

Lehrstuhl für Elektrische Antriebstechnik und Aktorik

Chair of Electrical Drives and Actuators

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Hrsg.: Prof. Dr.-Ing. Dieter Gerling

Alena Babl

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

EAA Forschungsberichte Band 55

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

Alena Nicola Babl

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS (DR.-ING.)

genehmigten Dissertation.

Gutachter:

- 1. Prof. Dr.-Ing. Dieter GERLING
- 2. Prof. Dr.-Ing. Hans-Georg HERZOG

Die Dissertation wurde am 15. Mai 2023 bei der Universität der Bundeswehr München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 23. November 2023 angenommen. Die mündliche Prüfung fand am 30. November 2023 statt.

Forschungsberichte Elektrische Antriebstechnik und Aktorik

Band 55

Alena Babl

Permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech

Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Univ. der Bundeswehr, Diss., 2023

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9351-3 ISSN 1863-0707

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Lehrstuhl für Elektrische Antriebe und Aktorik an der Universität der Bundeswehr München und wurde durch die finanzielle Unterstützung innerhalb des Projekts UmiStab des Forschungszentrums Jülich ermöglicht.

An dieser Stelle möchte ich allen beteiligten Personen meinen großen Dank aussprechen, die mich bei der Anfertigung meiner Dissertation unterstützt haben.

Ich danke Herrn Prof. Dr.-Ing. Dieter Gerling für die hervorragende Betreuung und ausgezeichnete Förderung dieser Arbeit, sowie den Freiraum und die enorme Unterstützung, die er mir zukommen ließ, um mich auch außerfachlich weiterbilden zu können. Dies alles wusste ich stets sehr zu schätzen.

Auch Herrn Prof. Dr.-Ing. Hans-Georg Herzog spreche ich meinen Dank für die Übernahme der Zweitkorrektur aus.

Nicht zuletzt bedanke ich mich ganz herzlich bei allen Mitarbeiterinnen und Mitarbeitern, allen Kolleginnen und Kollegen des Lehrstuhls für all die produktiven Gespräche und den fachlichen Austausch. Herrn Johannes Gerold und Herrn Christian Bratke danke ich besonders für die Durchsicht dieser Arbeit. Sie haben meine Arbeit durch ihre Bemühungen und Gedanken sehr vorangebracht. Auch bedanke ich mich bei Herrn Benedikt Stapff, ohne den meine Maschine vermutlich immer noch nicht ihren Weg in das Labor gefunden hätte. Für die kontinuierliche Unterstützung am Prüfstand danke ich Herrn Harald Graul und Herrn Harald Hofmann. Und für die vielen unterhaltsamen Heimfahrten bedanke ich mich bei Heidi Buller. Zusätzlich hervorheben möchte ich noch Lucas Brenner, Daniel Alban, Christian Roth, Johann Mayer und Gurakuq Dajaku.

Meiner Familie, meinem Partner Alexander Wild und der Familie meines Partners danke ich für ihre Geduld, ihre Ermutigungen und ihre Zusprüche während der Arbeit an dieser Dissertation.

Zuletzt möchte ich diese Arbeit meinen Familienmitgliedern widmen, welche die Fertigstellung leider nicht mehr miterleben konnten: Meinen Opas Gerd Heil und Adi Babl, meiner Oma Rosa Babl und meinem Onkel Adrian Babl.

München, Mai 2023

Alena Babl

Zusammenfassung

Im Rahmen dieser Arbeit wird eine permanenterregte Synchronmaschine mit umformtechnisch hergestelltem Statorblech untersucht. Diese Maschine weist eine Laminierung der Statorbleche in radialer Richtung, kornorientiertes Statorblech und Flussbarrieren im Stator auf. Flussbarrieren im Stator verändern die Luftspaltflussdichte, wodurch die Amplitude der Arbeitsharmonischen verstärkt wird und die Amplituden der ungewollten parasitären Harmonischen reduziert werden.

Der innovative Statoraufbau lässt sich vollständig analytisch beschreiben, wodurch eine grobe analytische Bestimmung aller Statordaten durch ein vereinfachtes Reluktanznetzwerk möglich ist. Durch die Verwendung von kornorientiertem Statorblech sowie die Statorlaminierung steigt der magnetische Widerstand in tangentialer Richtung, was als zusätzliche materielle Flussbarrieren interpretiert werden kann. Diese Flussbarrieren treten zwischen allen Spulen auf. Hierbei wäre zu erwarten, dass eine weitere Erhöhung der Amplitude der Arbeitsharmonischen der Luftspaltflussdichte erfolgt. Dies ist jedoch nicht der Fall, da die Anordnung der Flussbarrieren einen Einfluss auf den Harmonischengehalt der Luftspaltflussdichte hat. Hierbei stehen die materiellen Flussbarrieren den geometrischen Flussbarrieren gegenüber, sodass die Amplitude der Arbeitsharmonischen reduziert wird und ein Teil der Amplituden der parasitären Harmonischen gestärkt wird. Dies lässt sich ebenfalls anhand des äquivalenten Wicklungsfaktors zeigen.

