

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Hrsg.: Prof. Dr.-Ing. Dieter Gerling

Alena Babl

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

Alena Nicola Babl

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Gutachter:

- 1. Prof. Dr.-Ing. Dieter Gerling
- 2. Prof. Dr.-Ing. Hans-Georg Herzog

Die Dissertation wurde am 15. Mai 2023 bei der Universität der Bundeswehr München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 23. November 2023 angenommen. Die mündliche Prüfung fand am 30. November 2023 statt.

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 55

Alena Babl

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

> Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Univ. der Bundeswehr, Diss., 2023

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9351-3 ISSN 1863-0707

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Lehrstuhl für Elektrische Antriebe und Aktorik an der Universität der Bundeswehr München und wurde durch die finanzielle Unterstützung innerhalb des Projekts UmiStab des Forschungszentrums Jülich ermöglicht.

An dieser Stelle möchte ich allen beteiligten Personen meinen großen Dank aussprechen, die mich bei der Anfertigung meiner Dissertation unterstützt haben.

Ich danke Herrn Prof. Dr.-Ing. Dieter Gerling für die hervorragende Betreuung und ausgezeichnete Förderung dieser Arbeit, sowie den Freiraum und die enorme Unterstützung, die er mir zukommen ließ, um mich auch außerfachlich weiterbilden zu können. Dies alles wusste ich stets sehr zu schätzen.

Auch Herrn Prof. Dr.-Ing. Hans-Georg Herzog spreche ich meinen Dank für die Übernahme der Zweitkorrektur aus.

Nicht zuletzt bedanke ich mich ganz herzlich bei allen Mitarbeiterinnen und Mitarbeitern, allen Kolleginnen und Kollegen des Lehrstuhls für all die produktiven Gespräche und den fachlichen Austausch. Herrn Johannes Gerold und Herrn Christian Bratke danke ich besonders für die Durchsicht dieser Arbeit. Sie haben meine Arbeit durch ihre Bemühungen und Gedanken sehr vorangebracht. Auch bedanke ich mich bei Herrn Benedikt Stapff, ohne den meine Maschine vermutlich immer noch nicht ihren Weg in das Labor gefunden hätte. Für die kontinuierliche Unterstützung am Prüfstand danke ich Herrn Harald Graul und Herrn Harald Hofmann. Und für die vielen unterhaltsamen Heimfahrten bedanke ich mich bei Heidi Buller. Zusätzlich hervorheben möchte ich noch Lucas Brenner, Daniel Alban, Christian Roth, Johann Mayer und Gurakuq Dajaku.

Meiner Familie, meinem Partner Alexander Wild und der Familie meines Partners danke ich für ihre Geduld, ihre Ermutigungen und ihre Zusprüche während der Arbeit an dieser Dissertation

Zuletzt möchte ich diese Arbeit meinen Familienmitgliedern widmen, welche die Fertigstellung leider nicht mehr miterleben konnten: Meinen Opas Gerd Heil und Adi Babl, meiner Oma Rosa Babl und meinem Onkel Adrian Babl.

München, Mai 2023

Alena Babl

Zusammenfassung

Im Rahmen dieser Arbeit wird eine permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech untersucht. Diese Maschine weist eine Laminierung der Statorbleche in radialer Richtung, kornorientiertes Statorblech und Flussbarrieren im Stator auf. Flussbarrieren im Stator verändern die Luftspaltflussdichte, wodurch die Amplitude der Arbeitsharmonischen verstärkt wird und die Amplituden der ungewollten parasitären Harmonischen reduziert werden.

Der innovative Statoraufbau lässt sich vollständig analytisch beschreiben, wodurch eine grobe analytische Bestimmung aller Statordaten durch ein vereinfachtes Reluktanznetzwerk möglich ist. Durch die Verwendung von kornorientiertem Statorblech sowie die Statorlaminierung steigt der magnetische Widerstand in tangentialer Richtung, was als zusätzliche materielle Flussbarrieren interpretiert werden kann. Diese Flussbarrieren treten zwischen allen Spulen auf. Hierbei wäre zu erwarten, dass eine weitere Erhöhung der Amplitude der Arbeitsharmonischen der Luftspaltflussdichte erfolgt. Dies ist jedoch nicht der Fall, da die Anordnung der Flussbarrieren einen Einfluss auf den Harmonischengehalt der Luftspaltflussdichte hat. Hierbei stehen die materiellen Flussbarrieren den geometrischen Flussbarrieren gegenüber, sodass die Amplitude der Arbeitsharmonischen reduziert wird und ein Teil der Amplituden der parasitären Harmonischen gestärkt wird. Dies lässt sich ebenfalls anhand des äquivalenten Wicklungsfaktors zeigen.

Die Arbeit beschäftigt sich zusätzlich mit den Verlusten innerhalb dieses neuartigen Statoraufbaues. Ein Vorteil von kornorientiertem Blech liegt in den geringen Verlusten in Walzrichtung. In der Finite-Elemente-Methode-Simulation der Verluste zeigt sich jedoch, dass die Wirbelstromverluste im Stator überproportional mit der Länge der Maschine ansteigen, da sich die Wirbelströme in der gesamten Blechebene in axialer Richtung ausbreiten. Diese werden zum größten Teil von den Permanentmagneten im Rotor verursacht und sind nur gering abhängig von dem Statorstrom. Eine zusätzliche axiale Segmentierung des Stators verringert die Wirbelströme überproportional, während dünneres Blech zu höheren Verlusten führt.

