Sensormodellierung für die virtuelle Absicherung von Fahrerassistenzsystemen

- Methodik, Integration, Validierung -

Alexander Prinz

Sensormodellierung für die virtuelle Absicherung von Fahrerassistenzsystemen - Methodik, Integration, Validierung -

Zur Erlangung des Akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN

von dem Fachbereich Elektrotechnik/Informatik im Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik

DISSERTATION

an der Universität Kassel

vorgelegt von

M. Eng. Alexander Prinz geb. am 06.06.1994 in Bad Kissingen, wohnhaft in München

Einreichung:	Juli 2021	
Erstgutachter:	Prof. Dr. rer. nat. Ludwig Brabetz	Universität Kassel
Zweitgutachter:	Prof. Dr. Werner Huber	Technische Hochschule Ingolstadt

Berichte aus der Elektrotechnik

Alexander Prinz

Sensormodellierung für die virtuelle Absicherung von Fahrerassistenzsystemen

- Methodik, Integration, Validierung -

D 34 (Diss. Univ. Kassel)

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kassel, Univ., Diss., 2022

Die Arbeit wurde als Dissertation an der Universität Kassel eingereicht.

Fachbereich: Elektrotechnik/Informatik

Datum der Disputation: 01.03.2022

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8679-9 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Ehrenwörtliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig, ohne unerlaubte Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht. Dritte waren an der inhaltlichen Erstellung der Dissertation nicht beteiligt; insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsverfahren durch mich verwendet worden.

München den 08.07.2021

Alexander Prinz

Alexander Prinz

Danksagung

Die vorliegende Arbeit entstand während meiner Anstellung bei der BMW AG in München in Zusammenarbeit mit dem Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik der Universität Kassel, unter der Leitung von Prof. Dr. rer. nat. Brabetz. Insbesondere möchte ich Herrn Prof. Dr. rer. nat. Brabetz und Herrn Dr. Ayeb für die hervorragende Betreuung der Doktorarbeit danken. Durch die gemeinsamen Diskussionen konnte ich weiterführende Gedanken zu meinen bereits erarbeiteten Forschungsergebnissen schöpfen und weiterhin eine klare Leitlinie zum weiteren Vorgehen erarbeiten. Die Betreuung war trotz der Distanz zum Lehrstuhl sehr persönlich und von großem gegenseitigem Forschungsinteresse geprägt. Neben den Vertretern der Universität Kassel möchte ich ebenso meinem Zweitgutachter Prof. Dr. Huber von der Technischen Hochschule Ingolstadt danken. Herr Prof. Dr. Huber unterstützte mich zu Beginn meiner Tätigkeit bei dem Kontaktaufbau mit anderen Wissenschaftlern in meinem Themenfeld. Darüber hinaus gab er mir im regelmäßigen Austausch Feedback und Denkanstöße zu meinen Forschungsthemen. Aus meinem Arbeitsumfeld möchte ich besonders meine beiden Betreuer Herrn Dr. Martinus und Herrn Dr. Fricke hervorheben. Durch ihre richtungsweisenden Impulse und den Austausch verhalfen sie mir unter anderem zu einer klaren Forschungsfrage, einem durchgehenden Konzept und dem wissenschaftlichen Anspruch im Rahmen der Veröffentlichungen und der finalen Ausarbeitung. Auf dem Weg dieser Arbeit konnte ich durch die Betreuung einiger Studienabschlussarbeiten und Praktika die Konzepte in die Anwendung überführen und darüber hinaus die Machbarkeit des Ansatzes manifestieren. Allen beteiligten Studenten und Doktoranden in verwandten Abteilungen gilt damit ein großer Dank für die Zusammenarbeit und Diskussion im Rahmen des Forschungsthemas. Zuletzt möchte ich noch meiner Familie danken. Neben meinen Eltern Martin und Mariela gab mir auch meine Freundin Lea immer wieder Kraft und Hoffnung in der Bearbeitung der herausfordernden Problemstellungen. Meinem Vater möchte ich insbesondere für die Durchsicht der Orthographie der Arbeit danken.

Kurzfassung

Moderne Kraftfahrzeuge sind heute mit einer Vielzahl von elektronischen Komponenten ausgestattet. Neben Komfortfunktionen wie z.B. Radio und Navigation kommen auch zahlreiche Sicherheitssysteme zum Einsatz. Die jüngsten Entwicklungen haben dabei vor allem Assistenzfunktionen wie den Abstands-Regelungstempomaten oder den Spurwechselassistenten hervorgebracht. Diese Funktionen können Teile der Fahrzeugsteuerung für den Fahrer übernehmen und ihn damit entlasten. Die Systeme nutzen für die Erfassung des Fahrzeugumfeldes verschiedene Sensoren. Für die Entwicklung und Absicherung dieser Systeme werden dabei häufig simulationsgestützte Testmethoden eingesetzt. Diese können die Entwicklungszeit verkürzen und dabei kostspielige Fahrzeugmessungen einsparen. Voraussetzung für den Einsatz der virtuellen Absicherung im Bereich der Fahrerassistenzsysteme ist hierbei die Anwendung einer Szenario-Umfeldsimulation mit Sensormodellen. Die Sensormodelle haben dabei die Aufgabe, die reale Sensorerfassung in Anbetracht des Absicherungszwecks in der Simulation darzustellen. Die Messeffekte des Sensors durch Störquellen müssen in diesem Zusammenhang ebenso berücksichtigt werden, wenn diese einen Einfluss auf das Assistenzsystem nehmen können.

