert wird.

Um zustandsbasierte Instandhaltung zu beriicksichtigen, wird eine nutzungsabhingige
Restnutzungsdauer (RUL) je Produktionseinheit in die Planung mit einbezogen. Sobald
die RUL einer Produktionseinheit zu Ende geht, ist eine Instandhaltungsmafinahme not-
wendig. Die RUL héngt von der Intensitdt der Nutzung der Ausriistung ab, wodurch eine
Abhingigkeit zwischen der Planung der Startzeiten der Batches, der Batchlinge, dem Res-
sourcenverbauch, und den Instandhaltungsmanahmen entsteht wird. Anhand einer Fallstu-
die aus der Stahlproduktion wird exemplarisch erortert, dass die vorgeschlagene Struktur
einen giinstigen Kompromiss zwischen diesen Aspekten erreicht. Somit kénnen sowohl die
Problemformulierung mit dynamischer Laststeuerung und zustandsbasierter Instandhaltung
als auch Problemlosungsverfahren einen Beitrag zu mehr Produktivitit liefern.
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