Boris Dilba

Effiziente Berechnung der Schallabstrahlung von teilsymmetrischen und periodischen Strukturen

Band 32

Institut für Modellierung und Berechnung

Effiziente Berechnung der Schallabstrahlung von teilsymmetrischen und periodischen Strukturen

Vom Promotionsausschuss der Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Boris Dilba

aus

Bad Laer

2022

- 1. Gutachter: Prof. Dr.-Ing. Otto von Estorff
- 2. Gutachter: Prof. Dr.-Ing. Martin Ochmann

Tag der mündlichen Prüfung: 21. April 2022

Schriftenreihe des Instituts für Modellierung und Berechnung der Technischen Universität Hamburg

Band 32

Boris Dilba

Effiziente Berechnung der Schallabstrahlung von teilsymmetrischen und periodischen Strukturen

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg, Techn. Univ., Diss., 2022

Herausgeber:

Prof. Dr.-Ing. Otto von Estorff

Technische Universität Hamburg Institut für Modellierung und Berechnung Denickestraße 17 21073 Hamburg

Telefon:	040/42878-3032
Fax:	040/427-3-14543
E-Mail:	estorff@tuhh.de
Internet:	http://www.tuhh.de/mub

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8711-6 ISSN 1860-8221

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als Entwicklungsingenieur und Projektleiter bei der Novicos GmbH.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.-Ing. Otto von Estorff, für das Schaffen der Möglichkeit, die beruflichen Fragestellungen in akademische Probleme überführen zu können, sowie für die fachlichen Diskussionen, den wertvollen akademischen Rat und die stete Begleitung meiner Arbeit. Des Weiteren möchte ich Herrn Prof. Dr.-Ing. Martin Ochmann für die Übernahme des Zweitgutachtens meiner Dissertation und der damit einhergehenden detaillierten und zeitintensiven Lektüre meiner Arbeit danken. Ebenso geht mein Dank an Herrn Prof. Dr.-Ing. Benedikt Kriegesmann für die Übernahme des Vorsitzes des Prüfungsausschusses.

Die Anfertigung meiner Arbeit erfolgte größtenteils nebenberuflich mit der Unterstützung der Geschäftsführung der Novicos GmbH, die mir dankenswerter Weise die Nutzung meines Arbeitsplatzes und der Hardwareressourcen auch außerhalb der Arbeitszeit für Forschungszwecke gestattet hat. Ein weiterer Dank gilt den Arbeitskolleginnen und Arbeitskollegen, die mich während meiner Zeit bei Novicos begleitet haben, für die angenehme und konstruktive Arbeitsatmosphäre sowie die zahlreichen fachlichen Diskussionen. Weiterhin möchte ich mich bei den Mitarbeitenden des Instituts für Modellierung und Berechnung der Technischen Universität Hamburg für den regen und inspirierenden wissenschaftlichen Austausch bedanken.

Meine Eltern haben mir einst das Studium ermöglicht und mich während der arbeitsund zeitintensiven Anfertigung meiner Dissertation uneingeschränkt und vielseitig unterstützt. Nicht zuletzt dafür gebührt ihnen mein ganz besonderer Dank.

Zusammenfassung

Die vorliegende Arbeit trägt zur Erweiterung des Anwendungsbereichs der Boundary-Elemente-Methode (BEM) zum Lösen der Helmholtz-Gleichung für akustische Außenraumprobleme mit teilsymmetrischen und periodischen Lösungsgebietsrändern bei. Den Ausgangspunkt der Untersuchungen bildet das schnelle BEM-Verfahren der \mathcal{H} -Matrizen, das die Komplexität der BEM von $\mathcal{O}(n^2)$ auf $\mathcal{O}(n \log(n))$ verringert.