Die vorliegende Arbeit stellt ein neuartiges Sensormodellierungsprinzip für eine weit verbreitete Sensortechnologie am Beispiel von Automobil-Radaren vor. Das Sensormodell berücksichtigt sowohl das fehlerfreie Messverhalten als auch einen funktionsrelevanten Sensorstöreffekt und nutzt dazu eine Zeitsignal-Herleitung im Radar-Basisband. Als Sensorstöreffekt wird die Radar-Interferenz ausgewählt, da diese schwerwiegende Folgen auf die Zielerfassung haben kann und im Rahmen von Fahrzeugmessungen schlecht nachweisbar ist. Die steigende Zahl an Fahrzeugen mit Radarsensoren begünstigt dabei außerdem das Störpotential durch Radar-Interferenz. Die Auftretenswahrscheinlichkeit in einer Vielzahl von Szenarien begründet damit weiterhin die Relevanz dieser Simulation.

Nach der Modellbildung und Anpassung auf das reale Messverhalten werden exemplarische Anwendungsmöglichkeiten des Modells aufgezeigt und durchgeführt. Als Beispiel kann die Simulation für die Entwicklung und Bewertung verschiedener Störvermeidungsmaßnahmen genutzt werden. Dazu werden Sensor-Performanzgrößen gebildet und für ein konkretes Szenario berechnet. Darüber hinaus bietet die Anwendung des Sensormodells mit einem realen Fahrerassistenz-Steuergerät die Möglichkeit, die Auswirkungen des Störeffektes auf das Gesamtsystem nachzuweisen. Der exemplarische Spurwechselwarner nutzt dabei ausschließlich Radarmessungen zur Erkennung überholender Fahrzeuge oder von Fahrzeugen im toten Winkel. Als Konsequenz wird der Einsatz interferenzminimierender Maßnahmen für die verwendete Sensorik empfohlen, um das Assistenzsystem gegenüber Interferenzeffekten zu schützen. Zusammenfassend bietet der neuartige Sensormodellansatz vielfältige Einsatzmöglichkeiten, ist vollständig auf die reale Sensorik anpassbar und betont darüber hinaus die Relevanz von verlässlicher Sensorik am Beispiel von Radar-Interferenze.

Abstract

Today, modern vehicles are equipped with a variety of electronic components. In addition to comfort functions such as radio and navigation, also safety systems come to apply. The latest developments have mainly resulted in assistance functions such as distance cruise control control or lane change assistants. These functions can take over parts of the vehicle control for the driver and thus relieve him. The systems use various sensors to detect the vehicle environment. Simulation-based test methods are often used to develop and test these systems. These can shorten development time while saving costly vehicle measurements. A prerequisite for the use of virtual test in the field of driver assistance systems is the application of a scenario environment simulation with adequate sensor models. The sensor models have to display the real sensor output in the simulation. Furthermore, the measurement effects of the sensor due to disturbing sources must also be taken into account, if they can influence the assistance system.

This dissertation presents a novel sensor modeling principle for a widely used sensor technology using the example of automotive radars. The sensor model takes the undisturbed measurement behavior and a function-relevant sensor fault effect into account. For that reason, a time signal derivation in the radar baseband come to apply. Radarinterference is selected as a sensor fault behaviour, as this can have serious consequences on the target acquisition and is difficult to detect in the context of vehicle measurements. The increasing number of vehicles equipped with radar sensors also favours the potential for radar-interference. The probability of occurrence in a variety of scenarios thus continues to justify the relevance of this simulation.

After the model adjustment to the real measurement behavior, exemplary applications of the model are shown and carried out. As an example, the simulation can be used for the development and evaluation of various interference mitigation methods. For this purpose, sensor performance metrics are formed and calculated for a specific scenario. In addition, the application of the sensor model with a driver assistance control unit provides the opportunity to demonstrate the effects of radar-interference on the systems performance. The exemplary lane change warning only uses radar measurements to detect overtaking vehicles or vehicles at blind angles. As a consequence, the use of interference effects. In summary, the novel sensor model approach offers a wide range of applications, is fully adaptable to real sensors and also emphasizes the relevance of reliable sensor technology using radar-interference as an example.

Inhaltsverzeichnis

At	okürz	ungsverzeichnis und Glossar	111
Sy	mbol	verzeichnis	VII
Ał	bildu	Ingsverzeichnis	хш
Та	belle	nverzeichnis	xv
Ei	gene	Veröffentlichungen	xvı
1	Einle 1.1 1.2 1.3 1.4	eitung Regelkreis und Architektur von Assistenzsystemen	1 . 1 . 3 . 4 . 6
2	Test 2.1 2.2 2.3 2.4 2.5	ven von Fahrerassistenzsystemen Verifikation und Validierung V-Modell Formale Verifikation Formale Verifikation Fahrzeugerprobung Virtuelle Absicherung 2.5.1 Simulationsgestütztes Testen 2.5.2 Umfeldsimulation 2.5.3 Arten der Sensormodellierung 2.5.4 Übersicht ausgewählter Sensormodelle Zusammenfassung und Fazit	7 . 7 . 8 . 9 . 10 . 10 . 11 . 11 . 12 . 14
3	Rad 3.1 3.2 3.3 3.4 3.5	arsensorik im Automobil Radarbasierte Assistenzsysteme Funktionsweise der Radarsensorik Signalverarbeitung FMCW Radarsensorik Messcharakteristik von Radarsensoren Störeffekte in der Radarzielerfassung 3.5.1 Übersicht der Effekte 3.5.2 Beschreibung des Effektes der Interferenz 3.5.3 Interferenzeffekte in einem Minimalbeispiel	15 . 15 . 18 . 24 . 27 . 33 . 33 . 34 . 35

