

Felix Franz Geßner

Modellgestützte Untersuchung von Störgrößenauswirkungen auf den Gewindebohrprozess

Schriftenreihe des PTW "Innovation Fertigungstechnik"

Herausgeber Prof. Dr.-Ing. Eberhard Abele Prof. Dr.-Ing. Joachim Metternich Prof. Dr.-Ing. Matthias Weigold

Modellgestützte Untersuchung von Störgrößenauswirkungen auf den Gewindebohrprozess

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt

zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation

vorgelegt von

Felix Franz Geßner, M. Sc.

aus Freiburg im Breisgau

Berichterstatter: Prof. Dr.-Ing. Matthias Weigold

Mitberichterstatter: Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche

Tag der Einreichung: 22.05.2022

Tag der mündlichen Prüfung: 12.07.2022

Darmstadt 2022

Schriftenreihe des PTW: "Innovation Fertigungstechnik"

Felix Franz Geßner

Modeligestützte Untersuchung von Störgrößenauswirkungen auf den Gewindebohrprozess

D 17 (Diss. TU Darmstadt)

Shaker Verlag Düren 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2022

Copyright Shaker Verlag 2022

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8872-4 ISSN 1864-2179

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort des Herausgebers

Gewinde stellen die am weitesten verbreitete Möglichkeit für lösbare und zugleich belastbare Bauteilverbindungen dar. Ein gängiges Verfahren zur spanenden Fertigung von Gewinden ist das Gewindebohren, bei dem zunächst eine Vorbohrung erzeugt und dann ein Gewinde eingeschnitten wird. Da der Gewindebohrprozess einen der letzten Bearbeitungsschritte der Wertschöpfungskette darstellt, kommt es bei einem Werkzeugausfall oder nicht eingehaltenen Toleranzen in Folge auftretender Störgrößen zu hohen Kosten durch Bauteilausschuss oder aufwändige Nacharbeit. Die Industrie ist daher stets bestrebt die Prozessstabilität zu erhöhen, um solche kostenintensiven Ausfälle oder die Notwendigkeit menschlichen Eingreifens zu minimieren.

Das Ziel dieser Arbeit ist es, negative Auswirkungen geometrischer Störgrößen auf den Prozess und das erzeugte Gewinde zu reduzieren, um damit zu einer Steigerung der Prozesssicherheit beizutragen. Um ein besseres Prozessverständnis zu generieren, werden zunächst experimentelle Untersuchungen mit gezielt eingebrachten Störgrößen durchgeführt. Basierend auf diesen Erkenntnissen wird ein analytisch-empirisches Prozessmodell für das Gewindebohren aufgebaut, welches Störgrößenauswirkungen auf Prozess- und Ergebnisgrößen berücksichtigt. Vor allem Achs- und Winkelversätze zwischen Vorbohrung und Gewindebohrer führen zu einem Versatz des Gewindes, der zu einer Nichteinhaltung der Toleranz des Gewindeprofils führen kann. Dies wird anhand eines neu entwickelten Analyseverfahrens experimentell bestimmt und mit dem Prozessmodell simulativ abgebildet.

Mit Hilfe des Prozessmodells werden Handlungsempfehlungen für die Prozessund Werkzeugauslegung aufgestellt, die es den Unternehmen auf Hersteller- und Anwenderseite ermöglichen, den Gewindebohrprozess trotz der Vielzahl an prozessbedingten Zwangsbedingungen robuster gegenüber den betrachteten Störgrößen auszulegen und somit die Prozesssicherheit zu steigern.

Vorwort des Verfassers

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) der TU Darmstadt im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereichs (SFB) 805. Allen Beteiligten des SFB 805 möchte ich hiermit meinen Dank für den fachübergreifenden Austausch und die wertvollen Diskussionen aussprechen.

Mein besonderer Dank gilt Herrn Professor Dr.-Ing. Matthias Weigold für die wissenschaftliche Betreuung der Arbeit, die umfassende Unterstützung und das große Vertrauen. Des Weiteren bedanke ich mich bei Herrn Professor Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche für die Übernahme des Korreferats.

Allen Kolleginnen und Kollegen am PTW danke ich für die freundschaftliche Zusammenarbeit über die vergangenen Jahre. Mein besonderer Dank gilt meinem langjährigen Bürokollegen und guten Freund Adrian Meinhard für seine fachliche Unterstützung und sein offenes Ohr an langen Abenden. Weiterhin möchte ich mich herzlich bei Christian Bölling und Adrian Höfling für die kritische Durchsicht und das konstruktive Feedback zu meiner Arbeit bedanken, sowie bei Marcel Volz und Timo Scherer für ihre Anmerkungen zum Vortrag. Weiterhin gilt mein Dank Sebastian Hentschel für seine aktive Unterstützung. Stellvertretend für die mechanische Werkstatt und das Support-Team des PTW möchte ich mich bei Mirko Feick und Boris Prinzisky für die gute Zusammenarbeit bedanken.

Ein Besonderer Dank gilt meinen Eltern Andrea und Martin sowie meinen Geschwistern Franziska und Maximilian, die es mir ermöglicht haben diesen Weg zu gehen und mich dabei stets unterstützt und bekräftigt haben. Weiterhin möchte ich mich herzlich bei meinen treuen Freunden bedanken. Auch wenn es Euch vielleicht nicht direkt bewusst war, so habt Ihr doch alle einen entscheidenden Teil dazu beigetragen, dass diese Arbeit entstehen konnte.

Mein größter Dank gilt meiner Frau Svenja, die mich mit Liebe, Verständnis und methodischer Expertise bei der Erstellung dieser Arbeit unterstützt hat. Ohne Dich wäre das nicht möglich gewesen. Ich danke Dir für alles!