Der Großteil des Aufwands der \mathcal{H} -Matrix BEM resultiert aus der Approximation der Systemmatrizen. Diese weisen für Außenraumprobleme mit teilsymmetrischen Gebietsrändern zyklische Block-Toeplitz-Strukturen in den entsprechenden Teilmatrizen entlang der Blockdiagonalen auf. Im Unterschied zur konventionellen BEM sind die Speicheranforderungen je Matrixeintrag für die \mathcal{H} -Matrix BEM nicht konstant, sondern variable. Es wird gezeigt, dass die Ausnutzung dieser Eigenschaft speziell für Außenraumprobleme mit teilsymmetrischen Gebietsrändern einen sehr effektiven Ansatz darstellt, um den Berechnungsaufwand der \mathcal{H} -Matrix BEM weiter zu reduzieren.

Das Lösen der BEM-Gleichungssysteme erfolgt in der vorliegenden Arbeit iterativ mit dem GMRES-Verfahren. Die Konvergenzgeschwindigkeit des GMRES-Verfahrens hängt maßgeblich von der Eigenwertverteilung der Systemmatrix ab, deren Regularität für die durchgeführten Untersuchungen mithilfe des Burton-Miller-Verfahrens sichergestellt wird. In einer Analyse wird der Einfluss verschiedener Regularisierungsoperatoren auf das Spektrum der Systemmatrix, das Konvergenzverhalten des GMRES-Verfahrens und die Lösungsgenauigkeit aufgezeigt und gegenübergestellt. Für die Regularisierung mit einem skalaren Operator wird darüber hinaus die Effektivität einer zusätzlichen Präkonditionierung der Systemmatrix auf Basis einer hierarchischen LU-Faktorisierung niedriger Genauigkeit dargelegt. Der Vergleich der Ansätze verdeutlicht, dass eine effektive Präkonditionierung bereits mit verhältnismäßig wenig Aufwand erzielbar ist.

Abschließend werden Ansätze für das effiziente Lösen von akustischen Außenraumproblemen mit periodischen Lösungsgebietsrändern entwickelt. Die entsprechenden Systemmatrizen weisen eine ausnutzbare Block-Toeplitz-Struktur auf, die im Unterschied zum Fall symmetrischer Lösungsgebietsränder jedoch nicht mehr zyklisch ist. Basierend auf der Adaption der zuvor präsentierten Ansätze zur Matrixstrukturausnutzung und Präkonditionierung an die Block-Toeplitz-Strukturen der Teilmatrizen und der anschließenden Kombination beider Methoden entsteht ein neuartiges Verfahren, das ermöglicht, BEM-Probleme mit mehr als 10⁸ Unbekannten effizient zu lösen. Die Effektivität des Verfahrens wird an praxisnahen Anwendungsbeispielen aus dem Bereich der Windenergie veranschaulicht.

Inhaltsverzeichnis

N	omei	ıklatuı	ſ	iii
1	Ein	leitung	7	1
	1.1	Einfül	hrung	1
	1.2	Stand	der Forschung	4
	1.3	Zielset	tzung und Gliederung der Arbeit	10
2	Βοι	ındary	-Elemente-Methode für die Helmholtz-Gleichung	13
	2.1	Akust	isches Randwertproblem	13
	2.2	Randi	ntegralgleichung	17
		2.2.1	Randintegraloperatoren	20
		2.2.2	Irreguläre Frequenzen	22
		2.2.3	Akustisches Halbraumproblem	24
	2.3	Diskre	etisierung der Randintegralgleichungen	26
		2.3.1	Randdiskretisierung	27
		2.3.2	Interpolation der Lösungsfunktionen	29
		2.3.3	Kollokationsmethode	31
		2.3.4	Numerische Integration	32
		2.3.5	Komplexität der Kollokations-BEM	35
3 Hierarchische Matrizen für die Helmholtz-BEM		sche Matrizen für die Helmholtz-BEM	37	
	3.1	Einfül	hrung	37
	3.2	Hieran	chische Matrixpartitionierung	38
		3.2.1	Zulässigkeitsbedingung	39
		3.2.2	Indexclusterbaum	43
		3.2.3	Blockclusterbaum	45
	3.3	ACA-	Niedrigrangapproximation	48
	3.4	Eigens	schaften hierarchischer Matrizen	55
		3.4.1	Fehlerabschätzung	55
		3.4.2	Speicheranforderungen	56