	3.6	Zusan	nmenfassung und Fazit	. 39
4	Mo	dellieru	ngsansatz für Radarsensoren	41
	4.1	Anfor	derungen an das Modell	. 42
	4.2	Besta	ndteile des Sensormodells	. 43
	4.3	Abgre	nzung zu anderen Forschungsarbeiten	. 44
	4.4	Teilm	odelle zur Darstellung der Detektionsebene	. 46
	4.5	Statis	tische Beschreibung der Messcharakteristik	. 48
		4.5.1	Messmittel und Methoden	. 49
		4.5.2	Statistische Beschreibung der Messcharakteristik	. 52
		4.5.3	Modellbildung der statistischen Messcharakteristik	. 57
	4.6	Model	llierung der Radar-Zeitsignale	. 58
		4.6.1	Architektur und Abstraktionsebenen	. 58
		4.6.2	Detektions-Zeitsignalmodell	. 60
		4.6.3	Interferenz-Zeitsignalmodell	. 62
		4.6.4	Rausch-Zeitsignalmodell	. 64
		4.6.5	Modell der Signalverarbeitung	. 66
	4.7	Paran	netrierung des Sensormodells	. 71
	4.8	Model	llanpassung auf das reale Messverhalten	. 75
		4.8.1	Analoges Front-End und Signalebene	. 76
		4.8.2	Detektions- und Szenarioebene	. 79
		4.8.3	Radarsimulation in der Anwendung	. 82
	4.9	Zusan	nmenfassung und Fazit	. 85
5	Bev	vertung	des Modellansatzes in der Anwendung	87
-	5.1	Anwei	ndung in der konkreten HiL-Umgebung	. 87
		5.1.1	Aufbau des HiL-Prüfstands	. 87
		5.1.2	Funktionsabsicherung mit variierenden Szenario-Parametern	. 90
		5.1.3	Inbetriebnahme und Integration des Sensormodells	. 91
		5.1.4	Umsetzung des Sensormodells in der Echtzeitumgebung	. 93
		5.1.5	Beurteilung der Assistenzsystemreaktion	. 96
	5.2	Zusan	nmenfassung und Fazit	. 98
6	Zus	ammer	ifassung und Ausblick	99
l it	terati	urverze	richnis	101
				101
Aı	nhang	S		A

Abkürzungsverzeichnis und Glossar

ACC	Adaptive Cruise Control (Aktive Geschwindigkeitsregelung)
ADC	Analog-Digital-Converter (Analog-Digital-Umsetzer)
AEB-Dummy	Advanced Emergency Break Dummy (Dummy-Fahrzeug für den Test von Notbremsassistenten)
Auflösungsmodell	Auf Basis des geometrischen Auflösungsvermögens wird das Sichtfeld des simulierten Radarsensors in Kreissegmente unterteilt, mit deren Hilfe in dem Auflösungsmodell synthetische Detektionen gebildet werden.
Außenkontur-Schätzer	Der Algorithmus ermittelt die Strecken und Punkte zur Beschreibung der rechteckigen Objekt-Außenkontur.
Basisband	Das Basisband bezeichnet den niederfrequenten Frequenz-Bereich des Mischersignals.
Bounding Box	Einhüllendes Rechteck zur Beschreibung der Sensorerfassung auf Objektebene
CAN	Controller Area Network
CAN1	Fahrerassistenzsystem CAN links (Objektinformation)
CAN2	Fahrerassistenzsystem CAN rechts (Objektinformation)
CAN3	Fahrerassistenzsystem CAN (Restbussimulation und Signal Spurwechselwarner)
CFAR	Constant False Alarm Rate - Algorithmus zum Schätzen des Rauschpegels
Chirp	linear-frequenzmoduliertes Sendesignal in Form einer Rampe
Clutter	Ungewollte Reflexionen in der Messumgebung des Radarsensors
CW	Continious Wave (Dauerstrichradar)
Detektion	Beschreibung der Position und des Bewegungszustandes einer Zielreflexion