Abschließend wird die Flussbarrierenmaschine mit einer Standard-Referenzmaschine durch Finite-Elemente-Methode-Simulationen und Messungen am Prüfstand verglichen. Es zeigt sich, dass die Einbringung von Flussbarrieren zu erhöhtem Drehmoment führt. Jedoch treten in der Flussbarrierenmaschine durch die radiale Laminierung deutlich erhöhte Verluste auf, wodurch das Drehmoment stark verringert wird. Für die Vermessung am Prüfstand muss die Flussbarrierenmaschine angepasst werden. Da die Maschine über das Gehäuse luftgekühlt ist, ist eine möglichst große Kontaktfläche zwischen Statorblech und Gehäuse notwendig. In der Messung zeigen sich bei der Flussbarrierenmaschine eine starke Temperaturentwicklung, stark erhöhte Verluste und ein verringerter Wirkungsgrad. Der Vorteil der Flussbarrierenmaschine liegt in der erhöhten Nutfläche. Für die Zukunft bietet die Maschine einige Ansätze zur Verbesserung, wie beispielsweise die Segmentierung des Stators in axialer Richtung, die Verwendung von dickerem Blech oder der Einsatz von aktiver Kühlung.

Abstract

In this thesis, a permanent magnet synchronous machine with stator laminations produced by forming technology is investigated. This machine has a lamination of the stator steel sheets in radial direction, grain-oriented stator steel sheets and flux barriers in the stator. Flux barriers in the stator change the air gap flux density, which increases the amplitude of the working harmonics and reduces the amplitudes of the parasitic harmonics.

The innovative stator design can be described analytically, which allows a rough analytical determination of all stator data through a simplified reluctance network. Due to the use of grain-oriented stator steel sheets, the magnetic resistance increases in the tangential direction, which can be interpreted as additional material flux barriers. These flux barriers occur between all coils. Here it would be expected that a further increase in the amplitude of the working harmonics of the air gap flux density occurs. However, this is not the case, as the arrangement of the flux barriers has an influence on the harmonic content of the air gap flux density. Here, the material flux barriers oppose the geometric flux barriers, so that the amplitude of the working harmonics is reduced and part of the amplitudes of the parasitic harmonics are strengthened. This can also be seen from the equivalent winding factor.

The thesis also deals with the losses within this novel stator design. One advantage of grain-oriented steel sheets is the low losses in the rolling direction. However, the finite-element-analysis-simulation of the losses shows that the eddy current losses in the stator increase disproportionately with the length of the machine, since the eddy currents propagate in the axial direction throughout the steel sheet planes. These are largely caused by the permanent magnets in the rotor and are only slightly dependent on the stator current. Additional axial segmentation of the stator reduces the eddy currents disproportionately, while thinner steel sheets lead to higher losses.

Finally, the flux barrier machine is compared with a standard reference machine by means of finite-element-analysis-simulations and measurements on the test bench. This shows that the introduction of flux barriers leads to increased torque. However, significantly increased losses occur in the flux barrier machine due to the radial lamination, which reduces the torque. The flux barrier machine must be adapted for measurement on the test bench. Since the machine is air-cooled via the housing, a large contact area between the stator steel sheets and housing is necessary. The measurement shows high temperatures, greatly increased losses and reduced efficiency in the flux barrier machine. The advantage of the flux barrier machine is the increased slot area. For the future, the machine offers some approaches for improvement, such as segmenting the stator in the axial direction, using thicker steel sheets or using active cooling.

Inhaltsverzeichnis

Αŀ	bildu	ingsverzeichnis	٧
Та	belle	nverzeichnis	ΙX
Αŀ	kürz	ungsverzeichnis	ΧI
Sy	mbol	verzeichnis	ΧII
1	1.1 1.2 1.3	eitung Motivation Stand der Technik Ziel und Aufbau der Arbeit	1 1 2 3
2	2.1 2.2 2.3	Grundlagen elektrischer Maschinen und Entwurf der Referenzmaschine Grundlagen elektrischer Maschinen 2.1.1 Ausführungsformen 2.1.2 Aufbau 2.1.3 Maschinentopologien 2.1.4 Vergleich der Maschinentopologien Wicklungen in elektrischen Maschinen 2.2.1 Bezeichnung der Wicklungen 2.2.2 Einteilung der Wicklungen 2.2.3 Wicklungsfaktor Grundlagen des Reluktanznetzwerkes 2.3.1 Idee des Reluktanznetzwerkes 2.3.2 Der magnetische Widerstand 2.3.3 Lösung des Gleichungssystems Entwurf der Referenzmaschine 2.4.1 Anforderungen an die Referenzmaschine 2.4.2 Design der Referenzmaschine 2.4.3 Wicklung der Referenzmaschine	7 7 7 8 9 10 11 11 14 15 17 18 19 20 21 22 22 22 23
3	Desi	ign der innovativen Flussbarrierenmaschine Grundlagen der Flussbarrieren	27 27 27
	3.2 3.3	3.1.2 Umsetzung als Flussbarrieren 3.1.3 Wicklungsfaktor bei Verwendung von Flussbarrieren 3.1.4 Alternative Statortopologien mit Flussbarrieren Parametrierter Aufbau Analytische Parameterbestimmung 3.3.1 Aufstellung des Beluktanggetzwerkes	28 30 31 31 35