		3.4.3 \mathcal{H} -Arithmetik	57
	3.5	Frequenzabhängigkeit der Speicheranforderungen	59
4	Geb	bietsrandsymmetrien im Kontext der \mathcal{H} -Matrix BEM	65
	4.1	Effekt symmetrischer Gebietsränder	65
	4.2	BEM-Systemmatrixstruktur	68
		4.2.1 Spiegelsymmetrische Gebietsränder	68
		4.2.2 M -fach rotationssymmetrische Gebietsränder	74
		4.2.3 Gebietsränder mit symmetrischen Teilbereichen	83
	4.3	Effiziente Realisierung der Halbraum-Formulierung	87
5	\mathbf{Sch}	nelles Lösen von linearen BEM-Gleichungssystemen	93
	5.1	Das GMRES-Verfahren	94
	5.2	Präkonditionierung	98
		5.2.1 Hierarchische LU-Faktorisierung	100
		5.2.2 OSRC-Präkonditionierung	102
	5.3	Numerische Experimente	108
		5.3.1 Modellprobleme	109
		5.3.2 Dirichletfehler	110
		5.3.3 Konvergenzeigenschaften des GMRES-Verfahrens	112
	5.4	Zusammenfassung	118
6	Effi	ziente Behandlung großer BEM-Probleme	121
	6.1	Blockstrukturierte BEM-Systemmatrizen	122
	6.2	Beispiel 1 - Außenraumproblem einer Windenergieanlage	124
	6.3	Beispiel 2 - Außenraumproblem eines unstrukturierten Windparks $\ . \ . \ .$	131
	6.4	Beispiel 3 - Außenraumproblem eines strukturierten Windparks	139
	6.5	Schnelle Feldpunktauswertung	148
	6.6	Zusammenfassung	152
7	Zus	ammenfassung und Ausblick 1	155

Nomenklatur

In allen Kategorien dieser Übersicht werden Elemente, die in der vorliegenden Arbeit im Kontext von Aufdatierungen (Summen und Produkten) verwendet werden, unter Vernachlässigung des Zählindexes nur einmal aufgeführt.

Funktionen und Skalare

Laufvariablen sind nicht Bestandteil dieser Auflistung.

a	Reellwertiger Koeffizient der Padé-Approximation
b	Indexpaarmenge
b	Reellwertiger Koeffizient der Padé-Approximation
b_{min}	Mindestclustergröße
с	Schallgeschwindigkeit
с	Randfaktor
с	Konstante
d	Dimension des Lösungsgebiets
$\deg(S)$	Anzahl der Söhne des Baumknotens ${\cal S}$
$\operatorname{diam}(\mathbf{X})$	Durchmesser des Definitions gebiets \boldsymbol{X}
dist(X,Y)	Abstand zwischen den Definitionsgebieten X und Y
e	Eulersche Zahl
e_D	Relativer Dirichletfehler
f	Frequenz
f	Integralkern
g	Funktion der Randbedingungen
h	Elementgröße
i	Imaginäre Einheit
k	Wellenzahl

k_{ϵ}	Komplexe Wellenzahl
l	Rang einer Matrix
l	Entwicklungslänge
l	Stufe eines Zeilen-/Spaltenclusterbaums
m	Gesamtanzahl der Windenergieanlagen eines Windparks
m_{iter}	Iterationen eines iterativen Gleichungssystemlösers
n	Anzahl der Freiheitsgrade
n_b	Anzahl rechter Seiten
n_e	Knotenanzahl eines Randelements
n_{λ}	Anzahl der Elemente pro Wellenlänge
p	Schalldruck
p	Ansatz-, Formfunktionsordnung
p	Polynom
$ ilde{p}$	Zeitabhängige Druckschwankung
p_h	Interpolierter Schalldruck
q	Ansatz-, Formfunktionsordnung
q	Akustischer Fluss
q_h	Interpolierter akustischer Fluss
r	Betrag des Abstandsvektors \boldsymbol{r}
\tilde{r}	Betrag des Abstandsvektors \tilde{r}
r_l	Restgliedfunktion
s	Funktionsapproximation
span	Lineare Hülle
supp	Kompakter Träger einer Basisfunktion
t	Zeit
v_n	Fluidgeschwindigkeit in Richtung der Normalen \boldsymbol{n}
w	Randdichtefunktion
w	Hilfsfunktion der Padé-Approximation
z	Komplexe Zahl
A	Komplexer Koeffizient der Padé-Approximation
В	Komplexer Koeffizient der Padé-Approximation
E	Kanten eines Zeilen-/Spaltenclusterbaums
G	Fundamentallösung der 3D-Helmholtz-Gleichung
G_0	Fundamentallösung der 3D-Laplace-Gleichung
G_{BM}	Kernfunktion der Burton-Miller-Methode
G_H	Halbraumfundamentallösung der 3D-Helmholtz-Gleichung