\mathbf{E}/\mathbf{E}	Elektrik/Elektronik als Überbegriff elektrischer Komponenten in Kraftfahrzeugen
Euro-NCAP	European New Car Assessment Programme (Bewertungsprogramm für die Sicherheitssystemen in Neufahrzeugen)
FMEA	Fehler-Möglichkeit und Einfluss Analyse
Frame	Radar-Messzyklus
FoV	Field of View - Sensorsichtfeld
FT	Fourier-Transformation
FVCA	Forward Vehicle Collision Avoidance (Auffahrassistent)
FMCW	Frequency Modulated Continous Wave (frequenz-modulierter Radar)
Front-End	Analoge Hochfrequenz-Schaltung zum Senden und Empfangen von Chirp-Signalen im FMCW-Radarsensor
HiL	Hardware-in-the-Loop - Verfahren zum Test von Steuergeräten durch Simulation und Auswertung von Bussignalen
IF	Die Intermediate Frequency bezeichnet den niederfrequenten Frequenz-Bereich des Mischersignals und ist damit ein Synonym zu dem Begriff Basisband .
Interferenz	Überlagerung der ausgesandten Wellen von Radaren mit gleichen oder überlappenden Sendebereichen
LCDA	Lane Change Decision Aid System (Spurwechselwarner)
LNA	Low Noise Amplifier (Verstärker mit geringem Rauschanteil)
MiL	Model-in-the-Loop - Verfahren zum Test von Fahrzeugfunktionen als ausführbares Modell in einer Simulation
Mischersignal	Niederfrequentes Signal aus der Multiplikation von Sende- und Empfangssignal (mithilfe eines Mischers)
OEM	Original Equipment Manufacturer (Fahrzeughersteller)
OSCA	Ordered Statistic Cell-Averaging - CFAR-Algorithmus Variante
OSI	Open Simulation Interface (Standard zur Beschreibung der Ein- und Ausgangsgrößen von Sensormodellen)

OFDM	Orthogonal Frequency-Division Multiplexing Waveform (Radarmodulation mit mehreren Trägerfrequenzen zur Kommunikation)
PA	Power Amplifier (Leistungsverstärker)
PSM	Phase Shifter Module (Phasensteller)
Radarband	Hochfrequenter Sende- und Empfangsbereich von FMCW Radaren
Ray Tracing	Ray Tracing Algorithmus (Berechnung von optischen Strahlen in einer Simulation)
RBS	Restbussimulation
RCS	Radar Cross Section (Radarrückstreuquerschnitt)
Referenzradar	Betrachteter Radar, der gestört wird. Im konkreten Fall handelt es sich um einen Seitenradar, der entweder durch einen Seriensensor oder durch einen Entwicklungssensor in den Messungen dargestellt wird.
RF	Die Radio Frequency bezeichnet den hochfrequenten Frequenz-Bereich des Radar-Sendesignals und ist ein Synonym zu dem Begriff Radarband .
RTS	Radar Target Simulator (Radarzielsimulator für bewegte Punktziele)
RV-Matrix	Range-Velocity-Matrix (Abstands-Geschwindigkeits-Matrix)
RX	Receiving Antenna (Empfangsantenne)
SAE	Society of Automotive Engineers
SFCW	Stepped Frequency Continous Wave (Dauerstrichradar mit variierender Mittenfrequenz)
SiL	Software-in-the-Loop - Verfahren zum Test von Fahrzeugfunktionen als ausführbare Software in einer Simulation
SINR	Signal-to-Interference-plus-Noise-Ratio - Verhältnis zwischen der Nutzsignalleistung einer Zielreflexion und der Störsignalleistung (Radar-Interferenz + Rauschen)
SNR	Signal-to-Noise-Ratio - Verhältnis zwischen empfangener Nutzsignalleistung einer Zielreflexion und der vorliegenden frequenzabhängigen Rauschsignalleistung

SRR	Short-Range-Radar (Nahbereichsradar), der in dieser Arbeit als Referenzradar verwendet wird.
STAP	Space-Time Adaptive Processing - Algorithmus zum Schätzen des Rauschpegels
\mathbf{SuT}	System-under-Test (zu testendes System z.B. Steuergerät)
SWW	Spurwechselwarner
Taskzeit	Zeitdauer zur Berechnung und Bereitstellung der Objekte an die Radar-Steuergeräte in der HiL-Prüfumgebung
TX	Transmission Antenna (Sendeantenne)
Umfeldsimulation	Simulation von Verkehrsteilnehmern in einem virtuellen Szenario
VCO	Voltage Controlled Oscillator (verstellbarer Oszillator)
VGA	Variable Gain Amplifier (Verstärker mit variablem Verstärkungsfaktor)
ViL	Vehicle-in-the-Loop - Verfahren zum Test von kompletten E/E-Fahrzeugsystemen in einem konkreten Fahrzeug durch Simulation von Bussignalen und Stimulation von Sensoren
V-Modell	Vorgehensmodell für den Entwicklungsprozess von E/E Systemen
Waveform	Die Wellenform beschreibt die Eigenschaften (Sendefrequenz, Modulation, Sendezeit) der ausgesandten Radarsignale.
Zero-Algorithm	Algorithmus, der interferenzbehaftete Abtastsignale aus dem Radar-Front-End durch Nullen ersetzt und damit den Störeinfluss lindert.

