Fortschrittsberichte des Instituts für Tribologie und Energiewandlungsmaschinen

Herausgeber: Prof. Dr.-Ing. H. Schwarze

Band 31

Dipl.-Ing. Philipp Zemella

Frequenzabhängigkeit der Steifigkeitsund Dämpfungskoeffizienten schnelllaufender Gleitlager

Technische Universität Clausthal

Frequenzabhängigkeit der Steifigkeits- und Dämpfungskoeffizienten schnelllaufender Gleitlager

Dissertation zur Erlangung des Grades eines Doktors der Ingenieurswissenschaften

> vorgelegt von Dipl.-Ing. Philipp Zemella aus Hamburg

genehmigt von der Fakultät für Mathematik / Informatik und Maschinenbau der Technischen Universität Clausthal

> Tag der mündlichen Prüfung 28.04.2022

Vorsitzender: Betreuer: Weitere Gutachter: Prof. Dr. rer. nat. Alfred Weber Prof. Dr.-Ing. Hubert Schwarze PD Dr.-Ing. habil. Thomas Hagemann Prof. Dr.-Ing. Armin Lohrengel Fortschrittsberichte des Instituts für Tribologie und Energiewandlungsmaschinen

Band 31

Philipp Zemella

Frequenzabhängigkeit der Steifigkeits- und Dämpfungskoeffizienten schnelllaufender Gleitlager

D 104 (Diss. TU Clausthal)

Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Clausthal, Techn. Univ., Diss., 2022

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8959-2 ISSN 1611-8154

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

An dieser Stelle möchte ich mich sehr bei Prof. Schwarze bedanken, der mir die Möglichkeit gegeben und mit seiner Unterstützung mitgewirkt hat, diese Arbeit im Rahmen meiner Tätigkeit am Institut für Tribologie und Energiewandlungsmaschinen durchzuführen. Herrn Prof. Dr.-Ing. A. Lohrengel danke ich für das Interesse an dieser Arbeit und die Übernahme des Korreferates. Bei Herrn Prof. Dr. rer. nat. A. Weber bedanke ich für den Vorsitz der Prüfungskommission und die damit verbundenen Mühen.

Fachlich wurde diese Arbeit in besonderem Maße von Dr.-Ing. habil. T. Hagemann und Dr.-Ing. D. Vetter unterstützt. Mein herzlichster Dank für die vielen konstruktiven Gespräche und Hinweise, sowie Euer Interesse an meiner Arbeit. Weiterhin gilt mein Dank allen aktuellen und ehemaligen Mitarbeitern und wissenschaftlichen Hilfskräften des Institutes, die zum Gelingen dieser Arbeit beigetragen haben.

Wesentliche Teile dieser Arbeit stammen aus dem Forschungsprojekt "Dynamische Kippsegmentlagermodellierung" der Forschungsvereinigung für Verbrennungskraftmaschinen e.V. (FVV), das mit Mitteln des Bundesministeriums für Wirtschaft und Energie über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V. gefördert wurde. Herrn Dipl.-Ing. E. Schüler und Herrn Dipl.-Ing. A. Schmitz und den Mitgliedern des betreuenden Arbeitskreises Gleitlager der FVV und der Forschungsvereinigung Antriebstechnik e.V. (FVA) unter Leitung von Herrn Dipl.-Ing. K. Steff danke ich für die konstruktiven Anregungen in den zahlreichen Diskussionen.

