

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Hrsg.: Prof. Dr.-Ing. Dieter Gerling

Stephan Runde

Optimierungen für das Rotordesign und die Ansteuerung von Multiphasensystemen auf der Basis des Intelligent Stator Cage Drive

Optimierungen für das Rotordesign und die Ansteuerung von Multiphasensystemen auf der Basis des Intelligent Stator Cage Drive

Stephan Runde

Vollständiger Abdruck der von der Fakultät für Elektro- und Informationstechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Gutachter:

- 1. Prof. Dr.-Ing. Dieter Gerling
- 2. Prof. Dr.-Ing. Joachim Böcker

Die Dissertation wurde am 09.03.2022 bei der Universität der Bundeswehr München eingereicht und durch die Fakultät für Elektro- und Informationstechnik am 16.08.2022 angenommen. Die mündliche Prüfung fand am 04.10.2022 statt.

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 51

Stephan Runde

Optimierungen für das Rotordesign und die Ansteuerung von Multiphasensystemen auf der Basis des Intelligent Stator Cage Drive

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Univ. der Bundeswehr, Diss., 2022

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8837-3 ISSN 1863-0707

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort 3

Vorwort

Die vorliegende Arbeit entstand in enger Kooperation des Lehrstuhls für Elektrische Antriebstechnik und Aktorik der Universität der Bundeswehr München und der MOLABO GmbH.

Mein besonderer Dank gilt dem Lehrstuhlinhaber Herrn Prof. Dr.-Ing. Dieter Gerling, ohne den ich diesen Weg nicht gegangen wäre, für die langjährige Unterstützung und das Vertrauen.

Des Weiteren möchte ich mich bei der MOLABO GmbH und dem gesamten Team bedanken. Im speziellen geht mein Dank für die persönliche und fachliche Unterstützung an Dr.-Ing. Florian Bachheibl. Außerdem gilt mein Dank Dr.-Ing. Oleg Moros für die fruchtbaren Diskussionen und die Hilfsbereitschaft auf dem gesamten Weg. Auch meinen ehemaligen Kollegen möchte ich herzlich danken: Veit Hartmann für die persönliche Unterstützung, vor allem in der Anfangsphase dieser Arbeit, und Moritz Morlok für sein Interesse, die Zusammenarbeit und den wissenschaftlichen Austausch.

Zu guter Letzt gilt mein herzlichster Dank meiner Familie, meinen Eltern Brigitte und Dieter, meinem Bruder Philipp, meinen beiden Schwestern Anna-Maria und Johanna und insbesondere meiner Partnerin Insa. Durch Ihre Unterstützung wurde diese Arbeit überhaupt erst möglich.

Kurzfassung 5

Kurzfassung

Im Rahmen dieser Arbeit werden verschiedene Möglichkeiten vorgestellt, Multiphasensysteme, speziell Traktionsantriebe, im Hinblick auf unterschiedliche Aspekte zu optimieren. Im Fokus steht dabei der Intelligent Stator Cage Drive, dessen neuartiger Stator durch die individuelle Ansteuerung der einzelnen Phasen zusätzliche Freiheitsgrade in der Maschinenregelung schafft.

Zunächst wird der Antrieb als Asynchronmaschine betrachtet und die herkömmlichen Rotortopologien werden überdacht und angepasst, um die zusätzlichen Freiheitsgrade des Statortyps bestmöglich zu nutzen. Der Hybridrotor mit unterschiedlichen Polbreiten rückt daraufhin in den Fokus der Untersuchungen und es wird eine Regelung für diesen speziellen Maschinenbetrieb entwickelt und simuliert. Es werden Nutzen und Herausforderungen dieser Variante herausgearbeitet. Anschließend werden die Modellierung und Simulation des Intelligent Stator Cage Drive Konzepts überarbeitet. Vermessungen, die auf einem dafür eigens aufgebauten Maschinenprüfstand an der ersten Referenzmaschine, einem Prototyp der dritten Generation, durchgeführt wurden, werden für den Abgleich der Erkenntnisse verwendet.

Im zweiten Teil der Ausarbeitung wird die Referenzmaschine ausgetauscht. Die neue Referenzmaschine ist ein Prototyp der fünften Generation, der aufgrund der Erkenntnisse aus dem vorherigen Prototyp bereits optimiert wurde. Bei der neuen Referenzmaschine handelt es sich um eine permanentmagneterregte Synchronmaschine. Dementsprechend verschiebt sich der Fokus der Optimierungen von verschiedenen Rotortopologien und unterschiedlichen Polbreiten zu generelleren Optimierungsmöglichkeiten Multiphasensystemen. Die für die Maschine eigens entwickelte Multiphasenregelung wird vorgestellt. Anschließend wird eine entwickelte Erweiterung der feldorientierten Regelung um eine adaptive Schaltfrequenz beschrieben. Diese wird analytisch und simulativ untersucht. Anschließend werden die vollumfänglichen Tests auf einem weiteren Prüfstand, der speziell für diese Maschine entwickelt wurde, detailliert dargelegt und die Methode validiert. Im letzten Teil der Arbeit wird die Grundlegendste der Optimierungen beschrieben. Dazu rückt die Parameteridentifikation der elektrischen Maschine in den Fokus, um den Systemwirkungsgrad weiter zu steigern und auch den dynamischen Betrieb optimal abzubilden. Es werden unterschiedliche Methoden vorgestellt und die Vielversprechendste explizit herausgearbeitet.