$H^{1/2}(\Gamma)$	Sobolev-Raum
Ι	Zeilenindexmenge
J	Spaltenindexmenge
\mathcal{K}_m	<i>m</i> -dimensionaler Krylov-Raum
L	Lagrange-Polynom
\mathcal{L}	Blattknoten eines Cluster-/Blockclusterbaums
\mathcal{L}_m	<i>m</i> -dimensionaler Unterraum
M	Vielfachheit der Rotationssymmetrie
M	Reihen eines Windparks
N	Windenergieanlagen in einer Reihe eines Windparks
N_p	Entwicklungslänge der Padé-Approximation
N_{st}	Speicheraufwand einer \mathcal{H} -Matrix
\mathcal{P}	Partition einer Indexpaarmenge
\mathcal{P}^+	Fernfeld der Partition \mathcal{P}
\mathcal{P}^{-}	Nahfeld der Partition \mathcal{P}
R	Radius
R_{γ}	Rotation eines Vektors um den Winkel γ
R_H	Reflexionsfaktor
R_{N_p}	Padé-Approximation des Wurzel operators der Länge ${\cal N}_p$
Rang(A)	Rang der Matrix \boldsymbol{A}
S	Sohnabbildung eines Clusterbaumknotens
S_h^0	Endlichdimensionaler Funktionenraum
$S_{T_{I \times J}}$	Sohnabbildung des Blockclusterbaums $T_{I \times J}$
Stufe	Stufe eines Cluster-/Blockclusterbaumknotens
T_I	Clusterbaum der Zeilenindexmenge
T_J	Clusterbaum der Spaltenindexmenge
$T_{I \times J}$	Blockclusterbaum der Indexmengen ${\cal I}$ und ${\cal J}$
V	Knoten eines binären Baums
X_{σ}	Definitions gebiet zur Indexmenge σ
X_{τ}	Definitions gebiet zur Indexmenge τ
Ζ	Akustische Impedanz
α	Burton-Miller-Koppelfaktor
β	Anfangsresiduum
χ	Testfunktion
δ	Dirac-Distribution
δ	Genauigkeit der hierarchischen LU-Faktorisierung

ϵ	Abbruchfehler des GMRES-Verfahrens
ϵ	Relativer Fehler einer Niedrigrangdarstellung
ϵ_A	Relativer Fehler der Systemmatrix
ϵ_{abs}	Absoluter Fehler
ϵ_{aca}	Relativer Abbruchfehler des ACA-Verfahrens
ϵ_b	Relativer Fehler der rechten Seite
η	Brakhage-Werner-Koppelfaktor
η	Zulässigkeitsparameter
η_k	Frequenzabhängiger Zulässigkeitsparameter
γ	ACA-Skalierungsfaktor
γ	Rotationswinkel
γ_m	Residuum des GMRES-Verfahrens nach m Schritten
ĸ	Separable Kernfunktion
$\kappa_2(\boldsymbol{A})$	Konditionszahl der Matrix \boldsymbol{A} b zgl. der 2-Norm
$\kappa(A)$	Konditionszahl der Matrix \boldsymbol{A} b zgl. einer Norm
$\tilde{\kappa}$	Approximation der Kernfunktion
λ	Wellenlänge
λ	Eigenwert einer Matrix
μ_d	Dirichlet-Eigenwert der Laplace-Gleichung
μ_n	Neumann-Eigenwert der Laplace-Gleichung
ω	Kreisfrequenz
ϕ	Funktion einer separablen Entwicklung
ϕ	Testfunktion
ψ	Funktion einer separablen Entwicklung
$ar{\psi}$	Ansatzfunktion der Feldgrößen
$ ilde{\psi}$	Ansatzfunktion der Feldgrößen
ρ	Fluiddichte
σ	Indexteilmenge
σ	Singulärwert
$\sigma(\boldsymbol{A})$	Spektrum der Matrix \boldsymbol{A}
au	Indexteilmenge
au	Randelement
$ au_{\mathcal{H}}$	$\mathcal{H} ext{-}Matrixkompressionsrate}$
θ	Verzweigungsschnittrotationswinkel
ξ	Stützstelle des Lagrange-Polynoms
ξ_1	Natürliche Koordinate
ξ_2	Natürliche Koordinate

