

Prof. Dr.-Ing. Gerson Meschut Dr.-Ing. Julian Vorderbrüggen

Schädigungsverhalten stanzgenieteter CFK-Metall-Verbindungen unter thermischer Belastung

Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik

Band 164

Gerson Meschut Julian Vorderbrüggen

Schädigungsverhalten stanzgenieteter CFK-Metall-Verbindungen unter thermischer Belastung

D 466 (Diss. Universität Paderborn)

Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Paderborn, Univ., Diss., 2023

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9155-7 ISSN 1434-6915

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Um die Fahrzeugmasse zu verringern, werden Faser-Kunststoff-Verbunde (FKV) im Bereich des automobilen Rohbaus an die metallische Karosserie gefügt. Dabei stellen vorlochfreie mechanische Fügeverfahren eine produktive Lösung für das Fügen artverschiedener Werkstoffe dar. Im anschließenden Lackeinbrennprozess der kathodischen Tauchlackierung werden die Bauteile Temperaturen von bis zu 200 °C ausgesetzt. Bei stanzgenieteten und anschließend thermisch belasteten FKV-Metall-Verbindungen treten neben fügeprozessinduzierten Schädigungen auch ausgeprägte Laminatschädigungen auf, welche die Verbindungstragfähigkeit negativ beeinflussen. Diese Arbeit verfolgt das Ziel, die ursächlichen Wirkprinzipien thermisch bedingter Schädigungen in stanzgenieteten FKV-Metall-Verbindungen aufzudecken, um anhand dessen werkstoffgerechte Abstellmaßnahmen abzuleiten. Hierdurch soll eine vorlochfreie Fügetechnik für thermisch belastete FKV-Metall-Verbindungen entwickelt werden. Am Beispiel des Vollstanznietens werden die Ursachen für die Entstehung thermisch bedingter Schädigungen im FKV-Fügepartner unter Berücksichtigung verschiedener Einflussfaktoren aufgedeckt. Das gewonnene Verständnis dient der Berechnung der Spannungen im FKV nach dem Fügeprozess mithilfe einer analytischen Berechnungsmethode zur Bestimmung von Spannungskonzentrationen in faserverstärkten Mehrschichtverbunden. Anschließend wird eine Nietgeometrie zur Verringerung thermisch bedingter Schädigungen im Verbundwerkstoff abgeleitet. Die Feinauslegung des weiterentwickelten Nietes erfolgt experimentell anhand von Schädigungsbewertungen und wird mittels Tragfähigkeitsuntersuchungen bewertet.

Abstract

In order to reduce vehicle mass, fiber-reinforced plastic (FRP) composites are joined to the metallic body in the automotive body-in-white production. Pre-hole-free mechanical joining processes are a productive solution for joining different materials. In the subsequent paint curing of the cathodic dip coating, the components are exposed to temperatures of up to 200 °C. In the case of self-piercing riveted and subsequently thermally stressed FRP-metal joints, not only joining process-induced damage but also pronounced laminate damage occurs, which has a negative effect on the load-bearing capacity of the joints. The aim of this work is to investigate the causal principles of thermally induced damage in self-piercing riveted FRP-metal joints in order to derive material-specific counter measures. The aim is to develop a pre-holefree joining technique for thermally stressed FRP-metal joints. Using the example of solid self-piercing riveting, the causes of thermally induced damage in the FRP joining partner are investigated, taking into account various influencing factors. The understanding gained is used to calculate the stresses in the FRP after the joining process using an analytical calculation method for determining stress concentrations in fiber-reinforced multilayer composites. A rivet geometry for reducing thermally induced damage in the composite is then derived. The fine design of the further developed rivet is carried out experimentally on the basis of damage evaluations and is validated by means of load-bearing capacity tests.

Teile dieser Arbeit sind in folgenden Veröffentlichungen erschienen:

Vorderbrüggen, J.; Meschut, G.: Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain. In: Composite Structures, Jg. 230 (2019), 111533.

Vorderbrüggen, J.; Meschut, G.: Investigations on Thermally Induced Delamination in Mechanically Joined Carbon Fiber Composites. Tagungsband. 22nd International Conference on Composite Materials (ICCM22 2019), 12.08.- 16.08.2019 Melbourne.