Symbolverzeichnis

Symbol	Einheit	Bedeutung
a	m	Seitenlänge Tripelspiegel
$A_{\rm Ant}$	/	Anzahl Antennen
$A_{\rm ges,int}$	/	Amplitude der Interferenzfunktion
$A_{\rm ges,ref}$	/	Amplitude der Objektreflexionsfunktion
$A_{\rm rx}$	/	Amplitude der Empfangssignalfunktion
$A_{\rm tx}$	/	Amplitude der Sendesignalfunktion
$A_{\rm tx,int}$	/	Amplitude der Sendesignalfunktion des Störradars
В	Hz	Chirp-Bandbreite
c_0	m/s	Lichtgeschwindigkeit
δd	m	Längendifferenz der Wellenausbreitung über die Antennen
$d_{\rm int}$	m	Distanz Referenz- zu Störradar im Messaufbau
$d_{\rm overt.}$	m	Distanz Referenz- zu betrachtetem Überholerfahrzeug
d(Y)	/	Entscheidungsvariable für die Spektrumszelle \boldsymbol{Y}
D	/	Entscheidungsvariable Jarque-Bera Test
f	Hz	Frequenzvariable
$f_{\rm ADC_sim}$	Hz	Simulierte Abtastfrequenz des Analog-Digital-Converter
$f_{\rm ADC_sim_dec}$	Hz	Dezimierte Abtastfrequenz des Analog-Digital-Converter
$f_{\rm beat}$	Hz	Beat-Frequenz eines Ziels in einer definierten radialen Distanz
f_{center}	Hz	Mittlere Frequenz zwischen $f_{\rm start}$ und $f_{\rm end}$
$f_{\rm cut_HP}$	Hz	Eckfrequenz Hochpass-Filter
$f_{\rm cut_TP}$	Hz	Eckfrequenz Tiefpass-Filter
f_d	Hz	Frequenzoffset durch den Doppler-Effekt
$f_{\rm e,int}$	Hz	Chirp End-Frequenz Störradar
$f_{\rm end}$	Hz	Chirp End-Frequenz

$f_{\rm e,ref}$	$_{\rm Hz}$	Chirp End-Frequenz Referenzradar
$f_{\rm int}(t)$	Hz	Momentanfrequenz Störradar
$f_{\rm mix}(t)$	Hz	Momentanfrequenz am Mischer
$f_{\rm mix,i}(t)$	Hz	Momentan frequenz am Mischer durch Interferenz
$f_{\rm mix,t}(t)$	Hz	Momentanfrequenz am Mischer durch eine Zielreflexion
$f_{\rm rx,i}(t)$	Hz	Momentanfrequenz durch die Interferenzüberlagerung
$f_{\rm rx,t}(t)$	Hz	Momentan frequenz eines Ziels im Abstand r
$f_{\rm rx,Tar1}(t)$	Hz	Momentanfrequenz des Ziels 1 im Abstand r
$f_{\rm rx,Tar2}(t)$	Hz	Momentanfrequenz des Ziels 2 im Abstand r
$f_{\rm s_fil}$	Hz	Simulationsfrequenz am Eingang der Filter
$f_{\rm s,int}$	Hz	Chirp Start-Frequenz Störradar
$f_{\rm s,ref}$	Hz	Chirp Start-Frequenz Referenzradar
$f_{\rm start}$	Hz	Chirp Start-Frequenz
$f_{\rm stop}$	Hz	Chirp Stop-Frequenz
$f_{\rm tx}(t)$	Hz	Momentanfrequenz des ausgesandten Chirps
f_r	Hz	Frequenzauflösung
$f_{\rm ref}(t)$	Hz	Momentanfrequenz Referenzradar
$G_{\rm int,max}$	dBi	Gain (Antennengewinn) der Interferenz-Sendeantenne
$G_{\rm ref,max}$	dBi	Gain (Antennengewinn) der Referenzradar-Sendeantenne
j	/	Zählvariable Einspeisezyklen
J	/	Zählvariable Jarque-Bera Test
K	/	Menge aller Chirpschnittpunkte $t_{\rm int,i}$ gleicher Frequenz
Kurt	/	Variable der Kurtosis (Wölbung)
l	m	Abstand Empfangsantennen
$l_{\rm a}$	m	Abstand Fahrzeug und Sensor
$l_{ m b}$	m	Verbauhöhe Sensor
$l_{\rm c}$	m	Halbe Weglänge der Mehrwegeausbreitung
$m_{ m r}$	/	Frequenzbins für die erste FT über alle Abtastwerte
M	/	Anzahl der Samples eines Chirps
$M_{\rm F}$	/	Anzahl der Abstandszellen im CFAR-Analysefenster
$n_{\dot{r}}$	/	Frequenzbins für die zweite FT über alle Chirps