Kurzfassung

Die dynamischen Koeffizienten von Gleitlagern sind stark drehzahl- und lastabhängig. Für Kippsegmentlager zeigt die Gleitlagertheorie bei konstanten Randbedingungen frequenzabhängige dynamische Lagerkoeffizienten im KC-Modell. Bisherige theoretische Untersuchungen zur Frequenzabhängigkeit dynamischer Koeffizienten von Kippsegmentlagern erfolgen zumeist unter abweichenden Randbedingungen und Modelltiefen. Eine einheitliche Beschreibung eines frequenzabhängigen dynamischen Lagerverhaltens in einem Gleitlagerberechnungsprogramm ist nicht vorhanden. Die für die Validierung der Lagermodelle notwendigen Messungen stellen aufgrund ihrer Komplexität hohe Anforderungen an den Prüfaufbau. Dokumentierte Untersuchungen zeigen daher mitunter widersprüchliche Ergebnisse in Bezug auf die theoretischen Lagermodelle und zwischen den durchgeführten Versuchen. Durch Experimente gesichert ist der Einfluss der Strukturelastizität auf die dynamischen Koeffizienten. In Bezug auf den theoretisch vorhandenen Effekt des Schmierfilms fehlt jedoch ein experimenteller Nachweis für die Frequenzabhängigkeit der dynamischen Koeffizienten bei Kippsegmentlagern. In der vorliegenden Arbeit wurden zunächst die in der Literatur beschriebenen Modelle zur dynamischen Beschreibung von Kippsegmentlagern aufbereitet und in das Gleitlagerberechnungsprogramm Combros R integriert. Im erweiterten Kippsegmentlagermodell werden bei der Berechnung der dynamischen Lagerkoeffizienten Segmentträgheiten und -massen berücksichtigt. Die daraus resultierenden Effekte auf das Rotor-Lager-System können somit in Rotordynamikanalysen einfließen. Im Mittelpunkt der Arbeit steht der experimentelle Nachweis der aus dem Schmierfilm resultierenden frequenzabhängigen Steifigkeits- und Dämpfungskoeffizienten. Hierzu wurden zwei Prüflagerkonfigurationen ausgewählt, die sich in Bezug auf die Frequenzabhängigkeit der dynamischen Koeffizienten stark unterscheiden. Sämtliche Elastizitäten, die sich außerhalb des Schmierfilms befinden und bekanntermaßen einen starken Einfluss auf die Lagerkoeffizienten besitzen, wurden in separaten Experimenten erfasst. Die Auswertung der Koeffizienten im KC-Modell zeigt gute Übereinstimmungen zwischen den Ergebnissen des erweiterten Kippsegmentlagermodells und den experimentell ermittelten Steifigkeits- und Dämpfungskoeffizienten. Zudem zeigen die experimentellen Ergebnisse ein klares Indiz für den theoretisch vorhergesagten Frequenzeinfluss der Steifigkeits- und Dämpfungskoeffizienten des Schmierfilms im KC-Modell. Abschließende Untersuchungen zu den Auswirkungen der Segmentträgheiten und -massen mit dem erweiterten Lagermodell auf das Rotor-Lager-System zeigen in Übereinstimmung mit bisherigen Literaturergebnissen zusätzliche Eigenwerte und einen geringeren Sicherheitsabstand zu kritischen Drehzahlen.

Inhaltsverzeichnis

	Sym	bolverzeichnis	iii			
1	Einleitung					
	1.1	Problemstellung	1			
	1.2	Stand der Forschung	3			
	1.3	Zielsetzung	12			
2	Dynamische Modellierung von Kippsegmentlagern					
	2.1	Lagerkoeffizienten des festgehaltenen Kippsegmentes	13			
	2.2	Lagerkoeffizienten des frei beweglichen masselosen Kippsegmentes	18			
		2.2.1 Einfluss einer endlichen Segmentabstützungssteifigkeit	22			
		2.2.2 Überlagerung der Feder- und Dämpferkräfte der Einzelsegmente .	25			
3	Erweiterung des Kippsegmentlagermodells					
	3.1	Modell mit Rotor- und Segmentkippfreiheitsgrad und unendlich steifer Seg-				
		mentabstützung	30			
	3.2	Modell mit Rotor- und Segmentkippfreiheitsgrad und endlich steifer Seg-				
		mentabstützung	32			
	3.3	Modell mit Rotor- und Lagerfreiheitsgraden, Segmentkippfreiheitsgrad und				
		endlich steifer Segmentabstützung	34			
4	Aus	wahl geeigneter Prüflager	39			
5	Mes	ssung von dynamischen Lagerkoeffizienten	42			
	5.1	Einrichten des Prüflagers	47			
	- 0	Assessment and a Manual de and Dartimenen a des Manual ich adait	40			
	5.2	Auswertung der Messwerte und Bestimmung der Messunsicherneit	49			

6	Analyse der Strukturelastizität				
	6.1	Experimentelle Ermittlung der Abstützungselastizität	62		
	6.2	Modellierung der Strukturelastizität mittels FEM	66		
7 Ergebnisse		72			
	7.1	Ermittlung der dynamischen Koeffizienten	75		
	7.2	Parameterstudien zum frequenzabhängigen KC-Modell	87		
	7.3	Einfluss des Lagermodells auf die Dynamik eines Rotor-Lager-Systems	95		
8	Zus	ammenfassung	104		
Lit	Literatur				

