Elektrotechnik

Ömer Faruk Yildiz

Functional Via Structures in Passive Microwave Components on Multilayer Ceramic Substrates

Functional Via Structures in Passive Microwave Components on Multilayer Ceramic Substrates

Vom Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von Ömer Faruk Yildiz

aus Sarican, Türkei

2023

1. Gutachter: Prof. Dr. sc. techn. Christian Schuster

2. Gutachter: Prof. a.D. Dr.-Ing. Arne Jacob

Vorsitzender des Prüfungsausschusses: Prof. Dr.-Ing. habil. Alexander Kölpin

Tag der mündlichen Prüfung: 17. Juni 2022

Berichte aus der Elektrotechnik

Ömer Faruk Yildiz

Functional Via Structures in Passive Microwave Components on Multilayer Ceramic Substrates

Shaker Verlag Düren 2023

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Hamburg, Techn. Univ., Diss., 2022

Copyright Shaker Verlag 2023 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-9002-4 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Summary

Low temperature cofired ceramic (LTCC) is a technology that distinguishes itself from conventional technologies such as printed circuit boards (PCBs) based on flame retardant (FR-4) or polytetrafluoroethylene (PTFE) substrate materials by means of higher permittivities, lower dielectric losses, and improved thermal performance. Its manufacturing process allows for the preparation of individual sheets and subsequent stacking, lamination, and finally firing into multilayer substrates with high dimensional accuracy. The ability to embed active or passive components between layers and form cavities enables a high degree of integration, thus making LTCC a viable packaging solution for a variety of electronic systems.

To this end, vertical interconnect accesses (vias), which are typically used to electrically connect traces or planes located on different layers, are deployed as functional elements for the design of vertically integrated microwave components. Functional via structures do not support transverse electromagnetic (TEM) modes but effectively behave like quasi-transmission lines up to 40 GHz for most practical purposes if designed properly. In this work, vertical integration is applied to a variety of passive microwave components including low- and band-pass filters, 90° and 180° hybrid couplers, and N-way Wilkinson power dividers. The analysis for each component is comprised of the delineation of the design procedure, full-wave simulations, and lastly measurements up to 50 GHz of the manufactured prototype. The study is completed by examining the limiting case of via arrays, where many signal vias are in close proximity to each other, which gives insight into maximum coupling and crosstalk behavior.

The utilization of the vertical dimension essentially grants circuit designers an additional degree of freedom not offered by planar microstrip or stripline technology. Furthermore, the reduced footprint and smaller form factor due to three-dimensional (3-D) integration implies shorter electrical lengths and enhanced performance.

Acknowledgments

First and foremost, I want to express my sincere gratitude by thanking my doctoral advisor and head of the Institut für Theoretische Elektrotechnik (TET) Prof. Dr. sc. techn. Christian Schuster. This work would not have been possible without his continued guidance, mindful mentoring, and helpful advice on all matters relating to research and academic life.

I also want to thank my co-examiner Prof. a.D. Dr.-Ing. Arne Jacob for his in-depth and thorough review of this thesis as well as the chair of the board of examiners Prof. Dr.-Ing. habil. Alexander Kölpin for the management of the examination procedure.

This work is the result of a collaborative research effort between the TET institute based in Hamburg, Germany, KOA Corporation based in Nagano, Japan, and KOA Europe GmbH based in Itzehoe, Germany, during my fouryear long employment as a research assistant at Hamburg University of Technology (TUHH) from 2017 to 2021. I am therefore deeply indebted to Toshiharu Takayama, Kohji Koiwai, Ikumi Kamijo, Nico Pathé, and Ole Thomsen as well as Marc Bochard, both formerly with KOA Europe GmbH. As industry partners and research collaborators, their help in manufacturing the ceramic test vehicles and co-authorship in several scientific papers has proven critical for the advancement of my research and indispensable for the success of this thesis.