N	/	Anzahl der Chirps innerhalb eines Frames
$N_{\rm chirps,int}$	/	Anzahl der Interferenz-Chirps innerhalb eines Frames
$N_{\rm chirps, ref}$	/	Anzahl der Referenz-Chirps innerhalb eines Frames
$N_{\rm F}$	/	Anzahl der Geschwindigkeitszellen im CFAR-Analysefenster
$P_{\text{Ausfall}}(d_{\text{overt.}})$	%	Detektionsausfall in Abhängigkeit des Abstandes $d_{\rm overt.}$
$P_{\rm fa}$	/	Wahrscheinlichkeit für einen falschen Treffer durch den CFAR
P_{noise}	dBm	Rauschleistung
$P_{\rm p,ref \land s,int}$	S	Zeit, in der der Referenzradar pausiert und der Störradar sendet
$P_{\rm rx, ref, i}$	dBm	Empfangsleistung eines Interferenz-Chirp am Referenzradar
$P_{\rm rx,ref,t}$	dBm	Empfangsleistung einer Zielreflexion am Referenzradar
$P_{\rm tx,int}$	dBm	Gesendete Leistung Störradar
$P_{\rm tx,ref}$	dBm	Gesendete Leistung Referenzradar
Q	/	Simulationsdurchläufe zur Ermittlung der Ausfallcharakteristik
r	m	Radiale Distanzvariable
$r_{\rm d}$	m	Abstandsänderung eines Ziels über sequentiell ausgesandte Chirps
$r_{\rm in}$	m	Eingangsgröße der radialen Distanz vor dem statistischen Modell
$r_{\rm max}$	m	Maximal detektierbare relative radiale Distanz
$r_{\rm out}$	m	Ausgangsgröße der radialen Distanz nach statistischer Abweichung
\dot{r}	m/s	radiale Geschwindigkeit
$\dot{r}_{ m in}$	m/s	Eingangsgröße der Geschwindigkeit vor dem statistischen Modell
$\dot{r}_{\rm max}$	m/s	Maximal detektierbare radiale Geschwindigkeit
$\dot{r}_{\rm out}$	m/s	Ausgangsgröße der Geschwindigkeit nach statistischer Abweichung
R	m	Abstandsbereich des Radarsichtfeldes
RT	%	Prozentuale Echtzeitaus lastung im Einspeisezyklus \boldsymbol{j}
RX	/	Empfangsantenne
R_0	m	Radiale Distanz zum Startzeitpunkt
Δr	m	Abstandsauflösungszelle
$\Delta \dot{r}$	m/s	Geschwindigkeitsauflösungszelle
s(t)	/	allgemeines Chirp-Signal
$s^*(t-\tau)$	/	komplex konjugiertes und laufzeitverschobenes Chirp-Signal
$s_{\rm r}$	m	Trennbarkeit im Abstand

$s_{\dot{r}}$	m/s	Trennbarkeit in Geschwindigkeit
Skew	/	Variable der Skewness (Schiefe)
$SNR_{\rm lin}$	/	Lineares Signal-to-Noise-Ratio (Signal-zu-Rausch-Verhältnis)
SNR_{\log}	$^{\mathrm{dB}}$	Logarithmisches Signal-to-Noise-Ratio
t	s	Zeitvariable
$t_{\rm d}$	s	Zeitverzögerung durch den Doppler-Effekt
$t_{\rm int,i}$	s	Zeitpunkt des Chirp-Schnittpunktes mit Interferenzchirp \boldsymbol{i}
$t_{\rm sim}$	s	Simulationszeit in Kap 3
$T_{\rm ADC}$	$^{\mathrm{dB}}$	Weißes Rauschen am Analog-Digital-Converter
$T_{\rm Ant}$	$^{\mathrm{dB}}$	Weißes Rauschen an Sende- und Empfangsantenne
$T_{\rm c}$	S	Modulationszeit eines Chirps
$T_{\rm cc}$	S	Periodenzeit aufeinanderfolgender Chirps
$T_{\rm c,int}$	S	Modulationszeit eines Störradar-Chirps
$T_{\rm cc,int}$	s	Periodenzeit aufeinanderfolgender Chirps des Störradars
$T_{\rm c,ref}$	s	Modulationszeit eines Referenzradar-Chirps
$T_{\rm cc,ref}$	s	Periodenzeit aufeinanderfolgender Chirps des Referenzradars
$T_{\rm VCO}$	$^{\mathrm{dB}}$	Weißes Rauschen am verstellbaren Oszillator
$T_{\rm obj.}$	s	Dauer eines kompletten Frames/Zyklus
$T_{\rm OSCA}$	dBm	Mittlere Rauschleistung für das betrachtete CFAR-Analysefenster
$T_{\rm p,ref}$	s	Sendepausenzeit des Referenzradars
$T_{\rm p,ref \land s,int}$	s	Zeit, in der der Referenzradar pausiert und der Störradar sendet
$T_{\rm s,int}$	S	Aktive Sendezeit des Störradars
$T_{\rm s,ref}$	s	Aktive Sendezeit des Referenzradars
TX	/	Sendeantenne
$T_{\rm Z}$	$^{\mathrm{dB}}$	Weiße Rauschanteile auf der Zuleitung der Empfangsantennen
U	/	Umsetzungstabelle für die statistischen Abweichungen
$v_{\rm diff}$	$\rm m/s$	Relative radiale Geschwindigkeit beider Fahrzeuge
W	%	Überlappungsgrad zwischen Referenz- und Störradar
x(k,h)	/	Abtastmatrix für die 2D-FT
$x_{\rm b,int}(n)$	/	Interferenz als Bestandteil des gefilterten Mischer-Signals $x_{\rm m}(t)$
$x_{\rm b,noise}(n)$	/	Rauschen als Bestandteil des gefilterten Mischer-Signals $x_{\rm m}(t)$