Γ	Rand des Lösungsgebiets
Γ_H	Reflexionsebene
Γ_h	Diskretisierter Gebietsrand
Ω	Lösungsgebiet
Φ	Bilineare Formfunktion

Matrizen und Vektoren

b	Vektor der rechten Seite eines Gleichungssystems
\tilde{b}	Approximation der rechten Seite
с	Hilfsvektor
d	Feldpunktvektor des DL-Anteils
e_1	Einheitsvektor
$ ilde{g}$	Defekt des Ausgleichsproblems
m	Arithmetischer Mittelwertvektor einer Indexmenge
m_S	Beeinflussungsvektor vom Typ Boolean
m_Z	Beeinflussungsvektor vom Typ Boolean
n	Normalenvektor der Oberfläche
p	Schalldruckvektor
p_D	Analytisch bestimmter Schalldruckvektor
$ ilde{p}_D$	Berechneter Schalldruckvektor
q	Vektor des akustischen Flusses
r	Abstandsvektor zwischen Empfänger- und Quellposition
r	Residuumvektor
\boldsymbol{r}_0	Anfangsresiduumvektor
$ ilde{r}$	Abstandsvektor
s	Feldpunktvektor des SL-Anteils
u	Lösungsvektor
u	Rang-1-Spaltenvektor
v	Lösungsvektor
v	Rang-1-Zeilenvektor
w	Normalenvektor
x	Positionsvektor
x	Lösungsvektor
$oldsymbol{x}_0$	Startnäherung des Lösungsvektors
$oldsymbol{x}_0$	Entwicklungspunkt einer Reihenentwicklung

$\widetilde{m{x}}$	Approximation des Lösungsvektors
$oldsymbol{x}_{el}$	Vektor mit elementbezogenen Daten
$oldsymbol{x}_{no}$	Vektor mit knotenbezogenen Daten
\boldsymbol{y}	Positionsvektor
y	Lösung des Ausgleichsproblems
$ ilde{m{y}}$	An Γ_H gespiegelter Positionsvektor
z	Koordinatenvektor
A	BEM-Systemmatrix
\boldsymbol{A}	Allgemeine Matrix
$ ilde{A}$	Approximation der BEM-Systemmatrix
$oldsymbol{A}_l$	All gemeine Matrix vom Rang l
B	BEM-Systemmatrixblock
В	Matrixblock aus hierarchischer LU-Faktorisierung
$oldsymbol{B}_{i,j}$	Block interaktions matrix zwischen Windparkreihe i und j
C	Kovarianzmatrix einer Indexmenge
C	BEM-Systemmatrix der rechten Seite
C	BEM-Systemmatrixblock
D	Matrix des diskretisierten HYP-Operators
D	BEM-Systemmatrixblock
\boldsymbol{DL}_{FP}	Feldpunktmatrix des DL-Anteils
$oldsymbol{H}_m$	Hessenbergmatrix
$ ilde{oldsymbol{H}}_m$	Erweiterte Hessenbergmatrix
Ι	Einheitsmatrix
\widetilde{I}	Diagonalmatrix der Randfaktoren
$ ilde{I}$	Surface-Mass-Matrix
K	Matrix des diskretisierten DL-Operators
$oldsymbol{K}'$	Matrix des diskretisierten ADL-Operators
L	Mappingmatrix
$oldsymbol{L}_{\delta}$	Untere Dreiecksmatrix der hierarchischen LU-Faktorisierung
M	Präkonditionierungsmatrix
P	Präkonditionierungsmatrix
Q	Orthogonale Basis der QR-Zerlegung
$oldsymbol{Q}_m$	Unitäre Matrix aus QR-Zerlegung von \boldsymbol{H}_m
R	Obere Dreiecksmatrix der QR-Zerlegung
$oldsymbol{R}_l$	Restgliedmatrix
$oldsymbol{R}_m$	Obere Dreiecksmatrix aus QR-Zerlegung von \boldsymbol{H}_m