I am very grateful for the thought-provoking and fruitful discussions with my former colleagues at the TET institute including Dr.-Ing. Jan Preibisch, Dr.-Ing. Torsten Reuschel, Dr.-Ing. David Dahl, Dr.-Ing. Katharina Scharff, Dr.-Ing. Miroslav Kotzev, Dr.-Ing. Andreas Hardock, Dr. Cheng Yang, Dr.-Ing. Heinz-D. Brüns, Torben Wendt, Michael Wulff, and Morten Schierholz. I am especially thankful for the technical and administrative support by Volker Paulsen, Stefan Conradi, Angela Freiberg, Pelin Usta, and Heike Herder.

I would like to give special thanks to the Institut für Hochfrequenztechnik (IHF) at TUHH for offering and allowing me to make use of their laboratory for careful measurement and soldering purposes. In particular, I want to thank my friend Björn Deutschmann whose expertise in microwave measurements and many useful hints were greatly appreciated.

I also thank Dr.-Ing. Xiaomin Duan for hosting and advising me during my short but insightful internship at IBM Deutschland Research & Development

GmbH.

Lastly, I want to thank my siblings Ruken and Rohat for their humor and wit, my parents Güler and Selim for their unconditional support as well as grit and dedication, and my partner in life Laura for her kind words of encouragement, patience, and love: This thesis is for them.

Contents

Su	mma	ry	i
Ac	know	ledgments	iii
Lis	st of	Figures	ix
Lis	st of	Tables	xiii
Ac	rony	ms	xv
Sy	mbol	s, Notation, and Units	xix
1.	Intro	oduction and Motivation	1
	1.1.	State of the Art	2
		1.1.1. Low Temperature Cofired Ceramics	2
		1.1.2. Functional Via Structures	4
		1.1.3. Vertical Integration	6
	1.2.	Conferences, Journals, and Other Published Work	8
	1.3.	Thesis Overview	9
2.	Fun	ctional Vias as Quasi-Transmission Lines	11
	2.1.	Transmission Line Model for Via Structures	11
		2.1.1. Variational Analysis With Polynomial Chaos Expansion	15
		2.1.2. Impedance Stability and Losses of Functional Vias	20
		2.1.3. Via-to-Stripline Transitions	24
	2.2.	Vias as Impedance Transformers	24
		2.2.1. Open and Shorted Via Stubs	25
3.	Mic	rowave Filters Using Functional Vias	29
	3.1.	Design Flow for Vertical Integration of Chebyshev Filters	29
	3.2.	Low-Pass Filters	31
		3.2.1. Measurement and Calibration Setup	34
		3.2.2. 3rd-Order Low-Pass Filter	37
		3.2.3. 5th-Order Low-Pass Filter	37

	3.3.	Band-Pass Filter	40
		3.3.1. 5th-Order Band-Pass Filter	43
	3.4.	Further Remarks on Vertical Integration	43
		3.4.1. Vertical Integration of Filters	43
		3.4.2. Stepped Impedance Filters	46
4.	Vert	ically Integrated Hybrid Couplers	49
	4.1.	90° Hybrid Coupler	49
	4.2.	180° Hybrid Coupler	55
5.	N-M	/ay Wilkinson Power Dividers With Vias	59
	5.1.	Implementation of Conventional N-Way Dividers	60
	5.2.	2-Way Wilkinson Power Divider	62
	5.3.	3-Way Wilkinson Power Divider	69
	5.4.	Further Remarks	74
		5.4.1. Advantages and Limitations of Vertical Integration	75
		5.4.2. Different Implementations of N-Way Dividers	75
6.	Via	Arrays on Low Temperature Cofired Ceramics	79
	6.1.	Design Procedure and Network Representation	80
		6.1.1. Near- and Far-End Crosstalk Definitions	81
	6.2.	Single-Ended Signaling for Passive Microwave Components $\ $	82
		6.2.1. Comparing Physics-Based Via and Full-Wave Modeling	83
		6.2.2. Impact of Additional Ground Via Fences	86
	6.3.	Differential Signaling for Via Arrays in High-Speed Links	86
		6.3.1. Comparing Ceramic and Organic Substrates	88
7.	Con	clusion and Outlook	91
Α.	The	oretical Background	95
	A.1.	Chebyshev Prototype Filters	95
	A.2.	Two-Tier Calibration	95
		A.2.1. The Through-Reflect-Line Method	97
		A.2.2. The Deembedding Method	103
	A.3.	Uncertainty Quantification and Polynomial Chaos	104
		A.3.1. Gaussian Distribution and Hermite Polynomials	105
		A.3.2. Uniform Distribution and Legendre Polynomials $\ . \ . \ .$	105
		A.3.3. Multivariate Polynomial Chaos Expansion	106
в.		vations and Material Characterization	113
	B.1.	Derivation of Eq. (5.14)	113