		3.3.2	Berechnung der Elemente im Reluktanznetzwerk	. 37
		3.3.3	Lösung des Reluktanznetzwerkes	
		3.3.4	Bestimmung der Verteilung der magnetischen Spannungen	. 42
		3.3.5	Bestimmung der geometrischen Parameter	
	3.4	Simula	tive Parameterbestimmung	. 47
		3.4.1	Statorbetrachtung	
		3.4.2	Stator- und Rotorbetrachtung	
4	Aus	wirkung	en der Werkstoffeigenschaften	57
	4.1	Grund	lagen der Elektrobleche	. 57
		4.1.1	Grundbegriffe des Magnetismus	. 57
		4.1.2	Ferromagnetismus	. 58
		4.1.3	Einsatz von Elektroblechen	
		4.1.4	Kornorientierung	. 65
		4.1.5	Laminierung	. 66
		4.1.6	Mechanische Beanspruchung	. 66
	4.2	Einflus	ss der Werkstoffeigenschaften auf das Luftspaltfeld	. 67
		4.2.1	Auswirkung der Laminierung	. 67
		4.2.2	Auswirkung der Kornorientierung	. 68
		4.2.3	Auswirkung der Laminierung und Kornorientierung	
		4.2.4	Untersuchung und Nachbildung der Effekte $\ \ldots \ \ldots \ \ldots \ \ldots$	
5	Unt		ng der Verluste	83
	5.1	Grund	lagen der Verlustberechnung	. 83
		5.1.1	Stromwärmeverluste	. 83
		5.1.2	Eisenverluste	. 84
		5.1.3	Magnetverluste	
	5.2	Bestim	ımung der Wirbelstromverluste im Stator	. 92
		5.2.1	Analytische Verifizierung der FEM-Simulation	. 92
		5.2.2	FEM-Simulation der Wirbelstromverluste im Stator $\dots \dots$. 94
		5.2.3	Verwendung von anisotropem Blechmaterial	. 102
		5.2.4	Verwendung von Blechmaterial mit nicht linearen Eigenschaften $$. 104
		5.2.5	Rückwirkung der Wirbelströme im Stator $\ \ldots \ \ldots \ \ldots \ \ldots$. 105
		5.2.6	Reduzierung der Wirbelstromverluste im Stator	. 106
		5.2.7	Quantitative Bestimmung der Wirbelstromverluste am Nennpunkt $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$. 108
	5.3	Unters	uchung der Magnetverluste	. 112
		5.3.1	Wirbelströme aufgrund der Nutungseffekte	. 113
		5.3.2	Wirbelströme aufgrund der Statorharmonischen	. 114
		5.3.3	Reduzierung der Magnetverluste	. 116
6	Verg	gleich de	es Betriebsverhaltens der Flussbarrieren- und Referenzmaschine	117
	6.1	FEM-S	Simulation der Maschinen am Nennpunkt	
		6.1.1	FEM-Simulation der Flussbarrierenmaschine $\ \ldots \ \ldots \ \ldots$	
		6.1.2	FEM-Simulation der Referenzmaschine	. 118
	6.2		tiver Vergleich und Analyse der Maschinen	
	6.3	Zusam	menhang zwischen der Flussbarrieren- und Referenzmaschine	
		6.3.1	Harmonische bei reiner Statorstromspeisung	. 125
		632	Harmonische im Leerlauf	197

	6.4	Auswirkungen fertigungsbedingter Ungenauigkeiten	129
		6.4.1 Ungleichmäßige Länge der Einzelbleche im Statorzahn	129
		6.4.2 Radiale Verschiebung des Rotors	
		6.4.3 Verdrehung der U-Module bei axialer Segmentierung	132
7	Vali	dierung der Flussbarrieren- und Referenzmaschine	135
	7.1	Anpassungen der Flussbarrierenmaschine	135
		7.1.1 Temperaturentwicklung	135
		7.1.2 Fertigung	136
		7.1.3 Auswirkungen des Biegens auf die magnetischen Eigenschaften \dots	137
		7.1.4 Alternative innovative Statorgeometrie	138
		7.1.5 Zusammenhang zwischen beiden Statorgeometrien	140
	7.2	Validierung der Flussbarrierenmaschine am Prüfstand	142
		7.2.1 Messung der Flussbarrierenmaschine Version 2	
		$7.2.2 \mbox{Vergleichende FEM-Simulation der Flussbarrierenmaschine Version 2} \; .$	
	7.3	Validierung der Referenzmaschine	
		7.3.1 Messung der Referenzmaschine	147
		7.3.2 Vergleichende FEM-Simulation der Referenzmaschine	
	7.4	Analyse und Vergleich der Maschinen am Prüfstand	151
8	Fazi	t und Ausblick	155
	8.1	Zusammenfassung der Arbeit	155
	8.2	Ausblick	157
Α	Dat	en der Maschinen	i
В	Herl	leitung der Zahnhöhe	iii
C	Mat	trizen zur Lösung des Reluktanznetzwerkes	٧
D	Prüi	fstandsgeräte	vii
l it	erati	ur .	iv

