

Aachener Berichte aus dem Leichtbau

Nichtlineare Auslegung abgestrebter Transportflugzeugflügel

Hauke Schmidt

Nichtlineare Auslegung abgestrebter Transportflugzeugflügel

Non-linear Design of Strutted Transport Aircraft Wings

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Hauke Gerjet Schmidt

Berichter: Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder Univ.-Prof. Dr.-Ing. Wolf-Reiner Krüger

Tag der mündlichen Prüfung: 03. März 2022

Aachener Berichte aus dem Leichtbau herausgegeben von Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder

Band 1/2022

Hauke Schmidt

Nichtlineare Auslegung abgestrebter Transportflugzeugflügel

> Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2022)

Copyright Shaker Verlag 2022 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8861-8 ISSN 2509-663X

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Für den Entwurf von Transportflugzeugen ist die Analyse der strukturmechanischen Eigenschaften wesentlich. Darin werden die zulässigen Spannungen auf Basis der Schnittlasten bestimmt und die Struktur dimensioniert. Während im Bereich der aerodynamischen Analyse durch die Anwendung verbesserter Berechnungsmethoden zunehmend nichtlineare Effekte berücksichtigt werden, kommen in der strukturmechanischen Analyse weitgehend lineare Methoden zum Einsatz. Für kleine Verformungen ist dies gängige Praxis und beschreibt die resultierenden Schnittkräfte mit ausreichender Genauigkeit.

Durch die Verwendung neuer Materialien und Entwurfsmethoden, sowie die Entwicklung neuer, hochflexibler Konfigurationen zeigen sich zunehmend Abweichungen von der linearen Analyse. Aufgrund großer Verformungen, oder zusätzlicher Verstrebungen der Struktur, verändern sich die strukturmechanischen Eigenschaften und führen zu einer Änderung der resultierenden Schnittkraftverläufe. Insbesondere durch Belastung der Struktur in Längsrichtung können aufgrund der zusätzlichen Biegebeanspruchung der Struktur die zulässigen Spannungen und Dehnungen im System erheblich größer sein, als nach der linearen Theorie. Daher ist insbesondere unter dem Aspekt einer veränderlichen Normalkraftkomponente die Berücksichtigung der geometrischen Nichtlinearität und der resultierenden Änderung der strukturmechanischen Eigenschaften im Entwurf erforderlich.

Im Rahmen dieser Arbeit wird eine Methode zur strukturmechanischen Vorauslegung balkenbasierter Flügelmodelle unter Berücksichtigung geometrisch nichtlinearer Verformungen umgesetzt und der Einfluss negativer Normalkraftkomponenten untersucht. Zunächst werden anhand einfacher Ersatzmodelle die resultierenden Schnittkraftverläufe unter Berücksichtigung großer Verformungen analysiert. Dabei wird auf Basis finiter Balkenelemente die Erhöhung der resultierenden Biegemomente durch zusätzliche Normalkraftkomponenten verstrebter Flügelkonfigurationen verdeutlicht. Im Rahmen der strukturmechanischen Auslegung werden anschließend statische und dynamische aeroelastische Analysen für ausgewählte Flugzustände und Massenkonfigurationen durchgeführt. Hierbei werden anhand mehrstufiger Iterationsverfahren die erforderlichen Wandstärken der Struktur bestimmt.

Mit dieser Methode können kritische Bereiche der Struktur bereits im Vorentwurf erkannt und der Einfluss strukturmechanischer Eigenschaften auf die dynamische Antwort des Systems untersucht werden. Diese Vorgehensweise verkürzt somit, durch einen verbesserten Vorentwurf, den iterativen Auslegungsprozess und ermöglicht den nichtlinearen Entwurf hochflexibler Konfigurationen.

Abstract

Within the design of transport aircraft wings the analysis of the static and dynamic structural properties is essential. Based on the section loads the permissible stresses are determined and the structure is dimensioned. Therein, widely linear methods are used in structural mechanical analysis. This is common practice for small deformations and describes the resulting internal forces with sufficient accuracy. It is assumed that linear calculations are conservative in terms of the maximum stresses occurring in the structure.