Contents

B.2.	B.2.1.	Substrate CharacterizationRing Resonator MethodMulti-Line Method					•		114
C. Low	Tempe	rature Cofired Ceramic Test Vehic	les						119
Bibliography 125									
Curriculum Vitae 139									

List of Figures

1.1.	Overview of the electromagnetic and microwave spectrum	4
1.2.	Block diagram of a simple radio receiver using both active and passive microwave components.	5
19	• •	- 5 - 6
1.3.	Cross-section of two vias in an LTCC multilayer substrate	0
1.4.	3-D view of various passive microwave components integrated	-
	vertically on different levels of packaging	7
2.1.	3-D view of a functional via structure	12
2.2.	3-D view of a functional via structure in multilayer substrate	13
2.3.	Contour plot of via impedance Z_{via} as a function of antipad	
	radius r_{apad} and distance to ground vias d_{gnd}	15
2.4.	Contour plot of via propagation velocity v_{via} as a function of	
	antipad radius r_{apad} and distance to ground vias d_{gnd}	16
2.5.	Magnitude of reflection parameter S_{11} for different functional	
	via structures	17
2.6.	Phase of transmission parameter S_{21} for different functional via	
	structures	18
2.7.	Design space exploration of (a) via impedance Z_{via} and (b)	
	propagation velocity v_{via} using FEM in combination with PCE.	19
2.8.	(a) Magnitude and phase of S-parameters from FEM and FIT	
	simulations. (b) Impedance stability and loss analysis for func-	
	tional via structures	21
2.9.	Magnitude of S-parameters for functional via structures depen-	
	dent on number of surrounding ground vias N_{gnd} and multilayer	
	cavity thickness H_{cav}	23
	3-D view of a stripline-to-via transition.	25
2.11.	S-parameters S_{11} and S_{21} for two stripline-to-via transitions.	26
2.12.	(a) Top view of the open and shorted via stubs implemented	
	on a multilayer LTCC substrate. (b) 3-D view of an open or	
	shorted via stub. Magnitude of S-parameters S_{11} and S_{21} of an	
	(c) open and (d) shorted via stub. $\ldots \ldots \ldots \ldots \ldots$	27
3.1.	Equivalent circuit models of (a) low-pass and (b) band-pass fil-	
	ters using lumped-element as well as distributed-element models.	30

3.2.	Flowchart for design procedure of vertically integrated low-pass filters.	34
3.3.	(a) Top view of vertically integrated microwave filters. (b) Side view of vertically integrated microwave filters.	35
3.4.	Top view of custom TRL calibration kit for microstrip and stripline launches with (a) 35Ω microstrip standards, (b) 35Ω stripline standards, (c) 50Ω microstrip standards, and (d) 50Ω	
3.5.	stripline standards	36
3.6.	order low-pass filter	39 39
3.7.	(a) Top view and (b) 3-D view of the vertically integrated 5th- order low-pass filter.	41
3.8.	Measured and simulated S-parameters of the vertically inte- grated 5th-order low-pass filter	41
3.9.	Flowchart for design procedure of vertically integrated band- pass filters.	44
3.10.	(a) Top view and (b) 3-D view of the vertically integrated 5th- order band-pass filter.	46
3.11.	Measured and simulated S-parameters of the vertically inte- grated 5th-order band-pass filter	47
3.12.	(a) Equivalent circuit model and (b) 3-D view of an exemplary vertically integrated stepped impedance filter	48
4.1. 4.2.	Equivalent circuit model of a general 90 ° hybrid coupler Different configurations for vertically integrated 90 ° hybrid couplers. Input and output ports face (a) in opposite directions on different layers, (b) in the same direction on the same layer, (c) in the same direction on different layers, and (d) in opposite	50
4.3.	directions on the same layer	51
	hybrid coupler.	53
4.4.	(a) Front view and (b) top view of a stripline miter Measured and simulated S-parameters of the vertically inte-	54
4.5.	measured and simulated S-parameters of the vertically inte- grated 90° hybrid coupler.	54
4.6.	Equivalent circuit model of a general 180 ° hybrid coupler	56
4.7.	3-D view of the vertically integrated 180° hybrid coupler	56
4.8.	Simulated S-parameters of the vertically integrated 180° hybrid	00
	coupler	57