Abbildungsverzeichnis

1.1	Anzahl der neu zugelassenen Elektroautos in Deutschland von 2012 bis 2022 .	1
2.1	Aufbau elektrischer Maschinen	8
2.2	Topologien elektrischer Drehfeldmaschinen	9
2.3	Bestandteile einer Wicklung	12
2.4	Wicklungen mit unterschiedlicher Anzahl der Schichten	13
2.5	Vergleich der Spulenweiten	13
2.6	Einteilung der Wicklungsarten anhand ihrer Lochzahl	14
2.7	Rechteckiger durchflossener Sektor	19
2.8	Radial und polar durchflossener Sektor	20
2.9	Querschnitt der Referenzmaschine	23
2.10	Wicklungsaufbau der Einschichtwicklung	23
2.11	Bewickelter Stator der Referenzmaschine	25
3.1	Querschnitt einer PMSM mit 12 Nuten, 10 Polen und Zweischichtwicklung	28
3.2	Reluktanznetzwerk für eine Zahnteilung zur Herleitung der Flussbarrieren	29
3.3	g g	29
3.4	9	31
3.5		32
3.6		33
3.7		35
3.8	-	36
3.9		37
		37
		39
		40
		42
		43
		45
	•	46
		47
3.18	FEM-Modell bei reiner Statorbetrachtung	48
3.19	Simulative Bestimmung der 7. Harmonischen	48
		49
3.21	Simulative Bestimmung der 5. Harmonischen	50
3.22	Simulative Bestimmung der 1. Harmonischen	50
	9	51
	9	52
3.25	Simulative Bestimmung der Magnetverluste über eine Parameter variation $$	53
3.26	Simulative Bestimmung der Eisenverluste über eine Parametervariation	54

3.27	Simulative Bestimmung der Leistung über eine Parametervariation	54
3.28	Simulative Bestimmung der Drehmomentrippel über eine Parametervariation	55
4.1	Entstehung der Neukurve	60
4.2	Entstehung der Hystereseschleife	61
4.3	Produktion von nicht kornorientiertem Elektroblech	62
4.4	Schematische Darstellung der Statorherstellung	63
4.5	Lage der Eisen-Elementarzelle bei der Würfel- und Gosstextur	64
4.6	Magnetisierungskurven der Eisenkristalle	65
4.7	Schematische Darstellung der Laminierung	66
4.8	Auswirkung des Biegens des Bleches auf die Neukurve	66
4.9	Auswirkung des Biegens des Bleches auf die Hysteresekurve	66
4.10	FEM-Modell zur Untersuchung der Werkstoffeffekte mit laminiertem Stator .	67
	Harmonischengehalt eines laminierten Blechstapels $\ \ldots \ \ldots \ \ldots \ \ldots$	68
4.12	Harmonischengehalt eines massivem Blechstapels mit anisotropem Werkstoff	69
	Harmonischengehalt eines laminierten Blechstapels mit anisotropem Werkstoff	70
4.14	Harmonischengehalt bei Anordnung der Flussbarrieren zwischen gleichphasigen	
	Spulen mit anisotropem Werkstoff	71
	Vereinfachter Maschinenquerschnitt zur Untersuchung zusätzlicher Flussbarrieren	
	Reluktanznetzwerk einer Spule aus Abbildung 4.15a	72
	Reluktanznetzwerk einer Spule aus Abbildung 4.15b	73
	Luftspaltflussdichte der Netzwerke aus den Abbildungen 4.16 und 4.17	73 76
	Amplituden der Harmonischen aus der Analytik bei konstanten Flussbarrieren 1 Amplituden der Harmonischen aus der Analytik bei gleichmäßig steigender	10
4.20	Breite der Flussbarrieren 1	77
4 21	Vergleich des äquivalenten Wicklungsfaktors	77
	FEM-Modell zur Untersuchung der Effekte zusätzlicher Flussbarrieren an	• •
	einem Standardstator	78
4.23	Amplituden der Harmonischen aus der FEM-Simulation bei konstanten Fluss-	
	barrieren 1	79
4.24	Amplituden der Harmonischen aus der FEM-Simulation bei gleichmäßig stei-	
	gender Breite der Flussbarrieren 1 \hdots	79
4.25	Vergleich des Harmonischengehalt des Rotorfeldes	80
5.1	Mittlere Windungslänge einer Spule	84
5.2	Wirbelstrompfad innerhalb eines Bleches	85
5.3	Grenzfrequenzen bei verschiedenen Blechdicken und Permeabilitäten	87
5.4	Wirbelstrompfade an den Blochwänden	88
5.5	Luftspaltflussdichte über eine Nut	89
5.6	Pfade der Wirbelströme im Magneten	91
5.7	Modell zur Berechnung der Wirbelströme an einem Einzelblech mit Statorstromspeisung	93
5.8	Reluktanznetzwerk zur Berechnung der Wirbelströme an einem Einzelblech	93
0.0	mit Statorstromspeisung	93
5.9	Querschnitte der Modelle aus Tabelle 5.2	95
	Verlustfaktoren der Wirbelstromverluste bei Skalierung der Maschinenlänge .	96
	Wirbelströme am Einzelblech erzeugt durch das Statorfeld	97