Meschut, G.; Vorderbrüggen, J.: Klemmkraftbasierte thermisch induzierte Schädigung von FVK. EFB-Forschungsbericht Nr.: 520. Hannover: Europäische Forschungsgesellschaft für Blechverarbeitung e.V., 2019.

Vorderbrüggen, J.; Köhler, D.; Grüber, B.; Troschitz, J.; Gude, M.; Meschut, G.: Development of a rivet geometry for solid self-piercing riveting of thermally loaded CFRP-metal joints in automotive construction. In: Composite Structures, Jg. 291 (2022), 115583.

Inhaltsverzeichnis

Verwendete Formelzeichen und Abkürzungeniii			
1.	Einleitung	1	
2.	Stand der Technik	3	
2.1	Prozesskette einer Automobilkarosserie	3	
2.2	Faser-Kunststoff-Verbunde	4	
2.3	Einfluss der Umgebungstemperatur auf FKV	8	
2.4	Bruchverhalten von FKV	13	
2	2.4.1 Versagen von UD-Schichten	13	
2	2.4.2 Bruchbedingungen	15	
2.5	Mechanische Fügeverfahren für FKV-Metall-Verbindungen	17	
2.6	Schädigung des FKV-Fügepartners beim vorlochfreien Fügen	20	
3.	Zielsetzung und methodisches Vorgehen	27	
4.	Versuchsrandbedingungen	29	
4.1	Verwendete Versuchswerkstoffe	29	
4.2	Prüfkörper	32	
4.3	Hilfsfügeteile und Klebstoffe	37	
4.4	Verwendete Anlagentechnik	40	
4.5	Mess- und Prüfeinrichtungen	41	
5.	Thermische Belastung stanzgenieteter CFK-Metall-Verbindungen	46	
5.1	Quantifizierung der thermisch induzierten Schädigung	46	
5.2	Einfluss auf die Verbindungstragfähigkeit	51	
6.	Erforschung der Schädigungsursachen	55	
6.1	Analyse der Schädigungsausprägung	56	
6.2	Einfluss fügebedingter Prozessparameter	62	

6.3	Einfluss der thermischen Belastung	70
7.	Berechnungsgestützte Nietanpassung	80
7.1	Aufbau und Validierung des Berechnungsmodells	81
7.2	Berechnung der Schichtspannungen im CFK	85
8.	Minimierung thermisch bedingter Schädigungen	90
8.1	Bewertung der Schädigung	90
8.2	Tragfähigkeitsanalyse	93
9.	Zusammenfassung	97
10.	Literaturverzeichnis	99

Verwendete Formelzeichen und Abkürzungen

Abkürzungen

Abkürzung	Benennung
1K	einkomponentig
2K	zweikomponentig
AI	Aluminium
В	Bor
BD	Bidirektional
Bzw.	beziehungsweise
С	Kohlenstoff
ca.	circa
CF-EP	carbonfaserverstärktes Epoxidharz
CFK	carbonfaserverstärkter Kunststoff
CLT	klassische Laminattheorie
CO ₂	Kohlenstoffdioxid
Cr	Chrom
СТ	Computertomograph
Cu	Kupfer
DEKEB	Dresdner Kerbanalyse
Del	Delamination
DMA	Dynamisch-mechanische Analyse
DMS	Dehnungsmesstreifen
Fb	Faserbruch
FDM	Feindehnungsmessaufnehmer
Fe	Eisen
FKV	Faser-Kunststoff-Verbund
FRK	Flachrundkopf
FRP	Fibre reinforced plastic
GF-EP	glasfaserverstärktes Epoxidharz
HSN	Halbhohlstanznieten
i.A.a.	in Anlehnung an
i.O.	in Ordnung
ILSS	interlaminare Scherfestigkeit
KTL	kathodische Tauchlackierung
Max.	Maximum
MBN	Mehrbereichsniet
Mg	Magnesium