Inhaltsverzeichnis I

Inhaltsverzeichnis

In	halts	sverzeichnis	I
Αł	bild	ungsverzeichnis	V
Тa	bell	enverzeichnis	. XIII
Fc	rme	lzeichen- und Abkürzungsverzeichnis	XV
1	Ein	leitung	1
2	Gru	ındlagen und Stand der Forschung	5
	2.1	Metrische ISO-Gewinde und deren Prüfung	5
	2.2	Spanende Innengewindefertigung durch Gewindebohrer	7
		2.2.1 Werkzeuggeometrie	8
		2.2.2 Prozessführung	12
		2.2.3 Kräfte und mechanische Belastung beim Gewindebohren	15
		2.2.4 Verschleiß	18
		2.2.5 Substrate und Beschichtung	21
	2.3	Charakterisierung und Auswirkung auftretender Störgrößen	22
		2.3.1 Achsversatz	24
		2.3.2 Winkelversatz	25
		2.3.3 Rundlauffehler	26
		2.3.4 Synchronisationsfehler	26
		2.3.5 Vorbohrungsgeometrie	27
		2.3.6 Abweichende Werkzeuggeometrie	28
	2.4	Experimentelle Untersuchungen zum Störgrößeneinfluss beim	
		Gewindebohren	28
	2.5	Modellbasierte Ansätze zur Vorhersage von Prozessgrößen beim	
		Gewindebohren	30
		2.5.1 Berechnung der Spanungsgrößen	30
		2.5.2 Berechnung von Prozesskräften und Drehmoment	33
		2.5.3 Modelle zur Beschreibung der Werkzeugauslenkung	37
3	Pro	blemstellung, Zielsetzung und Vorgehensweise	39

	3.1	Problemstellung	39
	3.2	Zielsetzung und Vorgehensweise	40
4	Exp	erimentelle Randbedingungen und Versuchsauswertung	. 43
	4.1	Versuchstechnik	43
		4.1.1 Werkzeugmaschinen	43
		4.1.2 Werkzeuge und Spannfutter	45
		4.1.3 Versuchswerkstücke	47
	4.2	Versuchseinrichtungen und Versuchsablauf	47
		4.2.1 Gewindebohrversuche	47
		4.2.2 Analogieversuche	49
	4.3	Mess- und Analysesysteme	50
		4.3.1 Messung von Drehmoment und Zerspankräften	50
		4.3.2 Messung der Werkzeugauslenkung	50
		4.3.3 Messung der Werkzeugposition und -ausrichtung	51
		4.3.4 Analyse der Gewindegeometrie	52
5	Exp	erimentelle Untersuchungen zur Auswirkung von Störgrößen	. 57
	5.1	Einflüsse beim Gewindebohren	58
		5.1.1 Schnittgeschwindigkeit	58
		5.1.1 Schnittgeschwindigkeit	
			60
		5.1.2 Achssynchronisation	60 62
	5.2	5.1.2 Achssynchronisation	60 62 65
		5.1.2 Achssynchronisation	60 62 65 67
		5.1.2 Achssynchronisation 5.1.3 Steigungsfehler 5.1.4 Rundlauf Einflüsse der Vorbohrung	60 62 65 67
		5.1.2 Achssynchronisation	60 62 65 67 69
		5.1.2 Achssynchronisation	60 62 65 67 69 72
	5.3	5.1.2 Achssynchronisation	60 62 65 67 69 72
6	5.35.4	5.1.2 Achssynchronisation	60 62 65 67 69 72 74
6	5.3 5.4 Pro	5.1.2 Achssynchronisation	60 62 65 67 69 72 77

		6.2.1	Berechnung der Werkstückelemente	81
		6.2.2	Berechnung der Werkzeugelemente	83
		6.2.3	Berechnung der Werkzeugbewegung	88
		6.2.4	Berechnung der Verschneidung	91
	6.3	Zersp	ankraftmodell	93
		6.3.1	Evaluation der realen Zahngeometrie	94
		6.3.2	Bestimmung der Prozesskräfte am Einzelzahn mittels	
			Analogieprozess	98
		6.3.3	Kraftmodellierung	102
	6.4	Werk	zeugauslenkungsmodell	103
		6.4.1	Beschreibung des Biegebalkenmodells	103
		6.4.2	Kalibrierung des Biegebalkenmodells	106
		6.4.3	Einbindung in das Gesamtmodell	108
	6.5	Besch	reibung der Auswertegrößen der Simulation	111
		6.5.1	Prozessgrößen	112
		6.5.2	Ergebnisgrößen	113
		6.5.3	Bewertungsmetrik für den relativen radialen Versatz von	
			Vorbohrung und Gewinde	114
	6.6	Verifi	zierung und Validierung	116
		6.6.1	Verifizierung	117
		6.6.2	Validierung	120
	6.7	Fazit	zur Prozessmodellierung	123
7	Able	eitung	y von Handlungsempfehlungen	125
	7.1	Einflu	ıssmöglichkeiten des Werkzeugherstellers	126
		7.1.1	Werkzeuggeometrien	126
		7.1.2	Anwendung auf den idealen Fall	128
		7.1.3	Anwendung auf den störgrößenbehafteten Fall	131
	7.2	Einflu	ıssmöglichkeiten des Anwenders	135
	7.3	Hand	lungsempfehlungen zur Werkzeuggestaltung und	
		Pro	ozessauslegung	140

IV Inhaltsverzeichnis

8	Schlussfolgerungen und Ausblick	143
Li	teraturverzeichnis	147
Α	Anhang	165
	A.1 Berechnung der Werkzeugrotation	165
	A.2 Auswertung der realen Werkzeuggeometrie am Beispiel eines Zahns	172
Le	ebenslauf	175