5.1.	(a) Equivalent circuit model of an N-way Wilkinson power di- vider. (b) 3-D view of the vertically integrated N-way Wilkin-	
	son power divider.	61
5.2.	Flowchart for design procedure of vertically integrated N-way Wilkinson power dividers.	64
5.3.	(a) Equivalent circuit model of a 2-way Wilkinson power divider. (b) 3-D view of the vertically integrated 2-way Wilkinson power divider.	65
5.4.	Top view of vertically integrated 2-way Wilkinson power divider (a) without and (b) with 50Ω matching network.	68
5.5.	Measured and simulated S-parameters of a vertically integrated 2-way Wilkinson power divider.	69
5.6.	Measured S-parameters of a vertically integrated 2-way Wilkin- son power divider with and without 50Ω quarter-wave match-	03
5.7.	ing network	70
٣٥	power divider	71
5.8.	Top view of vertically integrated 3-way Wilkinson power divider (a) without and (b) with 50Ω matching network.	72
5.9.	Measured and simulated S-parameters of a vertically integrated 3-way Wilkinson power divider	73
5.10.	Measured S-parameters of a vertically integrated 3-way Wilkinson power divider with and without 50Ω quarter-wave match-	
5.11.	ing network	74 77
6.1.	(a) Network representation of multi-port via arrays. (b) Top	01
	view of a multi-port via array.	81
6.2.	Side view of via arrays in multilayer LTCC substrates.	82
6.3.	Different configuration of via arrays. (a) and (b) are used for single-ended signaling, and (c) and (d) for differential signaling.	84
6.4.	S-parameters and crosstalk of the via array configuration corresponding to Fig. 6.3a computed using PBV and FEM	85
6.5.	S-parameters and crosstalk of the via array configuration corresponding to Fig. 6.3a and Fig. 6.3b.	87
6.6.	S-parameters and crosstalk of the via array configuration corresponding to Fig. 6.3c.	88
6.7.	S-parameters and crosstalk of the via array configuration corresponding to Fig. 6.3d.	89

6.8.	S-parameters and crosstalk of the via array configuration corresponding to Fig. $6.3c$ for differing material parameters	90
A.1.	RF measurement setup comprised of microwave probes, micropositioner, multi-port VNA, calibration software, and post-	
	processing tools.	97
	2-tier, multi-port calibration using SOLT and TRL	98
	2-port TRL for the second tier of calibration.	99
A.4.	(a) γ -circuit with a total number of $p + d$ ports. (b) α -circuit	101
A 5	with $p + q$ ports and β -circuit with $d + r$ ports Orthogonal polynomial basis functions: (a) Hermite polynomi-	104
11.0.		108
A.6.	Quadrature nodes for two stochastically independent and dif- ferently distributed random variables with an order of approx- imation of $P = 3$. The nodes are obtained from the full tensor product of univariate Gaussian quadrature nodes and Smolyak sparse grids. All nodes are weighed according to the corre-	100
		111
A.7.	Comparison of the growth of the number of nodes for quadra- ture integration when using the full tensor product of univariate Gaussian quadrature nodes and Smolyak sparse grids	112
B.1.	Branching out for the stripline section of vertically integrated 3-way Wilkinson power dividers.	114
B.2.	(a) Magnitude of S_{21} for various microstrip ring resonators manufactured on the LTCC multilayer substrate depicted in Fig. C.1. (b) Corresponding extracted relative permittivity ϵ_r	
		115
B.3.	(a) Extracted relative permittivity ϵ_r and (b) loss tangent tan δ from SIWs manufactured on the LTCC multilayer substrate	
		117
B.4.	(a) Magnitude and (b) phase of S-parameters for a SIW manu-	
	factured on the LTCC multilayer substrate depicted in Fig. C.1.	118
C.1.	Multilayer LTCC test vehicle for material characterization us-	
0.1.	ing different transmission line technologies.	120
C.2.	Multilayer LTCC test vehicle with vertically integrated mi-	
	crowave filters and power dividers.	121
C.3.	Multilayer LTCC test vehicle with vertically integrated hybrid	
	couplers and via arrays.	122