Symbolverzeichnis

A	Fläche in m^2	J_p
a	Beschleunigung in $\frac{m}{s^2}$	J_p^*
A_n	Amplitude	k
a_v	Abstützungsverhältnis	k_d
В	Lagerbreite in m	k_s
c	Dämpfungskoeffizient in $\frac{Ns}{m}$	k_s
c_p	Spezifische Wärmekapazität in $\frac{J}{kgK}$	K_x ,
D	Dämpfung in %	$k_{p,ra}$
D	Dämpfungsgrad	\mathbf{M}
D	Lagerdurchmesser in m	m_{ij}
d	Segmentdicke in m	m_p
e	Exzentrizität in m	m_r
e_0	Statische Zapfenverlagerung in m	m_s
F	Kraft in N	N
\mathbf{F}	Kraftvektor in N	n
F_0	Statische Kraft in N	n
f_D	Gedämpfte Eigenfrequenz in Hz	p
f_e	Erregerfrequenz in Hz	\bar{p}
f_s	Drehfrequenz in Hz	P_v
\mathbf{G}	Übertragungsfunktion	q
h	Schmierspalthöhe in m	R_0
h_0	Statische Schmierspalthöhe in m	R_a
H_{ij}	Übertragungsfunktion	R_p
Ι	Trägheitsmatrix in kg m^2	S

J_p	Trägheitsmoment in kg m^2
J_p^*	Mod. polares Trägheitsmoment in kg
k	Steifigkeitskoeffizient in $\frac{N}{m}$
k_d	Dynamische Abstützungssteifigkeit in $\frac{N}{m}$
k_s	Scheitelfaktor
k_s	Statische Abstützungssteifigkeit in $\frac{N}{m}$
K_x, K_z	Turbulenzkorrekturfaktoren
$k_{p,rad}$	Segmentabstützungssteifigkeit in $\frac{N}{m}$
М	Massenmatrix in kg
m_{ij}	Virtuelle Masse in kg
m_p	Segmentmasse in kg
m_r	Rotormasse in kg
m_s	Statormasse in kg
N	Anzahl der Segmente
n	Anzahl der Messungen
n	Drehzahl in $\frac{1}{\min}$
p	Druck in Pa
\bar{p}	Spezifische Lagerbelastung in MPa
P_v	Verlustleistung in W
q	Koppelsteifigkeit in $\frac{N}{m}$
R_0	Zielsignal
R_a	Radius des Abstützpunktes in m
R_p	Segmentradius in m
S	Wegsignal in m

s	Standardabweichung	Г	Logarithmisches Dekrement
T	Messzeit in s	γ	Wellenverlagerungswinkel in $^{\circ}$
T	Temperatur in °C	γ_0	Statischer Verlagerungswinkel in $^\circ$
t	Zeit in s	Ω	Schwingfrequenz in rad
т	Transformationsmatrix	ω	Drehfrequenz in rad
T_a	Äq. Massenträgheitsmoment in kg m ²	ω	Winkelgeschwindigkeit in $\frac{\mathrm{rad}}{\mathrm{s}}$
T_p	Pol. Massenträgheitsmoment kg m ²	Ψ	Lagerspiel in %0
u	Messunsicherheit	ψ	Segmentverschiebungsvektor in m
u	Umfangsgeschwindigkeit in $\frac{m}{s}$	Ψ_v	Profilierung
u	Verschiebungsvektor Rotor, Lager in m	ρ	Dichte in $\frac{\text{kg}}{\text{m}^3}$
\dot{V}	Volumenstrom in $\frac{1}{\min}$	θ	Phasenwinkel in rad
x, y, z	Kartesische Koordinaten	φ	Winkel in $^{\circ}$
X, Y	Störungen	ζ	Lagerkoordinate in m
X	Eingangssignal		
\bar{x}	Mittelwert		
x	Bewegungsvektor in m		
x_s, y_s	Schwerpunktskoordinate in m		
Y	Ausgangssignal		
DOF	degrees of freedom		
LBP	Last zwischen die Abstützpunkte		
LOP	Last auf den Abstützpunkt		
ZRM	Zustandsraummodell		
α	Lastwinkel in °		
α_e	Einbauwinkel in °		
β	Segmentumschließungswinkel in $^{\circ}$		
δ	Kippwinkel in °		
ϵ	Dehnung in $\frac{m}{m}$		
η	Lagerkoordinate in m		
η	dyn. Viskosität in Pa s		