Abbildungsverzeichnis

Abbildung 1-1:	Folgen eines kritischen Werkzeugversagens beim Gewindebohren	1
Abbildung 1-2:	Relevanz der Thematik des Gewindebohrens	2
Abbildung 2-1:	Nennprofil für metrische ISO-Gewinde nach [DIN13-19]	5
Abbildung 2-2:	Geometrische Größen am Gewindebohrer	9
Abbildung 2-3:	Toleranzlage im Innengewinde nach DIN EN 22857 [EMU2004]	12
Abbildung 2-4:	Schematischer Schneidvorgang bei einem rechtsschneidenden Gewindebohrer nach [EMU2004; HEI2014; VDI3334]	14
Abbildung 2-5:	Mechanisches Belastungskollektiv an einem Zahn des Gewindebohrers	16
Abbildung 2-6:	Vereinfachter Zusammenhang zwischen ansteigendem Drehmoment und abnehmender Standzeit	20
Abbildung 2-7:	Ursachen für die Streuung der Bauteilqualität im Produktionsprozess nach [ISH1976], in Anlehnung an [HAU2012]	23
Abbildung 2-8:	Geometrische Störgrößen beim Gewindebohren	23
Abbildung 2-9:	Qualitative Darstellung der Auswirkung des Achsversatzes auf den Spanungsquerschnitt beim Gewindebohren unter Annahme eines ideal steifen Werkzeugs in Anlehnung an [ABE2018]	24
Abbildung 2-10:	Qualitative Darstellung der Auswirkung eines Winkelversatzes durch schräge Vorbohrung auf den Spanungsquerschnitt beim Gewindebohren unter Annahme eines ideal steifen Werkzeugs in Anlehnung an [ABE2018]	25

Abbildung 2-11:	Qualitative Darstellung der Auswirkung des Rundlauffehlers auf den Spanungsquerschnitt beim Gewindebohren unter Annahme eines ideal steifen Werkzeugs in Anlehnung an [ABE2018]
Abbildung 2-12:	Qualitative Darstellung der Auswirkung des Synchronisationsfehlers auf den Spanungsquerschnitt beim Gewindebohren unter Annahme eines ideal steifen Werkzeugs in Anlehnung an [ABE2018]27
Abbildung 2-13:	Spanungsquerschnitt A , Spanungsdicke h und Spanungsbreite b beim Gewindebohren31
Abbildung 2-14:	Geometrische Modellierungsansätze in der Zerspanungssimulation nach [SCH1988]
Abbildung 2-15:	Framework des dynamischen Zerspanungsmodells nach [KAP1998]
Abbildung 3-1:	Zielstellung und Vorgehensweise der Forschungsarbeit 41
Abbildung 4-1:	5-Achs-Universalbearbeitungszentrum GROB G350 (links) und 3-Achs-Drehbearbeitungszentrum DMG CTX beta 800 (rechts)
Abbildung 4-2:	Für die Zerspanversuche verwendeter Gewindebohrer des Typs EMUGE Enorm1-Z-IKZ-GLT-1 M8-ISO2/6H45
Abbildung 4-3:	Versuchsaufbau zur Kraft- und Drehmomentmessung am Bearbeitungszentrum GROB G350
Abbildung 4-4:	Versuchsaufbau des Analogieversuchs am 3-Achs- Drehbearbeitungszentrum DMG CTX beta 800
Abbildung 4-5:	Versuchsaufbau zur Messung der Werkzeugauslenkung bei den Gewindebohrversuchen51
Abbildung 4-6:	Messkette zur Messung von Kraft, Drehmoment und Werkzeugauslenkung sowie der Maschinendaten aus der Werkzeugmaschine mit den jeweiligen Koordinatensystemen

Abbildung 4-7:	Konzept der Gewindespitzenbreite g in Anlehnung an [GEß2021]53
Abbildung 4-8:	Messung des Achsversatzes zwischen Vorbohrung und Gewindebohrung in zwei Raumrichtungen unter Verwendung der Gewindespitzenbreite55
Abbildung 4-9:	Bestimmung des Versatzes Δw in x- und y-Richtung
Abbildung 5-1:	Gruppierung der betrachteten Störgrößen hinsichtlich ihres Ursprungs57
Abbildung 5-2:	Auswertung der real erreichten Schnittgeschwindigkeiten (a) und deren Auswirkung auf das gemessene Drehmoment (b) beim Gewindebohren
Abbildung 5-3:	Real auftretender Synchronisationsfehler beim Gewindebohren (a) und maximaler Synchronisationsfehler für verschiedene Schnittgeschwindigkeiten sowie Material- und Luftschnitt im Vergleich (b)
Abbildung 5-4:	Auswirkung des gezielt eingebrachten Steigungsfehlers bei Verwendung eines Minimallängenausgleichsfutters auf die Axialkraft (a) und das Drehmoment (b)
Abbildung 5-5:	Auswirkung des gezielt eingebrachten Steigungsfehlers bei Verwendung eines starren Futters auf die Axialkraft (a) und das Drehmoment (b)
Abbildung 5-6:	Veränderung der gemessenen Gewindespitzenbreite g als Indiz für axiales Verschneiden beim Gewindebohren mit Steigungsfehler
Abbildung 5-7:	Ergebnis der Messung des Rundlauffehlers in x-Richtung (a) und y-Richtung (b)
Abbildung 5-8:	Vergleich des Drehmomentverlaufs im Anschnitt bei einer Vorbohrung mit und ohne Fase (a) und