List of Tables

1.1.	Material properties for LTCC substrates.	3
1.2.	List of vertically integrated passive microwave components	8
3.1.	Dimensions and specifications of 3rd-order low-pass filter with cutoff frequency $f_c = 13 \text{ GHz}$ and $R = 1 \text{ dB}$ pass-band ripple.	38
3.2.	Dimensions and specifications of 5th-order low-pass filter with cutoff frequency $f_c = 13 \text{ GHz}$ and $R = 1 \text{ dB}$ pass-band ripple.	40
3.3.	Dimensions and specifications of 5th-order band-pass filter with center frequency $f_c = 13$ GHz, fractional bandwidth $B = 0.6$, pass-band ripple $R = 0.1$ dB, and a scaling factor of $h = 1.3$.	45
4.1.	Design parameters for prototypes of vertically integrated 90 $^{\circ}$ and 180 $^{\circ}$ hybrid couplers	52
4.2.	Dimensions for prototypes of vertically integrated 90 $^\circ$ and 180 $^\circ$ hybrid couplers	52
5.1.	Design parameters for prototypes of vertically integrated 2-way and 3-way Wilkinson power dividers	64
5.2.	Dimensions for prototypes of vertically integrated 2-way and 3-way Wilkinson power dividers.	67
6.1.	Design parameters for via arrays for single-ended and differen- tial signaling	85
A.1.	Normalized impedance values for Chebyshev response filters with $g_0 = 1$, $\Omega_c = 1$, and $R \in \{0.01, 0.04321, 0.1\}$ dB	96
A.2.	The first ten probabilist's Hermite polynomials H_i and corresponding norms γ_i .	107
A.3.	The first ten Legendre polynomials L_i and corresponding norms	
A.4.		107
	mation of \tilde{P} .	110

- A.5. Orthogonal basis polynomials ϕ for PCE depending on the PDF $\rho(\xi)$ of the random variable ξ and the corresponding support. 112
- C.1. List of all components implemented on each LTCC test vehicle. 123

Acronyms

2-D	two-dimensional
2.5-D	two-and-a-half-dimensional
3-D	three-dimensional
5G	fifth generation
AFSIW	air-filled substrate integrated waveguide
BEM	boundary element method
BGA	ball grid array
CIM	contour integral method
CPU	central processing unit
CPW	coplanar waveguide
CTLE	continuous-time linear equalizer
DoE	design of experiments
DUT	device under test
ECal	electronic calibration module
EMC	electromagnetic compatibility
EMI	electromagnetic interference
FEM	finite element method
FEXT	far-end crosstalk
FIT	finite integration technique
FR-4	flame retardant
GPU	graphics processing unit
GQ	Gaussian quadrature
GSG	ground-signal-ground
HTCC	high temperature cofired ceramic