$x_{\rm b,tar}(n)$	/	Zielreflexion als Bestandteil des gefilterten Mischer-Signals $x_{\rm m}(t)$
$x_{\rm m}(t)$	/	Zeitsignal am analogen Mischer
$x_{\rm m,tar}(t)$	/	Zeitsignal am analogen Mischer durch die Zielreflexion
$x_{\mathrm{randn}}(n)$	/	Normalverteilte Zufallszahlen im Intervall $[-1; 1]$
$x_{\rm rx}(t)$	/	Zeitsignal der empfangenen Chirps durch die Zielreflexion
$x_{\rm rx,int}(t)$	/	Zeitsignal der empfangenen Chirps durch die Interferenzstörquelle
$x_{\rm tx}(t)$	/	Zeitsignal der ausgesandten Chirps
$X_{\rm int}(n)$	/	Diskretes Abtast signal einer Interferenzstörquelle in Kap. $\boldsymbol{3}$
$X_{\min}(n)$	/	Diskretes Abtastsignal eines Punktziels in Kap. 3
$X_{\mathrm{randn}}(n)$	/	Spaltenvektor mit normalverteilten Zufallszahlen
$[X_F, Y_F, Z_F]$	m	Einheitsvektor des Fahrzeugkoordinatensystems
$[X_S, Y_S, Z_S]$	m	Einheitsvektor des Sensorkoordinatensystems
Y	dBm	Signalleistung der vom CFAR untersuchten Zelle im Spektrum
$Y(n_{\rm r},m_{\rm \dot{r}})$	W	Matrix der Signalleistungen aus der 2D-FT
$Z_{\text{detection,sim}}(n)$	$\mathrm{Bit/s}$	Datenaufkommen für die Detektionsliste im Seriensensor
$Z_{\text{timesig,real}}(n)$	$\mathrm{Bit/s}$	Datenaufkommen des Abtastsignals im Seriensensor
$Z_{\text{timesig,sim}}(n)$	$\mathrm{Bit/s}$	Datenaufkommen im simulierten Radarzeitsignal
α	deg	Azimut-Winkel
$\alpha_{\rm in}$	deg	Eingang des Azimut-Winkels vor dem statistischen Modell
$\alpha_{\rm int}$	deg	Ausrichtung des Störradars im Messaufbau
$\alpha_{\rm out}$	deg	Ausgangsgröße des Azimut-Winkels nach statistischer Abweichung
$\alpha_{\rm OSCA}$	/	Faktor für die Schwellwertermittlung des OSCA-CFARs
$\alpha_{\rm ref}$	deg	Ausrichtung des Referenzradars im Messaufbau
$\beta_{\rm i}$	s	Zeitverzug zwischen Interferenz und Referenz-Chirps
β_W	s	Zeitverzug aus dem Überlappungsgrad W der betrachteten Chirps
$\Delta \alpha$	deg	Azimut Winkelauflösungszelle
δn	/	Diskrete Laufzeitverzögerung in Kap. 3
$\delta \theta$	rad	Phasenunterschied zwischen den Empfangsantennen
$\delta \bar{\theta}$	rad	mittlerer Phasenunterschied zwischen den Empfangsantennen
ϵ	deg	Einfallswinkel der Radarwellenfront auf die Fahrzeugkontur
η	deg	Elevationswinkel

s	Einspeisezyklus-Zeit der Steuergeräte am HiL-Prüfstand
m	Vakuum-Wellenlänge
$1/s^2$	Frequenz-Steigung des Chirps
$1/s^2$	Frequenz-Steigung des Interferenz-Chirps
dBm	Rauschschwellwert für die Zelle k im Analyse fenster des CFAR
$1/s^2$	Frequenz-Steigung des Referenz-Chirps
/	Kreuzkorrelationfunktion der Radar-Wellenform
/	Mehrdeutigkeitsfunktion der Radar-Wellenform
dBm^2	Logarithmischer Radarrückstreuquerschnitt
/	Fensterkoeffizienten-Matrix für die Anwendung in der 2D-FT
rad	Phasenvariable
rad	Differenz-Phase durch einen empfangenen Störradar
rad	Differenz-Phase durch eine Zielreflexion
rad	Summen-Phase durch einen empfangenen Störradar
rad	Summen-Phase durch eine Zielreflexion
rad	Phasenoffset Störradar
rad	Phase Referenzradar
rad	Phasenoffset Referenzradar
/	Zahl Pi
/	Diskretisierung im Abstandsfrequenzbereich der 2D-FT
m^2	Linearer Radarrückstreuquerschnitt
dB	Standardabweichung weiße Rauschanteile
m	Standardabweichung der radialen Distanz
m	Standardabweichung der radialen Geschwindigkeit
m	Standardabweichung des Azimut-Winkels
s	Wellen-Laufzeit
s	Zeitauflösung
/	Diskretisierung im Geschwindigkeitsfrequenzbereich der 2D-FT
/	Eingangsgröße eines Sensormodells (Objektliste)
/	Abbild/Ausgangsgröße eines Sensormodells
deg	Azimut-Winkelbereich des Radarsichtfeldes
	s m 1/s ² dBm 1/s ² / dBm ² / rad rad rad rad rad rad rad rad dBm ² / rad rad rad rad rad s s / / / / / / / / / / / / / / / / /