	schematische Darstellung des verschobenen Eingriffspunkts (b)
Abbildung 5-9:	Einfluss des Vorbohrungsdurchmessers auf den Drehmomentverlauf (a) und auf das mittlere Drehmoment für den Bereich der normierten Zeit von 0,1 bis 0,3 (b)
Abbildung 5-10:	Vorgehen beim Einbringen des Achsversatzes
Abbildung 5-11:	Einfluss des gezielt eingebrachten Achsversatzes in y-Richtung auf die Kräfte in x-Richtung (a), in y-Richtung (b), in z-Richtung (c) und das Drehmoment (d)
Abbildung 5-12:	Auswertung des Gewindeverlaufs anhand der gemessenen Gewindespitzenbreite bei einem Achsversatz in y-Richtung
Abbildung 5-13:	Vorgehen beim Einbringen des Winkelversatzes73
Abbildung 5-14:	Einfluss eines Winkelversatz in y-Richtung auf die Kräfte in x-Richtung (a), in y-Richtung (b), in z- Richtung (c) und das Drehmoment (d)
Abbildung 5-15:	Auswertung des Gewindeverlaufs anhand der gemessenen Gewindespitzenbreite bei einem Winkelversatz in y-Richtung74
Abbildung 5-16:	Einfluss des kombinierten Achs- und Winkelversatzes in y-Richtung auf das Drehmoment (a), den Gewindeverlauf in y-Richtung (b) sowie die Kräfte in x-Richtung (c) und y-Richtung (d)
Abbildung 6-1:	Schematische Darstellung des Simulationsmodells zum Gewindebohren
Abbildung 6-2:	Aufgeschnittene Darstellung des Werkstücks (a), sternförmige Anordnung der Werkstücksegmente (b) und Darstellung eines einzelnen Werkstücksegments (c)

Abbildung 6-3:	Bestimmung der Lagewinkel der Zähne am Beispiel eines Gewindebohrers mit drei Stegen84
Abbildung 6-4:	Polygon des voll ausgeprägten Zahns T_0
Abbildung 6-5:	Polygon der Makrogeometrie des Gewindebohrers 87
Abbildung 6-6:	Drehrichtung beim Ein- und Ausschrauben des Werkzeugs
Abbildung 6-7:	Beschreibung der Werkzeugrotation durch Winkelruck (a), Winkelbeschleunigung (b), Winkelgeschwindigkeit (c) und Rotationswinkel (d)89
Abbildung 6-8:	Erstellen des Werkzeugmodells auf Basis einer realen Werkzeuggeometrie (a) anhand der optisch aufgenommenen Oberfläche (b) und Ableitung des 2D-Elementmengenmodells (c)
Abbildung 6-9:	Spanungsgrößen am Beispiel des Zahns T_i 96
Abbildung 6-10:	Versuchsaufbau des Analogieversuchs in Anlehnung an [GEß2021]99
Abbildung 6-11:	Gemessener Kraftverlauf im Analogieversuch am Beispiel einer Schnittgeschwindigkeit $v_{\rm c}$ von 15 m/min 100
Abbildung 6-12:	Im Analogieversuch gemessene Schnittkräfte (a), Passivkräfte (b) und Vorschubkräfte (c)101
Abbildung 6-13:	Mechanisches Ersatzmodell des Gewindebohrers vor dem Eintritt in die Vorbohrung (a), Führung des Werkzeugs im bereits geschnittenen Gewinde (b) und Freikörperbild des ausgelenkten Werkzeugs (c)
Abbildung 6-14:	Ersatzmodell Euler-Bernoulli-Balken
Abbildung 6-15:	Messaufbau zur Überprüfung der Richtungsunabhängigkeit der Werkzeugauslenkung 107
Abbildung 6-16:	Ergebnisse der Untersuchung zur Richtungsunabhängigkeit der Werkzeugauslenkung

Abbildung 6-17:	Messpunkte zur Kalibrierung des Werkzeugmodells (a) und Auslenkung bei einer lateralen Belastung von $F_{\rm R}=50~{\rm N}$ (b)
Abbildung 6-18:	Simulierte Prozessgrößen des Gesamtmodells am Beispiel eines Achsversatzes von $AV_y = 0.2$ mm mit normierter Zeitdarstellung: Spanungsquerschnitt (a), Drehmoment (b) sowie radial wirkende Kräfte in x-Richtung (c) und y-Richtung (d)
Abbildung 6-19:	Simulierte Ergebnisgrößen des Gesamtmodells am Beispiel eines Achsversatz von $AV_y=0,2$ mm: Ausgewertete Kontur (a), Bestimmung der Durchmesser und Mittelpunkte (b) sowie die Darstellung der Durchmesser (c) und des radialen Versatzes der Mittelachsen über der Gewindetiefe (d) 114
	Bestimmung des zulässigen Versatzes zwischen Vorbohrung und Gewindebohrung in Abhängigkeit vom Vorbohrungsdurchmesser
Abbildung 6-21:	Simulierter Spanungsquerschnitt an den einzelnen Zähnen im stationären Fall (a) und Verlauf des Spanungsquerschnitts pro Steg aufsummiert (b)117
Abbildung 6-22:	Spanungsquerschnitt unter Beeinflussung durch die Störgrößen Achsversatz (a), Winkelversatz (b), Rundlauffehler (c) und Steigungsfehler (d)
Abbildung 6-23:	Spezifische Kräfte in Abhängigkeit von der Spanungsdicke h und der Schnittgeschwindigkeit $v_{\rm c}$ (a) und Prozesskräfte in Abhängigkeit von der Spanungsquerschnittsfläche A und der Schnittgeschwindigkeit $v_{\rm c}$ für $h=0,12$ mm (b)
Abbildung 6-24:	Verifizierung des Biegebalkenmodells für den ungeführten und den geführten Zustand
Abbildung 6-25:	Vergleich von Drehmoment (a) und Radialkraft (b) für Simulation und Experiment121