Min.	Minimum
Mittelw.	Mittelwert
Mn	Mangan
Мо	Molybdän
n	Probenanzahl je Prüfserie
n.i.O.	nicht in Ordnung
Nb	Niob
Р	Phosphor
PA	Polyamid
PTFE	Polytetrafluorethylen
REM	Rasterelektronenmikroskop
RSN	Reservoirstanzniet
RT	Raumtemperatur
S	Schwefel
SD	Standardabweichung
Si	Silizium
sog.	sogenannt
Ti	Titan
ТМА	Thermomechanische Analyse
UD	Unidirektional
V	Vanadium
VSN	Vollstanznieten
z.B.	zum Beispiel
Zfb	Zwischenfaserbruch
Zn	Zink

Formelzeichen

Formelzeichen	Benennung	Dimension
a	Abstand	mm
a A	Abstand zwischen den Aufleimern	mm
A80	Bruchdehnung	%
ADel	Flächeninhalt des projizierten Schädigungsbereiches	mm²
AVL	Flächeninhalt des Vorloches	mm²
b	Breite	mm
d	Innendurchmesser	mm
do	Anfangsdurchmesser	mm
d_1	Enddurchmesser	mm
dEingang	Durchmesser am Stanzlocheingang	mm

dvL	Vorlochdurchmesser	mm
do	Anfangsdurchmesser	mm
D	Außendurchmesser	mm
DB	Bohrerdurchmesser	mm
D_N	Nietdurchmesser	mm
Ds	Schaftdurchmesser	mm
е	Randabstand	mm
Ε	E-Modul	GPa
E'	Speichermodul	GPa
<i>E''</i>	Verlustmodul	GPa
f	Frequenz	Hz
F	Kraft	kN
Fa	Kraftamplitude	kN
F _{D,FI}	Delaminationsfaktor: Flächenverhältnis	-
F _{Kl}	Klemmkraft	kN
Fmax	Maximalkraft	kN
G	Schubmodul	GPa
h	Höhe	mm
k	Neigung der Wöhlerlinie	-
1	Länge	mm
<i>Io</i>	Anfangslänge	mm
<i>I</i> _A	Länge der Aufleimer	mm
lü	Überlappungslänge	mm
Ν	Schwingspielzahl	-
Nb	Bruchschwingspielzahl	-
q_i	Innendruck	N/mm²
ro	Ausgangsradius des Loches	mm
ΓN	Radius des Nietschaftes	mm
R	Lastverhältnis	-
R_{\parallel}^+	Längszugfestigkeit	MPa
R_{\parallel}^{-}	Längsdruckfestigkeit	MPa
R_{\perp}^+	Querzugfestigkeit	MPa
R_{\perp}^{-}	Querdruckfestigkeit	MPa
Rm	Zugfestigkeit	MPa
<i>R</i> _{p0,2}	Streckgrenze	MPa
5	Prüfweg	mm
S	Schrumpffaktor	-
t	Zeit	min
t_1	Blechdicke setzkopfseitigen Blech	mm
<i>t</i> ₂	Blechdicke des matrizenseitigen Bleches	mm
<i>t</i> _A	Dicke der Aufleimer	mm

tan δ	Verlustfaktor	-
Tg	Glasübergangstemperatur	°C
Tg, Onset	Onset Glasübergangstemperatur	°C
TN	Streuspanne in Richtung der Schwingspielzahl	-
U	Verschiebung	mm
V	Geschwindigkeit	mm/s
α	Thermischer Ausdehnungskoeffizient	10 ⁻⁶ 1/K
$\Delta \vartheta$	Temperaturänderung	°C
Δd	Lochaufweitung	mm
ΔΙ	Längenänderung	mm
Δr	Toleranzbereich	mm
ε	Dehnung	%
θ	Temperatur	°C
ν	Querkontraktionszahl	-
σ	Spannung	MPa
σ_{\parallel}^+	Längszugspannung	MPa
σ_{\parallel}^{-}	Längsdruckspannung	MPa
σ_{\perp}^+	Querzugspannung	MPa
σ_{\perp}^{-}	Querdruckspannung	MPa
$\tau_{\perp\parallel}^+$	Quer-Längs-Schubspannung	MPa