Inhaltsverzeichnis 7

Inhaltsverzeichnis

Vorwo	ort	3
Kurzf	assung	5
Inhalt	sverzeichnis	7
1	Hintergrund	11
1.1	Elektromobilität heute (2022)	12
1.2	Motivation	13
2	Grundlagen zum Intelligent Stator Cage Drive	14
2.1	Leistungselektronik	18
2.1.1	Konstruktion und Design	19
2.2	Maschine	21
2.3	Steuerung	22
3	Auslegung von Rotoren unterschiedlicher Polteilung	24
3.1	ASM-Reluktanz-Rotor mit asynchronen und synchronen Anteilen	25
3.2	Käfigläufer mit unterschiedlichen Polbreiten	25
3.3	Synchroner Reluktanzrotor mit unterschiedlichen Polbreiten und zwei Symmetrieachsen	27
3.4	Synchroner Reluktanzrotor mit unterschiedlichen Polbreiten und einer Symmetrieachse	29
4	Hybridrotor aus ASM- und Reluktanzrotor	31
4.1	Das Referenzmodell	31
4.2	Optimierung des synchronen Anteils	33
4.3	Simulative Betrachtung des Hybridrotors	35
4.4	Überlagerung von synchronem und asynchronem Statorfeld	38
4.5	Das Einschwingverhalten der Asynchronmaschine	40
4.6	Fazit zum Hybridrotor	44
5	Käfigläufer mit unterschiedlichen Polbreiten	46

5.1	Referenzkennfeld- und Drehmomentrippelsimulation	. 48
5.2	Regelungsstrategie für eine Maschine mit zwei Polbreiten	. 54
5.2.1	Grundlagen zur Regelung der ISCAD-WTP	. 54
5.2.2	Regelung auf Basis einer FOC	. 57
5.3	Herausforderungen und Einschränkungen der ISCAD-WTP	60
5.4	Fazit zur ISCAD-WTP	61
5	Optimierungen der Modellierung	62
5.1	Ausarbeitung der verschiedenen Arten von Verlusten in der elektrischen Maschine	. 64
5.1.1	Reibungsverluste	65
5.1.2	Ohmsche Verluste in Stator und Rotor	. 67
5.1.3	Eisenverluste	. 68
5.1.4	Zusatzverluste	. 69
5.2	Ausarbeitung der verschiedenen Arten von Verlusten in der Leistungselektronik	. 70
5.2.1	MOSFET-Verlustleistung	. 71
5.2.1.1	Durchlassverluste	. 71
5.2.1.2	Schaltverluste.	. 72
5.2.2	Kondensatorverluste	. 73
5.2.2.1	Interleaving zur Entlastung des Zwischenkreiskondensators	. 74
5.2.3	Kontaktstellenverluste	. 76
5.3	Überprüfung der getroffenen Verlustannahmen für die Simulationen der dritten Generation des ISCADs	. 77
7	Optimierung der Ansteuerung und Regelung	. 82
7.1	Prüfstandsaufbau	. 82
7.2	Feldorientierte Regelung für Multiphasensysteme	. 84
7.3	Adaptive Schaltfrequenz.	. 89

7.3.1	Analytischer Ansatz zur Bestimmung der schaltfrequenzabhängigen Verlustkomponenten	89
7.3.1.1	Analytische Betrachtung der Eisenverluste in der elektrischen Maschine	90
7.3.1.2	Analytische Betrachtung der Leiterverluste	92
7.3.2	FEM-Simulationen zur Abhängigkeit der Maschinenverluste von der Schaltfrequenz	93
7.3.2.1	Vergleich bei konstanter Geschwindigkeit und variierender Last	94
7.3.2.2	Vergleich bei variierender Geschwindigkeit und konstanter Last	95
7.3.3	Vergleich von Messungen und analytischem Modell	97
7.3.4	Verhalten von Regelung und elektrischer Maschine im Umschaltzeitpunkt	.101
7.3.5	Fazit zur adaptiven Schaltfrequenz	.104
7.4	Parameteridentifikation	105
7.4.1	Experimentelle Bestimmung der Maschinenparameter	.106
7.4.1.1	Induktivitäten	.107
7.4.1.2	Permanentmagnetfluss	.111
7.4.1.3	Messungen und Ergebnisse	.112
7.4.2	Simulative Bestimmung der Parameter	121
7.4.2.1	Messungen und Ergebnisse	.121
7.4.2.2	Vergleich von Parametern aus Simulation und Identifikation	.123
7.4.2.3	Fazit zur Parameteridentifikation	.129
8	Zusammenfassung	.130
9	Ausblick	.132
Abbild	ungsverzeichnis	.134
Tabelle	nverzeichnis	.140
Abkürz	ungsverzeichnis	.141
Symbo	lverzeichnis	.142
Literatı	ırverzeichnis	.150

10	Inhaltsverzeichnis
10	Inhaltsverzeichni