Abbildung 6-26:	Vergleich experimentell ermittelter und simulierter Werte des Drehmoments $M_{\rm z}$ (a), der Radialkraft $F_{\rm R}$ (b), der Auslenkung w an der Bauteiloberfläche (c) und der relativen Neigung zwischen Vorbohrung und Gewinde $\Delta w'$ (d)
Abbildung 7-1:	Maximaler Versatz $\Delta w_{\rm max}$ zwischen Vorbohrung und Gewinde bei einer Variation des Winkels $\varphi_{\rm SG}$ (a) und $\varphi_{\rm SG}$ für die der minimale bzw. maximale Versatz auftritt (b)
Abbildung 7-2:	Schnittaufteilungen für jede Variante mit der geringsten Auslenkung (oben) und der größten Auslenkung (unten)
Abbildung 7-3:	Spanungsquerschnittsfläche (a) und Schnittkräfte (b) der einzelnen Zähne des Gewindebohrers für die jeweiligen Anschnittvarianten für den normierten Zeitbereich von 0,15 bis 0,4
Abbildung 7-4:	Einfluss von Achs- und Winkelversatz auf den maximalen Versatz $\Delta w_{\rm max}$ zwischen Vorbohrung und Gewinde über eine Gewindetiefe von 16 mm
Abbildung 7-5:	Maximaler Versatz $\Delta w_{\rm max}$ zwischen Vorbohrung und Gewinde über eine Gewindetiefe von 16 mm für verschiedene Startwinkel des Gewindes bei einem Achsversatz von 0,2 mm in positive y-Richtung
Abbildung 7-6:	Einfluss von Kombinationen aus Achs- und Winkelversatz auf den maximalen Versatz $\Delta w_{\rm max}$ zwischen Vorbohrung und Gewinde über eine Gewindetiefe von 16 mm
Abbildung 7-7:	Einfluss der Schnittgeschwindigkeit auf den maximalen Versatz Δw_{max} für verschiedene Achs- und Winkelversätze am Beispiel der Anschnittvariante 2

Abbildung 7-8:	Einfluss des Vorbohrungsdurchmessers auf den maximalen Versatz $\Delta w_{\rm max}$ für verschiedene Achs- und Winkelversätze für alle Anschnittvarianten	138
Abbildung 7-9:	Einfluss von Fasenwinkel und -tiefe auf den maximalen Versatz $\Delta w_{\rm max}$ für verschiedene Achs- und Winkelversätze am Beispiel der Anschnittvariante 2	139
Abbildung A-1:	Digitale Repräsentation des Gewindebohrers anhand der optisch aufgenommenen Oberfläche (a) und abgerollte Darstellung der Oberfläche nach Transformation in Polarkoordinaten (b)	172
Abbildung A-2:	Digitale Repräsentation der Oberfläche des i -ten Zahns des Gewindebohrers (a) und Darstellung der Zahnbezugsebene E_{T_i} sowie der Kanten der einzelnen Flächen S_{n_i} des Zahns (b)	173
Abbildung A-3:	Darstellung der Kanten der projizierten Flächen S'_{n_i} in der Zahnbezugsebene E_{T_i} (a) und das kombinierte Polygon T_i zur Repräsentation des i -ten Zahns des	154
	Gewindebohrers (b)	174

Tabellenverzeichnis XIII

Tabellenverzeichnis

Tabelle 2-1	Grenzmaße am Beispiel eines M8x1,25 Innengewindes
Tubene 2 1.	nach [DIN13-20]
Tabelle 2-2:	Anschnittformen nach [DIN2197-1]10
Tabelle 2-3:	Prozess und wählbare Schnittparameter nach [HEI2014]15
Tabelle 2-4:	Übersicht der experimentellen Untersuchungen zum Störgrößeneinfluss beim Gewindebohren
Tabelle 4-1:	Technische Daten der verwendeten Versuchsmaschinen44
Tabelle 4-2:	Richtwerte der chemische Zusammensetzung von 1.7525 (42CrMo4) in Massenprozent laut Hersteller [ABR2022]47
Tabelle 5-1:	Mittleres Drehmoment im stationären Bereich von $t_{\rm norm} = 0.1$ bis 0.25 bei unterschiedlichen Schnittgeschwindigkeiten
Tabelle 5-2:	Dauer des Gewindebohrprozesses von $t_{\text{norm}} = 0$ bis 1 bei unterschiedlichen Schnittgeschwindigkeiten60
Tabelle 5-3:	Gemittelte Durchmesser und Standardabweichung für die jeweils drei Wiederholversuche mit abweichendem Vorbohrungsdurchmesser
Tabelle 5-4:	Übersicht der Einflüsse der gezielt beeinflussten Größen auf Drehmoment, Radialkraft, Axialkraft, Gewindegeometrie und Reibung beim Werkzeugrückzug77
Tabelle 6-1:	Berücksichtigte Modellgrößen
Tabelle 6-2:	Geometrisch bestimmte Spanungsgrößen des vermessenen M8x1,25 Gewindebohrers unter Annahme eines Vorbohrungsdurchmessers von $d_{\rm k}=6,8$ mm und Darstellung der normierten Spanungsgrößen97
Tabelle 6-3:	Koeffizienten der spezifischen Zerspankräfte
Tabelle 6-4:	Ergebnisse der Kalibrierung

XIV Tabellenverzeichnis

Tabelle 7-1:	Einflussmöglichkeiten von Werkzeughersteller und	
	Anwender	125
Tabelle 7-2:	Untersuchte Varianten der Anschnittgeometrie	127
Tabelle 7-3:	Toleranzen für Nenn- und Flankendurchmesser in Anwendungsklasse 2 nach [DIN22857] sowie die für die Simulation angenommenen Werte	127
Tabelle 7-4:	Untersuchte Störgrößen und deren Werte	132
Tabelle 7-5:	Untersuchte Einflussgrößen des Anwenders	136
Tabelle 7-6:	Untersuchte Varianten der Anschnittgeometrie	136
Tabelle 7-7:	Zulässiger radialer Versatz zwischen Vorbohrung und Gewinde für verschiedene Kerndurchmesser D_1	197
m 1 11 m 0	•	
Tabelle 7-8:	Handlungsempfehlungen	141