5.12	Wirbelstromverluste und Verlustfaktor am Einzelblech erzeugt durch das
	Rotorfeld
5.13	Flusspfade bei verschiedenen Rotorpositionen für das Einzelblech 98
5.14	Wirbelströme am Einzelblech erzeugt durch das Rotorfeld 98
5.15	Wirbelströme am Blechstapel erzeugt durch das Statorfeld 99
5.16	Wirbelstromverluste und Verlustfaktor am Blechstapel erzeugt durch das
	Rotorfeld
5.17	Wirbelströme am Blechstapel erzeugt durch das Rotorfeld 100
5.18	Rotorposition bei maximalen Wirbelstromverlusten für den Blechstapel 101
5.19	Wirbelstromverluste und Verlustfaktor in der gesamten Maschinenbetrachtung
	erzeugt durch das Rotorfeld
5.20	Wirbelströme in der gesamten Maschinenbetrachtung erzeugt durch das Rotorfeld 102
5.21	Flussdichte durch die Stirnfläche des Einzelbleches erzeugt durch das Rotorfeld103
5.22	Flussdichte durch die Seitenflächen des Einzelbleches erzeugt durch das Rotorfeld 104
5.23	Magnetische Flussdichte des Blechstapels
5.24	Rückwirkung der Wirbelströme auf das anregende Feld
5.25	Reduzierung der Verluste am Einzelblech durch axiale Unterteilung 107
	Approximation der Wirbelstromverluste aus der FEM-Simulation 108
5.27	Abweichungen der Approximation der Wirbelstromverluste aus der FEM-
	Simulation
5.28	Extrapolation der Wirbelstromverluste aus der FEM-Simulation $\ \ldots \ \ldots \ 110$
	Reduzierung der Verluste am Nennpunkt durch axiale Unterteilung 111
5.30	Wirbelstromverluste aus der FEM-Simulation bei verschiedenen Blechdicken . 112
	Wirbelstromverluste in den Permanentmagneten
5.32	Amplituden der Luftspaltflussdichte der Harmonischen aus der FEM-Simulation114
	Magnetverluste im Leerlauf mit und ohne Flussbarrieren
	Magnetverluste im Nennpunkt mit und ohne Flussbarrieren
5.35	Magnetverluste im Nennpunkt mit und ohne Segmentierung
6.1	FEM-Modell der Flussbarrierenmaschine
6.2	FEM-Modell der Referenzmaschine
6.3	FEM-Modell der Referenzmaschine mit Flussbarrieren
6.4	Verluste im Nennpunkt der Flussbarrieren- und Referenzmaschine 121
6.5	Mechanische Drehmomente im Nennpunkt der Flussbarrieren- und Referenz-
	maschine
6.6	Wirkungsgrade im Nennpunkt der Flussbarrieren- und Referenzmaschine 123
6.7	Modelle zur Evolution der Flussbarrierenmaschine aus der Referenzmaschine 124
6.8	Harmonische bei reiner Stromspeisung bei Evolution der Flussbarrierenmaschine 126
6.9	Harmonische im Leerlauf bei Evolution der Flussbarrierenmaschine 128
6.10	Mögliche fertigungsbedingte Ungenau igkeiten der Flussbarrierenmaschine $$ 129
	Drehmomente bei Abweichung der Bleche
6.12	Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlichen Abwei-
	chungen der Bleche
	Drehmomente bei einer radialen Verschiebung des Rotors
6.14	Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlicher radialer
	Verschiebung des Rotors
6.15	Drehmomente bei Verdrehung der U-Module

6.16	Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlicher Verdre-	
	hung der U-Module	32
7.1	Winkel der Rückfederung eines einzelnen Bleches über den Biegeradius 13	
7.2	Gebogene Bleche mit unterschiedlichen Radien	37
7.3	Magnetisierungskurven eines Einzelbleches bei verschiedenen Blechradien ge-	
	messen durch Epstein-Test	38
7.4	Eisenverluste eines Einzelbleches bei verschiedenen Blechradien gemessen durch	
	Epstein-Test	
7.5	Querschnitt der Statorgeometrie V2	39
7.6	Gefertigter Stator der Flussbarrierenmaschine V2	39
7.7	Bewickelter Stator der Flussbarrierenmaschine V2	40
7.8	Drehmoment über den Außenradius der gebogenen Bleche	40
7.9	Verluste über den Außenradius der gebogenen Bleche	41
7.10	Wirbelstromverluste im Stator bei verschiedenen Außenradien der gebogenen	
	Bleche	41
7.11	Messaufbau und Leistungsmessgeräte für die Messungen der Maschinen $$ 14	43
7.12	Gemessene Strangspannung im Leerlauf der Flussbarrierenmaschine V2 $$ 14	43
7.13	Gemessenes Wirkungsgradkennfeld der Flussbarrierenmaschine V2 \dots 14	44
7.14	Simulierte Strangspannung im Leerlauf der Flussbarrierenmaschine V2 14	45
7.15	Simuliertes Wirkungsgradkennfeld der Flussbarrierenmaschine V2 14	46
7.16	Gemessene Strangspannung im Leerlauf der Referenzmaschine	47
7.17	Gemessenes Wirkungsgradkennfeld der Referenzmaschine	48
7.18	Simulierte Strangspannung im Leerlauf der Referenzmaschine	49
7.19	Simuliertes Wirkungsgradkennfeld der Referenzmaschine	50
7.20	Vergleich der Wirkungsgradkennfelder bei gleichen Konditionen	53