IC	integrated circuit
IF	intermediate frequency
IHF	Institut für Hochfrequenztechnik
IL	insertion loss
LCP	liquid crystal polymer
LGA	land grid array
LNA	low noise amplifier
LO	local oscillator
LSI	large-scale integration
LTCC	low temperature cofired ceramic
MC	Monte Carlo
MCM	multi-chip module
MEMS	microelectromechanical system
MMIC	monolithic microwave integrated circuit
NEXT	near-end crosstalk
PBV PC PCB PCE PDF PGA PI PSFEXT PSFEXT PTFE PTH	physics-based via personal computer printed circuit board polynomial chaos expansion probability density function pin grid array power integrity power sum of far-end crosstalk polytetrafluoroethylene plated through-hole
RAM	random access memory
RF	radio frequency
RFIC	radio frequency integrated circuit
RL	return loss
RPL	recessed probe launch
RSM	response surface methodology
SI	signal integrity
SIC	stacked integrated circuit

Acronyms

SiP	system in package
SIW	substrate integrated waveguide
SMD	surface-mounted device
SoC	system on chip
SOLT	short-open-line-through
SoP	system on package
TDR	time domain reflectometry
TEM	transverse electromagnetic
TET	Theoretische Elektrotechnik
TRL	through-reflect-line
TSV	through-silicon via
TUHH	Hamburg University of Technology
UQ	uncertainty quantification
via	vertical interconnect access
VNA	vector network analyzer

Symbols, Notation, and Units

A	(typically) scalar
(A)	(typically) vector
[A]	(typically) matrix
a_i	incident power wave
\hat{a}_i	expansion coefficient
B	fractional bandwidth
b_i	reflected power wave
C	capacitance
C'	per-unit-length capacitance
c_0	speed of light
d_{array}	via pitch in arrays
d_{gnd}	distance to ground vias
\check{E}	electric field strength
f	frequency
f_c	cutoff frequency
g_i	normalized impedance
H	magnetic field strength
H_{cav}	cavity height
H_{ms}	microstrip height
H_{sl}	stripline height
h	scaling factor
h_i	normalized admittance
Ι	electric current
I_d	displacement current
I_r	return current
i	multi-index
j	imaginary unit
L	inductance
L'	per-unit-length inductance
l_m	length of miter section
l_{ms}	microstrip length
l_{qw}	length of quarter-wave transformer

l_{sl}	stripline length
l_{via}	via length
$\overset{ora}{N}$	filter order
N_{cav}	number of cavities
N_{dd}	number of differential ports
N_{fences}	number of via fences
N_{gnd}	number of ground vias
N_{se}^{gna}	number of single-ended ports
$P^{\circ\circ}$	order of approximation
R	pass-band ripple
r_{apad}	via antipad radius
r_{gnd}	ground via radius
r_{pad}	via pad radius
r_{via}	(signal) via radius
S_{ij}	scattering parameter
$ an\delta$	dielectric loss tangent
t_{pl}	reference plane thickness
v_{sl}	stripline propagation velocity
v_{via}	via propagation velocity
W_{eff}	effective microstrip width
W_{ms}	microstrip width
W_{qw}	width of quarter-wave transformer
W_{sl}	stripline width
Y	admittance
Z	impedance
Z_0	reference port impedance
Z_{ms}	characteristic microstrip impedance
Z_{qw}	impedance of quarter-wave transformer
Z_{sl}	characteristic stripline impedance
Z_{via}	characteristic via impedance
β_{via}	via phase constant
γ	propagation constant
$\dot{\gamma}_i$	univariate norm
γ_{i}	multivariate norm
γ_{via}	via propagation constant
ϵ	permittivity
ϵ_0	permittivity of free space
ϵ_r	relative permittivity
$\epsilon_{r,eff}$	effective relative permittivity of microstrips
η_0	impedance of free space
.~	

θ	(auxiliary) angle
λ	wavelength
λ_{via}	guided wavelength of via
μ	permeability
μ_0	permeability of free space
μ_r	relative permeability
ξ	random variable
ξ ξ	vector of random variables
ξ_k	Gaussian quadrature node
ρ	probability density function
ho	joint probability density function
σ	conductivity
ϕ	polynomial basis function
ϕ	joint polynomial basis function
Ω_c	normalized frequency
ω	angular frequency
ω_k	Gaussian quadrature weight

This work uses both the metric and imperial system of units. The conversion between the two unit systems corresponds to $25.4 \,\mu m = 1 \, mil = 0.001 \, in$.