Due to the use of novel materials and design methods, as well as the development of high-flexible configurations, increasing differences appear from linear analysis. Due to large deformations, or additional struts bracing the structure, the structural properties change and lead to a change in the resulting sectional forces. In particular, by longitudinal loading of the structure, the permissible stresses and strains in the system can be considerably larger than according to linear theory. Therefore, especially under the aspect of a variable normal forces, the consideration of the geometric non-linearity effect and the resulting change of the structural properties is needed.

Within the scope of this thesis, a preliminary design method under consideration of geometrically non-linear deformations has been developed and subsequently investigated the influence of normal forces. Initially, the resulting section forces have been analysed by taking large deformations into account.

Following, the considerable increase of the bending moment due to additional normal force components of strut-braced wing configurations has been investigated based on finite beam elements. The static and dynamic aeroelastic analyses have been carried out for selected flight-and mass configurations within the structural design. Based on the maximum and minimum sectional forces the nominal section thickness has been determined by using multi-stage iteration procedures. Due to the number of calculation steps required, parametric models are largely used and the influence of local stiffening elements has been neglected.

This methodology allows the identification of non-linear critical stresses within the preliminary design and the investigation of the influence of the structural properties on the dynamic response of aeroelastic systems. Thus, the proposed method shortens the iterative design procedure and enables a non-linear design of highly flexible configurations.

Inhaltsverzeichnis

No	Nomenklatur vii						
At	okürz	ungsver	zeichnis	x			
1	Einleitung						
	1.1	Motiva	tion	1			
	1.2	Stand d	ler Technik	3			
		1.2.1	Modellierung großer Verformungen	5			
		1.2.2	Nichtlineare aeroelastische Effekte	8			
	1.3	Probler	mstellung und Ziel der Arbeit	12			
	1.4	Glieder	rung der Arbeit	14			
2	Stru	kturide	alisierung elastischer Systeme	17			
	2.1	Gültigk	ceitsgrenzen der Balkentheorie	17			
	2.2	Verform	nung am Balkenelement	19			
		2.2.1	Differentialgleichung am linearen Balken	19			
		2.2.2	Differentialgleichung am geometrisch nichtlinearen Balken	21			
		2.2.3	Biegung des Balkens unter Linienlast	22			
	2.3	Grundg	gleichungen der Finiten Elemente Methode	25			
		2.3.1	Formulierung der Steifigkeitsmatrix	26			
		2.3.2	Formulierung der Massenmatrix	28			
		2.3.3	NEWTON-RAPHSON Iteration	28			
	2.4	Validie	rung nichtlineare statische Analysen	30			
		2.4.1	Balken unter Einzellast	30			
		2.4.2	Beidseitig fest eingespannter Balken	32			
3	Aero	Aeroelastische Modellierung gekoppelter Systeme 35					
	3.1	Modell	lierung der instationären aerodynamischen Kräfte	35			
		3.1.1	Zustandsraummodell	36			
		3.1.2	Böenmodellierung	40			
		3.1.3	Validierung der instationären aerodynamischen Kräfte	41			
3.2 Aeroelastische Gleichungen		Aeroela	astische Gleichungen	43			
		3.2.1	Strömungs-Struktur Kopplung	47			
	3.3	Numer	ische Lösungsverfahren	48			
		3.3.1	NEWMARK Zeitintegrationsverfahren	48			

4	Dvn	amischer Entwurf und Dimensionierung	51	
	4.1	Flughereichsgrenzen	52	
	4.2	Entwurfsprozess	53	
	4.3	Massenschätzung im Vorentwurf	56	
5	Auslegung und Entwurf mittels parametrischer Balkenmodelle			
	5.1	Parametrisches Balkenmodell	59	
	5.2	Einfluss geometrischer Randbedingungen	60	
	5.3	Einfluss geometrischer Nichtlinearität	65	
	5.4	Einfluss negativer Normalkraftverläufe	69	
6	Gekoppelte numerische Analysen nichtlinearer Strukturen			
	6.1	Klassische Stabilitätsuntersuchung	74	
	6.2	Nichtlineare Schwingungen am zweidimensionalen Flügel	78	
	6.3	Generischer 3D-Flügel	80	
	6.4	Generischer 3D-Flügel mit Strebe	84	
	6.5	Strut-Braced Wing Konfiguration	89	
	6.6	Auswirkungen auf den Entwurf	93	
7	Zusa	ammenfassung und Ausblick	97	