Tabellenverzeichnis

2.1	- 8	11 18
3.1 3.2	Funktionswerte der Verteilung der magnetischen Spannungen Funktionswerte der Luftspaltflussdichte bei Stromspeisung aus der FEM-	44
	Simulation und der Analytik	49
4.1	Abweichungen zwischen den Amplituden der Harmonischen bei massivem und laminierten Stator	68
4.2	Abweichungen zwischen den Amplituden der Harmonischen bei isotropen und	69
4.3	Abweichungen zwischen den Amplituden der Harmonischen bei massivem	0.0
4.4	Stator mit isotropem Werkstoff und laminiertem Stator mit anisotropem Werkstoff	70
4 5	1	71
4.5	Relevante Daten für die Berechnung der Abweichungen durch zusätzliche Flussbarrieren und des äquivalenten Wicklungsfaktors	75
5.1 5.2		94
5.3	Relevante Daten für die Berechnung der Magnetverluste	95 13
6.1 6.2 6.3	Betriebspunkt der Flussbarrierenmaschine im Nennpunkt aus der FEM-Simulation 1 Betriebspunkt der Referenzmaschine im Nennpunkt aus der FEM-Simulation 1 Simulationsmodelle für die Maschinenevolution	19
7.1 7.2	Kenndaten im Nennpunkt der Flussbarrierenmaschine V2 aus der Messung $$. 1 Kenndaten im Nennpunkt der Flussbarrierenmaschine V2 aus der FEM-	.44
7.3	Simulation	
7.4	Kenndaten im Nennpunkt der Referenzmaschine aus der Kessung	
7.5	Maximaler Wirkungsgrad beider Maschinen	
A.1	Eckdaten der Maschinen	
A.2	Kenndaten der Permanentmagneten	
D.1	Siemens NebenschlMot. 1GG5134-0GK46-6VV1-Z	
D.2	Geräte für die mechanische und elektrische Leistungsmessung	vii
113	Alicatziiena Maccoarata	3711

Abkürzungsverzeichnis

ASM Asynchronmaschine FEM Finite-Elemente-Methode

FB Flussbarriere

FSM Flux-switching permanenterregte Synchronmaschine

PMSM permanenterregte Synchronmaschine

QR Querrichtung
RM Reluktanzmaschine
SM Synchronmaschine
WR Walzrichtung

Symbolverzeichnis

Formelzeichen	Beschreibung	Einheit
	Fourierkoeffizient	
a_k		_
a_{parallel}	Anzahl der parallelen Zweige	$^{-}$ 2
A	Fläche	$^{\mathrm{m}^2}$
A_{Cu}	Kupferfläche	m ²
$A_{ m L}$	Leiterfläche	
$A_{\mathrm{PM,ax}(u)}$	Durchflussfläche des magnetischen Widerstandes der ν -	m^2
	ten Harmonischen in den Permanentmagneten in axiale	
	Richtung	2
$A_{\mathrm{PM,tan}(\nu)}$	Durchflussfläche des magnetischen Widerstandes der	m^2
	ν -ten Harmonischen in den Permanentmagneten in tan-	
	gentiale Richtung	9
$A_{ m Q}$	Nutfläche	m^2
$b_{ m FB}$	Flussbarrierenbreite	$^{\mathrm{m}}$
$b_{\mathrm{FB},1}$	Flussbarrierenbreite am Zahnkopf	m
$b_{\mathrm{FB},2}$	Flussbarrierenbreite am Joch	m
$b_{ m FB,m}$	Mittlere Flussbarrierenbreite	\mathbf{m}
b_k	Fourierkoeffizient	_
$b_{ m p}$	Polbreite	m
$b_{ m PM}$	Magnetbreite	$^{\mathrm{m}}$
b_{Q}	Nutbreite	$^{\mathrm{m}}$
b_{Sp}	Spulenbreite	m
$b_{ m Z}$	Zahnbreite	m
B	Magnetische Flussdichte	${ m T}$
B_{δ}	Luftspaltflussdichte	${ m T}$
\hat{B}_{δ}	Amplitude der Luftspaltflussdichte	${ m T}$
$B_{\delta,\mathrm{avg}}$	Durchschnittliche Luftspaltflussdichte	${ m T}$
$B_{\delta,\max}$	Maximale Luftspaltflussdichte	${ m T}$
$B_{\delta,\min}$	Minimale Luftspaltflussdichte	${ m T}$
$\hat{B}_{\delta(\nu)}$	Amplitude der Luftspaltflussdichte der ν -ten Harmoni-	Т
$o(\nu)$	schen	
$\hat{B}_{ ext{Fe}}$	Amplitude der magnetische Flussdichte im Eisen	${ m T}$
$B_{\rm r}$	Remanenzflussdichte	Т
C	Materialspezifischer Wert der anormalen Wirbelstrom-	_
	verluste	
d_{Fe}	Blechdicke	m
D_{1a}	Statoraußendurchmesser	m
D_{1i}	Statorinnendurchmesser	m
- 11		