$ ilde{m{R}}_m$	Erweiterte obere Dreiecksmatrix
\boldsymbol{S}	Approximations matrix des ACA-Verfahrens
\boldsymbol{SL}_{FP}	Feldpunktmatrix des SL-Anteils
$oldsymbol{U}$	Unitäre Matrix
$oldsymbol{U}$	Matrix aus Niedrigrangdarstellung
$oldsymbol{U}_{\delta}$	Obere Dreiecksmatrix der hierarchischen LU-Faktorisierung
V	Matrix aus Niedrigrangdarstellung
V	Matrix des diskretisierten SL-Operators
V	Unitäre Matrix
V_m	Orthonormal basis des Krylov-Raums \mathcal{K}_m
W	Matrix innerhalb des ACA-Verfahrens
X	Matrixblock aus hierarchischer LU-Faktorisierung
Y	Matrixblock aus hierarchischer LU-Faktorisierung
$oldsymbol{\Delta}_{\Gamma}$	Matrix des diskretisierten Laplace-Beltrami-Operators
Λ	Diagonalmatrix
Σ	BEM-Regularisierungsmatrix
Σ	Diagonalmatrix der Singulärwerte
$\hat{\Sigma}$	Elementbasierte OSRC-Matrix
$ ilde{\Sigma}$	Knotenbasierte OSRC-Matrix

Operatoren und andere Symbole

$oldsymbol{a} imes oldsymbol{b}$	Kreuzprodukt der Vektoren \boldsymbol{a} und \boldsymbol{b}
$A \times B$	Kartesisches Produkt der Mengen ${\cal A}$ und ${\cal B}$
A	Mächtigkeit der Menge ${\cal A}$
·	Betrag einer Funktion / euklidische Norm eines Vektors
$(\cdot)^H$	Adjungierung eines Vektors/einer Matrix
$(\cdot)^T$	Transposition eines Vektors/einer Matrix
$\langle \cdot, \cdot \rangle$	Inneres Produkt/ Skalarprodukt zweier Vektoren
$(\overline{\cdot})$	Komplex Konjugierte eines Vektors/einer Matrix
$\frac{\partial}{\partial x}$	Partielle Ableitung nach x
∂_x^{ν}	$\nu\text{-te}$ partielle Ableitung nach x
∇_{Γ}	Oberflächengradient
Δ	Laplace-Operator
Δ_{Γ}	Laplace-Beltrami-Operator
$\ \cdot\ _2$	Spektralnorm

$\ \cdot\ _F$	Frobeniusnorm
\mathbb{C}	Menge der komplexen Zahlen
${\cal C}_{ext}$	Calderón-Projektor des Außenraumproblems
${\cal C}_{int}$	Calderón-Projektor des Innenraumproblems
\mathcal{D}	Hypersingulärer Randintegraloperator
Ι	Identität
\mathcal{K}	Doppelschichtpotential-Randintegraloperator
\mathcal{K}'	Adjungierter Doppelschichtpotential-Randintegraloperator
O	O-Notation, Landau-Symbol
\mathbb{R}	Menge der reellen Zahlen
\mathcal{V}	Einfachschichtpotential-Randintegral operator

Indizes, hochgestellt

Zählindizes sind nicht Bestandteil dieser Auflistung.