Nomenklatur

Zeichen	Einheit	Beschreibung
a	[-]	Abstand elastische Achse zur Mittellinie, bezogen auf halbe Profiltiefe
b	[m]	Halbe Profiltiefe, Bezugslänge
C_A	[-]	Auftriebsbeiwert
$c_{A\alpha}$	[-]	Auftriebsgradient
h	[m]	Schlagbewegung am 2D-Profil
h	[s]	Schrittweite des Zeitintegrationsverfahrens
1	[m]	Länge
m	[kg]	Masse
р	$[N/m^2]$	Druck
q	$[N/m^2]$	Druck
r	[-]	Trägheitsradius bezogen auf halbe Profiltiefe
t	[s]	Zeit
p,q,r	[rad/s]	rotatorische Geschwindigkeiten des körperfesten Ko- ordinatensystems (aeroelastik)
u,v,w	[m]	lokale Koordinaten
Wg	[m/s]	Böengeschwindigkeit
u,v,w	[m/s]	translatorische Geschwindigkeiten des körperfesten Koordinatensystems (aeroelastik)
x,y,z	[m]	globale Koordinaten
А	$[m^2]$	Fläche
В	[-]	Verzerrungs-Verschiebungs-Matrix
[C]	[N/ms]	Dämpfungsmatrix
Е	$[N/m^2]$	Elastizitätsmodul
E_{pot}	[Nm]	potentielle Energie
E_{kin}	[Nm]	kinetische Energie
F	[N]	Kraft

Zeichen	Einheit	Beschreibung
G	$[N/m^2]$	Schubmodul
Н	[m]	Böengradient, Böenlänge
I_y	$[m^4]$	Flächenmoment
J	$[kg m^2]$	Trägheitsmoment
[K]	[N/m]	Steifigkeitsmatrix
L_k	[m]	Eulersche Knicklänge
[M]	[kg]	Massenmatrix
М	[Nm]	Moment
Ν	[N]	Normalkraft
N(x)	[-]	Ansatzfunktion
Ma	[-]	Machzahl $Ma = U/a$
M_b	[Nm]	Biegemoment
Q	[N]	Querkraft
R	[N]	Kraft-Residuum
R_g	[m]	Ortvektor
U_{∞}	[m/s]	Geschwindigkeit
U_{ds}	[m/s]	Bemessungs-Böen-Geschwindigkeit
V	$[m^3]$	Volumen
V_b	[m/s]	Geschwindigkeit des körperfesten Koordinatensys- tems
W	[Nm]	Arbeit

Zeichen	Einheit	Beschreibung
α	[rad]	Anstellwinkel
β,γ	[-]	NEWMARK-Parameter $\beta = 0,25$ und $\gamma = 0,5$
Г	$[m^2 rad/s]$	Zirkulation pro Einheitsfläche
θ	[rad]	Torsionswinkel am 2D-Profil
Λ	[-]	Streckung
П	[Nm]	Potential
ϵ_{ij}	[-]	Green-Lagrange-Verzerrungstensor
ϵ°	[-]	Dehnung der Balkenachse
ε	[-]	Stabkennzahl
φ	[rad]	Steigung der Balkenachse
μ	[-]	Massenverhältnis
ρ	$[kg/m^3]$	Dichte
Ψ	[-]	Küssner-Funktion
σ	$[N/m^2]$	Spannung
τ	[-]	Dimensionslose Zeit $\tau = U/bt$
ω	[1/s]	lokale Winkelgeschwindigkeit
Ω_b	[1/s]	Winkelgeschwindigkeit des körperfesten Koordinatensystem
λ_0	[-]	mittleren induzierte Geschwindigkeit

Abkürzungsverzeichnis

EASA	European Union Aviation Safety Agency
CFD	Computional Fluid Dynamics
CS	Certification Specification (Zulassungsvorschrift)
CSM	Computational Structural Mechanics
DGL	Differentialgleichung
DLM	Doublet-Lattice Method
DOF	Degrees of Freedom (Anzahl der Freiheitsgrade)
FAA	Federal Aviation Administration
FEM	Finite Elemente Methode
HALE	High Altitude Long Endurance
LCO	Limit Cycle Oscillation
MDO	Multidisziplinäre Design Optimierung
SBW	Strut Braced Wing
TBW	Truss Braced Wing