Formelzeichen	Beschreibung	Einheit
D_{2a}	Rotoraußendurchmesser	m
E	Elektrische Feldstärke	V/m
f	Frequenz	$H_{\mathbf{Z}}$
f_1	Statorfrequenz	Hz
f_{FB}	Verhältnis der Flussbarrieren zwischen den Spulen zu	_
J. D	den Flussbarrieren zwischen den Strängen	
$f_{ m G,w}$	Grenzfrequenz der Wirbelströme	$_{ m Hz}$
$f_{\mathrm{PM}(\nu)}$	Frequenz der $\nu\text{-ten}$ Harmonischen im Permanentmagne-	$_{ m Hz}$
	ten	
$f_{ m Wol}$	Wolmansche Grenzfrequenz	$_{ m Hz}$
$F(\lambda_{\mathrm{i}})$	Faktor der Stromverdrängung	_
h	Höhe	$^{\mathrm{m}}$
h_{Fe}	Blechhöhe	$^{\mathrm{m}}$
$h_{\mathrm{Fe},1}$	Höhe der Blechinnenseite	m
$h_{ m Fe,2}$	Höhe der Blechaußenseite	$^{\mathrm{m}}$
h_{PM}	Magnethöhe	m
h_{Z}	Zahnhöhe	m
H	Magnetische Feldstärke	A/m
H_c	Koerzitivfeldstärke	m A/m
I	Strom	Å
$I_{ m S}$	Strangstrom	A
\vec{j}	Stromdichte	A/m^2
$j_{\rm N}$	Nennstromdichte	A/m^2
$j_{0,\text{PM}(\nu)}$	Oberflächenwirbelstromdichte der ν -ten Harmonischen	A/m^2
30,1 W(ν)	im Permanentmagneten	,
$j_{\mathrm{PM}(\nu)}$	Wirbelstromdichte der ν -ten Harmonischen im Perma-	A/m^2
$J \Gamma M(\nu)$	nentmagneten	/
J	Magnetische Polarisation	Т
$J_{ m r}$	Remanente Polarisation	Т
$J_{ m S}$	Sättigungspolarisation	T
k_{Cu}	Kupferfüllfaktor	_
$k_{\mathrm{P_w}}$	Verlustfaktor bei Skalierung der Maschinenlänge	_
l w	Länge	m
l_{Fe}	Blechlänge	m
$l_{\rm i}$	Maschinenlänge	m
$l_{ m m}$	Mittlere Windungslänge	m
$l_{\rm p}$	Pollänge	m
l_{PM}	Magnetlänge	m
m	Anzahl der Statorstränge	_
M	Magnetisierung	A/m
$M_{ m emag}$	Elektromagnetisches Drehmoment	Nm
$M_{ m me}$	Mechanisches Drehmoment	Nm
n	Drehzahl	\min^{-1}
n_{N}	Nenndrehzahl	\min^{-1}
$N_{ m FB}$	Anzahl der Flussbarrieren	
$N_{ m Fe}$	Anzahl der Bleche	_
- · re		

Formelzeichen	Beschreibung	Einheit
p	Polpaarzahl	_
p $p_{ m mag}$	Magnetisches Moment	${ m Am^2}$
P_1	Eingangsleistung	W
$P_{\rm a}$	Anomale Wirbelstromverluste	W
$P_{ m Fe}$	Eisenverluste	W
$P_{ m h}$	Hystereseverluste	W
$P_{ m me}$	Mechanische Leistung	W
P_{PM}	Permanentmagnetverluste	W
$P_{\mathrm{PM}(\nu)}$	Permanentmagnetverluste der ν -ten Harmonischen	W
P_{Str}	Stromwärmeverluste	W
$P_{ m w}$	Klassische Wirbelstromverluste	W
q	Lochzahl	_
$\stackrel{\iota}{Q}$	Wärme	$kg m^2/s^2$
$\widetilde{Q}_{\mathrm{S}}$	Anzahl der Statornuten	
$r_{ m PM}$	Magnetradius	m
$r_{ m Sp}$	Radius der Spule	m
$r_{ m U}$	Außenradius der gebogenen Bleche	m
R	Elektrischer Widerstand	Ω
$R_{ m m}$	Magnetischer Widerstand	A/(Vs)
$R_{ ext{m},\delta}$	Magnetischer Widerstand des Luftspaltes	A/(Vs)
$R_{ m m,FB}$	Magnetischer Widerstand der Flussbarriere	A/(Vs)
$R_{ m m,Fe}$	Magnetischer Widerstand des Eisens	A/(Vs)
$R_{ m m,J}$	Magnetischer Widerstand des Joches	A/(Vs)
$R_{\mathrm{m,PM}(u)}$	Magnetischer Widerstand der ν -ten Harmonischen in	A/(Vs)
111,1 111(1)	den Permanentmagneten	, , ,
$R_{ m m,Z}$	Magnetischer Widerstand des Zahns	A/(Vs)
$R_{ m S}$	Elektrischer Strangwiderstand	Ω
$R_{ m th}$	Wärmewiderstand	K/W
s	Strecke	m
t	Zeit	s
T	Periode	1/s
T	Temperatur	K
U	Elektrische Spannung	V
$U_{ m i}$	Induzierte Spannung	V
$U_{\mathrm{i,PM}(\nu)}$	Induzierte Spannung der ν -ten Harmonischen in den	V
1,1 11(1)	Permanentmagneten	
$U_{ m N}$	Elektrische Nennspannung	V
U_{S}	Strangspannung	V
V	Volumen	m^3
$V_{ m i_{FB}}^{\delta}$	Magnetische Spannungssprünge im Luftspalt an einer	A
	Flussbarriere	
$V_{(\nu)}^{\mathrm{FB}}$	Größe zur Berechnung des äquivalenten Wicklungfaktors	A
$V_{ m Fe}^{(u)}$	Eisenvolumen	m^3
$V_{ m m}$	Magnetische Spannung	A
w	Windungszahl	_
w_1	Statorwindungszahl	_
	Ŭ	