Formelzeichen- und Abkürzungsverzeichnis

Große lateinische Buchstaben

Zeichen	Einheit	Bezeichnung
A	mm^2	Spanungsquerschnitt
A_{ges}	mm^2	Gesamtspanungsquerschnitt
$A_{\rm ideal}$	mm^2	Spanungsquerschnittsfläche im idealen Fall
$A_{ m Steg}$	mm^2	Summierte Spanungsquerschnittsfläche eines Stegs
AV	mm	Achsversatz
$AV_{\rm x}$	mm	Achsversatz in x-Richtung
$AV_{\rm y}$	mm	Achsversatz in y-Richtung
С	-	Dämpfungsmatrix
D	mm	Außendurchmesser (Innengewinde)
D_{soll}	mm	Sollwert des Außendurchmessers
D_1	mm	Kerndurchmesser (Innengewinde)
$D_{1,\max}$	mm	Höchstmaß des Kerndurchmessers
$D_{1,\min}$	mm	Mindestmaß des Kerndurchmessers
D_2	mm	Flankendurchmesser (Innengewinde)
$D_{2,\mathrm{soll}}$	mm	Sollwert des Innendurchmessers
E_{C}	N/m^2	Elastizitätsmodul des Minimallängenausgleichsfutters
EI	$\mu\mathrm{m}$	Grundabmaß
E_{T}	N/m^2	Elastizitätsmodul des Gewindebohrers
E_{T_i}	-	Zahnbezugsebene
F	-	Auslenkende Kraft
F	N	Zerspankraft

$F_{\rm a}$	N	Aktivkraft
\mathbf{F}_{B}	-	Kraft des Biegebalkens
F_{B}	N	Betrag der Kraft des Biegebalkens
$F_{\mathrm{B_{X}}}$	N	x-Komponente der Kraft des Biegebalkens
$F_{\mathrm{B_y}}$	N	y-Komponente der Kraft des Biegebalkens
$F_{\rm c}$	N	Schnittkraft
F_{f}	N	Vorschubkraft
\mathbf{F}_{KM}	-	Kraft aus dem Zerspankraftmodell
F_{KM}	N	Betrag der Kraft aus dem Zerspankraftmodell
$F_{ m KM_x}$	N	x-Komponente der Kraft aus dem Zerspankraftmodell
$F_{\mathrm{KM_y}}$	N	y-Komponente der Kraft aus dem Zerspankraftmodell
F_{R}	N	Auslenkende Radialkraft
$F_{\mathbf{p}}$	N	Passivkraft
$F_{\rm x}$	N	Kraft in x-Richtung
$F_{X,\max}$	N	Maximale Vorschubkraft der X-Achse
$F_{\mathbf{y}}$	N	Kraft in y-Richtung
$F_{Y,\max}$	N	Maximale Vorschubkraft der Y-Achse
$F_{\rm z}$	N	Kraft in z-Richtung
$F_{Z,\max}$	N	Maximale Vorschubkraft der Z-Achse
G	-	Polygon der Makrogeometrie des Gewindebohrers
$G_{0,1}$ bis $G_{0,4}$	-	Eckpunkte des Polygons der Makrogeometrie des Gewindebohrers
Н	mm	Höhe des Ausgansdreiecks
H_1	mm	Gewindetiefe (Innengewinde)
$H_{1,\mathrm{soll}}$		Sollwert der Gewindetiefe (Innengewinde)

I_1	mm ⁴	Flächenträgheitsmoment des Segments 1
I_2	mm ⁴	Flächenträgheitsmoment des Segments 2
I_3	mm ⁴	Flächenträgheitsmoment des Segments 3
J	-	Jacobimatrix
K	-	Steifigkeitsmatrix
$K_{\rm c}$	N/mm ²	Spezifische Schnittkraft
$K_{\rm p}$	N/mm ²	Spezifische Passivkraft
M	-	Massenmatrix
Μ	Nm	Biegemoment
$M_{ m F}$	Nm	Von der Führung aufgebrachtes Drehmoment
$M_{\rm max}$	Nm	Maximaldrehmoment
$M_{\rm z}$	Nm	Drehmoment um z-Achse
P	mm/U	Gewindesteigung
$PA_{\mathbf{x}}$	mm	Positionsabweichung in x-Richtung
PA_{y}	mm	Positionsabweichung in y-Richtung
P_{\max}	kW	Maximalleistung
RF	mm	Rundlauffehler
$R_{\rm z}$	$\mu\mathrm{m}$	Gemittelte Rautiefe
S	-	Flächen
S_1	μm	Mittels Wirbelstromsensor gemessene Auslenkung in x-Richtung
S_2	$\mu \mathrm{m}$	Mittels Wirbelstromsensor gemessene Auslenkung in y-Richtung
SF	mm	Synchronisationsfehler
S_{n_i}	-	Flächen
S'_{n_i}	-	Projizierte Fläche
-		

T_0	-	Polygon des voll ausgeprägten Zahns
$T_{0,1}$ bis $T_{0,4}$	-	Eckpunkte des Polygons des voll ausgeprägten Zahns
T_{D2}	$\mu\mathrm{m}$	Toleranz des Flankendurchmessers (Innengewinde)
T_{d2}	$\mu\mathrm{m}$	Toleranz des Flankendurchmessers (Außengewinde)
T_i	-	Polygon des Zahns i
T_i^*	-	Projektion des Zahns T_i
T_{i-1}	-	Vorhergehender Zahn
V	-	Scheitelpunkte
V_{j_i}	-	Eckpunkte
V'_{j_i}	-	Projizierter Scheitelpunkt
W	-	Polygon des Werkstücks
W_{j}	-	Polygon der Werkstückebene
WV	o	Winkelversatz
$WV_{\rm x}$	0	Winkelversatz in x-Richtung
$WV_{ m v}$	0	Winkelversatz in y-Richtung