Abbildungsverzeichnis

1.1 1.2 1.3 1.4	Fahrerassistenzsysteme in ihrem Regelkreis	2 2 3 6
2.1 2.2 2.3	Entwicklungsprozess: V-Modell	8 10 12
$\begin{array}{c} 3.1\\ 3.2\\ 3.3\\ 3.4\\ 3.5\\ 3.6\\ 3.7\\ 3.8\\ 3.9\\ 3.10\\ 3.11\\ 3.12\\ 3.13\\ 3.14 \end{array}$	Beispiele für funktionsorientierte Fahrerassistenzsysteme	16 19 20 22 23 24 25 26 29 30 35 37 38 38
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Modellarchitektur zur Absicherung eines radarbasierten Assistenzsystems . Geometrisches Modell mit Auflösungszellen (in Anlehnung an [72]) Prinzip des L-Fit Algorithmus zur Objektermittlung	43 46 47 49 51 52 53 53 55 55 56 56
4.12 4.13	Verarbeitung des Winkels	$\frac{50}{58}$

4.14	Architektur der Radar-Zeitsignal-Simulation	59
4.15	Prinzip des Radar-Front-Ends (in Anlehnung an [69])	60
4.16	Wellenüberlagerung im Zeitbereich	62
4.17	Theoretische Betrachtung der Zusammensetzung des Rauschspektrums	64
4.18	Modell der Signalverarbeitung	66
4.19	Hann-Fenster der Abtastpunkte	66
4.20	Applikationsbeispiel Modell der Signalverarbeitung	68
4.21	Detektionsermittlung im OSCA-CFAR	69
4.22	Radar-Rückstreuquerschnitt eines PKWs (in Anlehnung an [13])	73
4.23	Antennenverstärkungen für Referenz- und Interferenzradar	73
4.24	Messaufbau zur Bewertung der Simulation	76
4.25	Vergleich der Interferenz-Anregung des Signals nach dem Bandpass-Filter .	77
4.26	Auswertung des Rausch-Spektrums	78
4.27	Analyse der Sättigung am Empfangspfad des Front-Ends	78
4.28	Manöver zum Vergleich der Überholer-Detektionen	80
4.29	Häufigkeitsverteilung der Signalleistung über dem Szenario-Abstand	81
4.30	Vergleich der ermittelten Detektionsanzahl in Messung und Simulation	82
4.31	Grafische Oberfläche der Szenariosimulation	83
4.32	Evaluation des Zero-Algorithmus	84
5.1	Zusammenfassung der HiL-Architektur zum Test der Steuergeräte	88
5.2	Architektur der Echtzeitumgebung	89
5.3	Szenarienbeschreibung und Zustandsraum des aktiven Spurwechselwarners	90
5.4	Mindest-Modellumfang zur Bereitstellung der Detektionsebene	91
5.5	Modellanteile mit Echtzeitauslastung	92
5.6	Abwandlung der Sensormodellarchitektur für die Echtzeitanwendung	93
5.7	Übersicht der Sende- und Pausenzeiten	94
5.8	Eintrittswahrscheinlichkeiten für die zugehörigen Überlappungsgrade	95
5.9	Ausfallwahrscheinlichkeit über dem Überholerabstand	96
5.10	Relative Häufigkeit des Objektausfalls und der SWW Unterbrechung $\ \ . \ .$	97
A.1	Prinzip der Mehrwegereflexion	А
A.2	Vergleich der Mehrwegeausbreitung	В
A.3	Fotografie des Messaufbaus	С
A.4	Auswertung des zeitlichen Verhaltens der radialen Abstandsbestimmung	D

Tabellenverzeichnis

3.1	Parameter der Radar-Wellenform (in Anlehnung an [7])	32
3.2	Berechneter Sensor-Messbereich und das Auflösungsvermögen	32
4.1	Übersicht der Modellanforderungen	42
4.2	Charakterisierung des Erfassungsbereiches der Seitenradarsensorik	50
4.3	Ermittelte Detektionen aus dem CFAR-Algorithmus	70
4.4	Parametrierung des Radar-Front-Ends für Referenz- und Störradar	71
4.5	Charakterisierung der Filter und des ADCs	74
5.1	Detektionsausfall-Wahrscheinlichkeit über dem Überholerabstand	95

Eigene Veröffentlichungen

- [27] T. Eder, A. Prinz, L. Brabetz und E. Biebl. "Szenarienbasierte Validierung eines hybriden Radarmodells für Test und Absicherung automatisierter Fahrfunktionen". In: Automobil-Sensorik 3. Hrsg. von T. Tille. Berlin: Springer Vieweg, 2020.
- [68] A. Prinz, L. Brabetz und M. Ayeb. "Generic Sensor Modelling A Virtual Integration Approach for the Test of ADAS". In: 9. VDI/VDE-Fachtagung Autoreg. 2019.
- [69] A. Prinz, L.-T. Peters, J. Schwendner, M. Ayeb und L. Brabetz. "Automotive Radar Signal and Interference Simulation for Testing Autonomous Driving". In: *Intelligent Transport Systems, From Research and Development to the Market Uptake(INT-SYS)*. Hrsg. von A.L. Martins, J.C. Ferreira, A. Kocian und V. Costa. Cham: Springer, 2020.
- [70] A. Prinz, J. Roth, J. Schwendner, M. Ayeb und L. Brabetz. "Validation Strategy for Radar-Based Assistance Systems under the Influence of Interference". In: *German Microwave Conference (GeMiC)*. 2020.