Formelzeichen	Beschreibung	Einheit
$w_{ m Sp}$	Spulenwindungszahl	_
W_{Sp}	Spulenweite	m
α	Winkel	rad
$\alpha_{ m i}$	Winkel der Spulenposition	rad
$lpha_{ m i_{FB}}$	Winkel der Flussbarrierenposition	rad
$\alpha_{ m O}$	Nutenwinkel	rad
β_{FB}	Öffnungswinkel der Flussbarriere	rad
β_{Q}	Öffnungswinkel der Nut	rad
β_{U}	Öffnungswinkel der gebogenen Bleche	rad
$\beta_{\mathbf{Z}}$	Öffnungswinkel des Zahns	rad
δ	Luftspalt	m
Δeta	Verdrehung der U-Module	rad
Δh_{Fe}	Radiale Abweichung der Statorbleche	m
$\delta_{\rm i}$	Eindringtiefe	m
$\delta_{\mathrm{i,PM}(u)}$	Eindringtiefe der ν -ten Harmonischen im Permanentmagneten	m
ΔM_2	Radiale Abweichung des Rotormittelpunktes	m
$\Delta M_{ m emag}$	Drehmomentrippel	Nm
η	Wirkungsgrad	_
$\gamma_{\rm B_r}$	Temperaturkoeffizient der Remanenzflussdichte	%/K
$\gamma_{\rm H_c}$	Temperaturkoeffizient der Koerzitivfeldstärke	%/K
λ_{i}	Verhältnis von Blechdicke zu Eindringtiefe	-
λ_{O}	Wärmeleitfähigkeit	W/(m K)
μ	Magnetische Permeabilität	$V_{\rm s}/(A_{\rm m})$
μ_0	Magnetische Permeabilität von Vakuum	$V_{\rm s}/(A_{\rm m})$
$\mu_{ m r}$	Relative Permeabilität	-
$\mu_{ m r,PM}$	Relative Permeabilität der Permanentmagneten	_
$\mu_{ m r,QR}$	Relative Permeabilität in Querrichtung	_
$\mu_{ m r,WR}$	Relative Permeabilität in Walzrichtung	_
ν	Ordnungszahl	_
ω	Kreisfrequenz	1/s
φ	Elektrisches Potential	V
Φ	Magnetischer Fluss	Vs
Φ_{H}	Hauptfluss	Vs
$\hat{\Phi}_{\mathrm{PM}(u)}$	Amplitude des magnetischen Flusses der ν -ten Harmo-	Vs
	nischen in den Permanentmagneten Dichte	g/m^3
ρ	Spezifischer elektrischer Widerstand der Permanentma-	g/m Ωm
$ ho_{\mathrm{PM}}$		2 2 111
σ.	gneten Spezifische elektrische Leitfähigkeit	$\mathrm{S/m}$
$\sigma_{ m el}$	-	,
$\sigma_{ m Fe}$	Spezifische elektrische Leitfähigkeit des Eisens Polteilung	$_{ m m}^{ m S/m}$
$ au_{ m p}$	Nutteilung	m m
$ au_{ m Q}$	Nutteilung der ν -ten Harmonischen	
$\Theta^{T_{\mathrm{Q}(u)}}$	Nuttenung der ν -ten Harmonischen Durchflutung	m A
-	9	A A
$\Theta_{ m a}$	Summe der Beträge der betrachteten Durchflutungen	A

Formelzeichen	Beschreibung	Einheit
θ	Umfangswinkel	rad
$\xi_{(\nu)}$	Wicklungsfaktor der ν -ten Harmonischen	_
$\xi_{(u)} $ $\xi_{\mathrm{N}(u)}$	Nutschlitzbreitenfaktor der ν -ten Harmonischen	_
$\xi_{\mathrm{S}(u)}$	Sehungsfaktor der ν -ten Harmonischen	_
$\xi_{\mathrm{Z}(\nu)}$	Zonungsfaktor der ν -ten Harmonischen	_