Kleine lateinische Buchstaben

Zeichen	Einheit	Bezeichnung
a_0, a_1, a_2	-	Regressionskonstanten
a_{e}	mm	Schnittbreite
$a_{\rm p}$	mm	Schnitttiefe
b	mm	Spanungsbreite
c_i	mm	Hebelarm des Zahns T_i
d	mm	Außendurchmesser (Außengewinde)
d_1	mm	Kerndurchmesser (Außengewinde)

d_2	mm	Flankendurchmesser (Außengewinde)
d_3	mm	Anschnittdurchmesser (Gewindebohrer)
d_{k}	mm	Vorbohrungsdurchmesser
d_{Schaft}	mm	Schaftdurchmesser (Gewindebohrer)
$e_{\rm x}$	mm	Exzentrizität in x-Richtung
e_{y}	mm	Exzentrizität in y-Richtung
f	-	Kräftedifferenz
f	mm/U	Vorschub
g	mm	Gewindespitzenbreite
$g_{ m ref}$	mm	Gewindespitzenbreite des Referenzgewindes
h'	mm	Radiale Schnitttiefe
h	mm	Spanungsdicke
h_3	mm	Gewindetiefe (Außengewinde)
h_{WS}	mm	Werkstückhöhe
i	-	Zählvariable / Index der Iteration
j_i	-	Zählvariable der Scheitelpunkte
$k_{c1.1}$	N/mm²	Spezifischen Schnittkraft bezogen auf $A = 1 \text{ mm}^2$
l	mm	Länge des Biegebalkens
l_1	mm	Gesamtlänge (Gewindebohrer)
l_2	mm	Gewindelänge (Gewindebohrer)
l_3	mm	Nutzbare Länge (Gewindebohrer)
l_4	mm	Anschnittlänge (Gewindebohrer)
$l_{\rm a}$	mm	Länge des Segments 1
l_{b}	mm	Länge des Segments 2
$l_{\rm c}$	mm	Länge des Segments 3
$l_{ m e}$	mm	Schnitttiefe

$m_{ m c}$	-	Steigung der spezifischen Schnittkraft $k_{c1.1}$
n_{e}	-	Anzahl der Ebenenelemente
n_i	-	Zählvariable der Flächen
n_{max}	1/U	Maximaldrehzahl
n_{steg}	-	Anzahl der Stege
r	mm	Radiale Koordinate im Zylinderkoordinatensystem
r_{j_i}	mm	Radiale Koordinate des Scheitelpunkts
$r_{ m k}$	mm	Kernradius der Vorbohrung
$r_{ m s}$	mm	Wirksamer Radius des Zahns
$r_{ m VB}$	mm	Vorbohrungsradius relativ zum Ursprung der Simulation
$r_{ m WS}$	mm	Radiale Koordinate im Werkstückkoordinatensystem
$r_{ m WZ}$	mm	Radiale Koordinate zur Beschreibung der Ebenenelemente des Werkzeugs
$r_{\mathrm{z,RF},i}$	mm	Radialkomponente des Zahns unter Berücksichtigung des Rundlauffehlers
Δt	S	Zeitintervall zwischen zwei Berechnungsschritten
t	$\mu\mathrm{m}$	Toleranzeinheit
t	S	Zeit
t_0	S	Zeitpunkt des Einschneidens des Gewindebohrers in die Vorbohrung
t_1 bis t_{10}	S	Zeitpunkte
Δt_1	S	Zeitintervall
Δt_2	S	Zeitintervall
$t_{ m f}$	mm	Fasentiefe
$t_{ m norm}$	-	Normierte Zeit

$t_{ m VB}$	mm	Vorbohrungstiefe
$v_{\rm c}$	m/min	Schnittgeschwindigkeit
$v_{ m e}$	m/min	Wirkgeschwindigkeit
$v_{ m f}$	m/min	Vorschubgeschwindigkeit
$v_{ m f,max}$	m/min	Maximale Vorschubgeschwindigkeit
$v_{\rm f_x,max}$	m/min	Maximale Vorschubgeschwindigkeit der X-Achse
$v_{\rm f_y,max}$	m/min	Maximale Vorschubgeschwindigkeit der Y-Achse
$v_{\rm f_z,max}$	m/min	Maximale Vorschubgeschwindigkeit der Z-Achse
w	-	Auslenkung
Ŵ	-	Erste zeitliche Ableitung der Auslenkung
w	-	Zweite zeitliche Ableitung der Auslenkung
W	mm	Auslenkung
w'	mm/mm	Neigung
w''	1/mm	Krümmung
Δw	mm	Versatz zwischen der Mittelachse der Vorbohrung und der Mittelachse der Gewindebohrung
w_0	mm	Auslenkung im Nullpunkt
w'_0	mm	Neigung im Nullpunkt
W_1	mm	Auslenkung des Segments 1
w_1'	mm/mm	Neigung des Segments 1
W_2	mm	Auslenkung des Segments 2
w_2'	mm/mm	Neigung des Segments 2
$W_{3.1}$	mm	Auslenkung des Segments 3.1
$w'_{3.1}$	mm/mm	Neigung des Segments 3.1
	mm	Auslenkung des Segments 3.2
$w_{3.2}$ $w'_{3.2}$	mm/mm	Neigung des Segments 3.2
vv 3.2	11111/ 111111	iverguing also degineries 3.2

$W_{ m Bohrung}$	mm	Versatz der Bohrung
$W_{Gewinde}$	mm	Versatz des Gewindes
$\Delta w_{ m max}$	mm	Maximalwert des Versatzes zwischen Vorbohrung und Gewinde
$\Delta w_{ m max,OG}$	mm	maximal zulässiger Versatz bis zum Erreichen des oberen Grenzwerts
$\Delta w_{ m max,UG}$	mm	maximal zulässiger Versatz bis zum Erreichen des unteren Grenzwerts
$W_{\rm X}$	mm	Auslenkung in x-Richtung
$w_{\rm y}$	mm	Auslenkung in y-Richtung
$\Delta w_{y_1'}$	mm	Versatz zwischen der Mittelachse der Vorbohrung und der Mittelachse der Gewindebohrung in der lin- ken Schnittebene
$\Delta w_{\mathbf{y}_{2}^{\prime}}$	mm	Versatz zwischen der Mittelachse der Vorbohrung und der Mittelachse der Gewindebohrung in der rech- ten Schnittebene
x	mm	Kartesische Koordinate
у	mm	Kartesische Koordinate
y_1'	-	Richtungsvektor der linken Schnittebene senkrecht zur Vorbohrungsoberfläche
y_2'	-	Richtungsvektor der rechten Schnittebene senkrecht zur Vorbohrungsoberfläche
Z	mm	Axiale Koordinate im kartesischen und im Zylinderko- ordinatensystem
Δz	mm	Verschiebung des Zahns in z-Richtung
z_1	mm	Axiale Koordinate des Segments 1
z_2	mm	Axiale Koordinate des Segments 2
$z_{3.1}$	mm	Axiale Koordinate des Segments 3.1