BM	Typ der BEM-Regularisierungsmatrix $\pmb{\Sigma}$
BM-HLU	Typ der Präkonditionierungsmatrix \boldsymbol{P}
BM- HLU - BJ	Typ der Präkonditionierungsmatrix \boldsymbol{P}
DtN	Typ der element- und knotenbasierten OSRC-Matrix
elno	Index der Mappingmatrix L : Elemente auf Knoten
Γ, Γ	Vollraum anteil der Halbraum-BEM-Systemmatrix $oldsymbol{A}_{\Gamma_H}$
Γ, Γ'	Spiegelanteil der Halbraum-BEM-Systemmatrix $oldsymbol{A}_{\Gamma_H}$
Γ_H	BEM-Systemmatrixindex für das Halbraumproblem
i, j	Blockindex der BEM-Systemmatrix \boldsymbol{A} für $\boldsymbol{y} \in \Gamma_i$ und $\boldsymbol{x} \in \Gamma_j$
noel	Index der Mappingmatrix L : Knoten auf Elemente
NtD	Typ der element- und knotenbasierten OSRC-Matrix
OSRC	Typ der BEM-Regularisierungsmatrix $\pmb{\Sigma}$
sym	Blockindex der BEM-Systemmatrix \boldsymbol{A} zu symmetrischem Rand-
	gebiet
$ au imes \sigma$	Block einer allgemeinen Matrix zur Indexpaarmenge $\tau\times\sigma$

Indizes, tiefgestellt

Zählindizes sind nicht Bestandteil dieser Auflistung.

BM	Regularisierungstyp der BEM-Systemmatrix \boldsymbol{A}
δ, m	Genauigkeit der Präkonditionierungsmatrix ${\boldsymbol{P}}$
OSRC	Regularisierungstyp der BEM-Systemmatrix \boldsymbol{A}
p	Funktionsordnung
q	Funktionsordnung

Abkürzungen

ACA	Adaptive-Cross-Approximation
ADL	Adjoint Double Layer
BEM	Boundary-Elemente-Methode
BM	Burton-Miller
BM-HLU-BJ	Burton-Miller mit Block-Jacobi-HLU-Präkonditionierung
BM-HLU	Burton-Miller mit HLU-Präkonditionierung
CBIE	Conventional-Boundary-Integral-Equation
CFIE	Combined-Field-Integral-Equations
CHIEF	$\label{eq:combined-Helmholtz-Integral-Equation-Formulation} Combined-Helmholtz-Integral-Equation-Formulation$
\mathcal{DH}^2	Hierarchische Matrix mit geschachtelter und richtungs-
	abhängiger Basisdarstellung
DL	Double Layer
DtN	Dirichlet-to-Neumann
FEM	Finite-Elemente-Methode
FMM-BEM	Fast-Multipole-Boundary-Elemente-Methode
FMM	Fast-Multipole-Methode
GMRES	Generalized-Minimal-Residual
GMRES-DR	Generalized-Minimal-Residual with Deflated Restart
GMRES-E	Generalized-Minimal-Residual with Eigenvectors
HBIE	Hypersingular-Boundary-Integral-Equation
HCA	Hybrid-Cross-Approximation
$\mathcal{H} ext{-Matrix}$	Hierarchische Matrix
\mathcal{H}^2 -Matrix	Hierarchische Matrix mit geschachtelter Basisdarstellung
HLU	Hierarchische Lower-Upper
HYP	Hypersingular

IEC	International Electrotechnical Commission
KSR	Krylov-Subspace-Recycling
MKS	Mehrkörpersimulation
MLFMA	Multilevel-Fast-Multipole-Algorithmus
MVP	Matrix-Vektor-Produkt
NtD	Neumann-to-Dirichlet
PCA	Principal-Component-Analysis
PCM	Panel-Clustering-Methode
SL	Single Layer
SMP	Shared-Memory-Parallelism
SVD	Singulärwertzerlegung
WEA	Windenergieanlage