Z _{3.2}	mm	Axiale Koordinate des Segments 3.2
$\Delta z_{ m Eingriff}$	mm	Verschiebung des Eingriffspunkts
z_i	mm	Axiale Position der Mitte des Gewindespitze
z_i^*	mm	Axiale Position des projizierten Zahns
z_{i,n_i}	mm	Axiale Position des Eckpunkts
z_{j_i}	mm	Axiale Koordinate
z_{\min}	mm	Eintauchtiefe des Werkzeugs
z_{t}	mm	Axiale Position der Zahnspitze
$z_{t,i}$	mm	Axiale Position des Zahns i
$Z_{ m W}$	mm	Axiale Koordinate der Werkzeugauskraglänge
$z_{ m WS}$	mm	Axiale Koordinate im Werkstückkoordinatensystem
z_{WZ}	mm	Axiale Koordinate zur Beschreibung der Ebenenelemente des Werkzeugs

Griechische Buchstaben

Zeichen	Einheit	Bezeichnung
α	0	Gewindeprofilwinkel
α_1	0	Anschnittfreiwinkel
$lpha_{ m soll}$	0	Sollwert des Gewindeprofilwinkels
β	0	Steigungswinkel
γ	0	Spanwinkel
$\gamma_{ m f}$	0	Seitenspanwinkel / Drallwinkel
δ_{SF}	mm/U	Steigungsfehler
δ_{Z}	mm	Positionsabweichung in z-Richtung
κ	0	Einstellwinkel / Anschnittwinkel

ρ	°/s³	Winkelruck
$\sigma_{ m f}$	0	Fasenwinkel
•	0	Spitzenwinkel der Vorbohrung
$\sigma_{ m VB}$	0	-
Φ	0	Scherwinkel
φ	o	Winkelkoordinate im Zylinderkoordinatensystem / Drehwinkel
\dot{arphi}	°/s	Rotationsgeschwindigkeit
$arphi_{0, ext{Helix}}$	0	Startwinkel der Helix
$arphi_{0,StegA}$	0	Startwinkel des Stegs A
$arphi_1$	0	Winkelkoordinate des linken Richtungsvektors
$arphi_2$	0	Winkelkoordinate des rechten Richtungsvektors
$arphi_{ m e}$	0	Lagewinkel des Ebenenelements
$\Delta arphi_{ m e}$	0	Winkelabstand zweier Ebenenelemente
$arphi_{ m Helix}$	0	Winkel der Gewindehelix
$arphi_i$	0	Winkelkoordinate zur Beschreibung der Ebenenelemente des Werkzeugs
$arphi_{j_i}$	o	Winkelkoordinate des Scheitelpunkts
$arphi_{SG}$	o	Winkel zwischen dem Beginn des ersten Stegs und der Gewindehelix
$\Delta arphi_{ m Steg}$	o	Winkelabstand zwischen zwei benachbarten Stegen
$arphi_{StegA}$	0	Winkel des Steg A
$arphi_{StegB}$	0	Winkel des Steg B
$arphi_{StegC}$	0	Winkel des Steg C
$arphi_{\mathrm{T}_i}$	0	Winkelstellung des Zahns
ψ	0	Werkzeugrotation
$\dot{\psi}$	°/s	Winkelgeschwindigkeit des Werkzeugs

$\ddot{\psi}$ °/s ²	Winkelbeschleunigung des Werkzeugs
--------------------------------	------------------------------------

 $\ddot{\psi}$ °/s³ Winkelruck des Werkzeugs

 $\psi_{
m min}$ $^{\circ}$ Werkzeugrotationswinkel im Umkehrpunkt

ω °/s Winkelgeschwindigkeit

Abkürzungen

1D Eindimensional

2D Zweidimensional

3D Dreidimensional

Adj. R² adjustiertes Bestimmtheitsmaß

ASME American Society of Mechanical Engineers

C Kohlenstoff

Cr Chrom

CRN Chromnitrid

DIN Deutsches Institut für Normung

DLC "Diamond-like Carbon", amorphe Kohlenstoffschicht

EN Europäische Norm

Exp Experiment

FE Finite Elemente

FF Forschungsfrage

GB Gewindebohrer

HRC Härte nach Rockwell

HSK Hohlschaftkegel

HSS Schnellarbeitsstahl

HSS-E Schnellarbeitsstahl mit einem Kobaltgehalt > 4,5 %

HV Vickershärte

IKZ Innere Kühlmittelzufuhr

ISO International Organization for Standardization

KSS Kühlschmierstoff

M Größenbezeichnung für metrische Gewinde

Mn Mangan

Mo Molybdän

MOS2 Beschichtung auf Molybdänsulfid-Basis

P Phosphor

PTW Institut für Produktionsmanagement, Technologie und Werk-

zeugmaschinen

Ref Referenz

ROI Region of Interest

S Schwefel

Si Silicium

Sim Simulation

stl Standard Tesselation Language

TiAlN Titanaluminiumnitrid

Ti(C,N) Titancarbonitrid

TiN Titannitrid

Var Anschnittvariante

VDI Verein Deutscher Ingenieure

WC/C Beschichtung auf Wolframkarbid-Kohlenstoff-Basis