Die Arbeit beschäftigt sich zusätzlich mit den Verlusten innerhalb dieses neuartigen Statoraufbaues. Ein Vorteil von kornorientiertem Blech liegt in den geringen Verlusten in Walzrichtung. In der Finite-Elemente-Methode-Simulation der Verluste zeigt sich jedoch, dass die Wirbelstromverluste im Stator überproportional mit der Länge der Maschine ansteigen, da sich die Wirbelströme in der gesamten Blechebene in axialer Richtung ausbreiten. Diese werden zum größten Teil von den Permanentmagneten im Rotor verursacht und sind nur gering abhängig von dem Statorstrom. Eine zusätzliche axiale Segmentierung des Stators verringert die Wirbelströme überproportional, während dünneres Blech zu höheren Verlusten führt.

Abschließend wird die Flussbarrierenmaschine mit einer Standard-Referenzmaschine durch Finite-Elemente-Methode-Simulationen und Messungen am Prüfstand verglichen. Es zeigt sich, dass die Einbringung von Flussbarrieren zu erhöhtem Drehmoment führt. Jedoch treten in der Flussbarrierenmaschine durch die radiale Laminierung deutlich erhöhte Verluste auf, wodurch das Drehmoment stark verringert wird. Für die Vermessung am Prüfstand muss die Flussbarrierenmaschine angepasst werden. Da die Maschine über das Gehäuse luftgekühlt ist, ist eine möglichst große Kontaktfläche zwischen Statorblech und Gehäuse notwendig. In der Messung zeigen sich bei der Flussbarrierenmaschine eine starke Temperaturentwicklung, stark erhöhte Verluste und ein verringerter Wirkungsgrad. Der Vorteil der Flussbarrierenmaschine liegt in der erhöhten Nutfläche. Für die Zukunft bietet die Maschine einige Ansätze zur Verbesserung, wie beispielsweise die Segmentierung des Stators in axialer Richtung, die Verwendung von dickerem Blech oder der Einsatz von aktiver Kühlung.

Abstract

In this thesis, a permanent magnet synchronous machine with stator laminations produced by forming technology is investigated. This machine has a lamination of the stator steel sheets in radial direction, grain-oriented stator steel sheets and flux barriers in the stator. Flux barriers in the stator change the air gap flux density, which increases the amplitude of the working harmonics and reduces the amplitudes of the parasitic harmonics.

The innovative stator design can be described analytically, which allows a rough analytical determination of all stator data through a simplified reluctance network. Due to the use of grain-oriented stator steel sheets, the magnetic resistance increases in the tangential direction, which can be interpreted as additional material flux barriers. These flux barriers occur between all coils. Here it would be expected that a further increase in the amplitude of the working harmonics of the air gap flux density occurs. However, this is not the case, as the arrangement of the flux barriers has an influence on the harmonic content of the air gap flux density. Here, the material flux barriers oppose the geometric flux barriers, so that the amplitude of the working harmonics is reduced and part of the amplitudes of the parasitic harmonics are strengthened. This can also be seen from the equivalent winding factor.

The thesis also deals with the losses within this novel stator design. One advantage of grain-oriented steel sheets is the low losses in the rolling direction. However, the finiteelement-analysis-simulation of the losses shows that the eddy current losses in the stator increase disproportionately with the length of the machine, since the eddy currents propagate in the axial direction throughout the steel sheet planes. These are largely caused by the permanent magnets in the rotor and are only slightly dependent on the stator current. Additional axial segmentation of the stator reduces the eddy currents disproportionately, while thinner steel sheets lead to higher losses.

Finally, the flux barrier machine is compared with a standard reference machine by means of finite-element-analysis-simulations and measurements on the test bench. This shows that the introduction of flux barriers leads to increased torque. However, significantly increased losses occur in the flux barrier machine due to the radial lamination, which reduces the torque. The flux barrier machine must be adapted for measurement on the test bench. Since the machine is air-cooled via the housing, a large contact area between the stator steel sheets and housing is necessary. The measurement shows high temperatures, greatly increased losses and reduced efficiency in the flux barrier machine. The advantage of the flux barrier machine is the increased slot area. For the future, the machine offers some approaches for improvement, such as segmenting the stator in the axial direction, using thicker steel sheets or using active cooling.

Inhaltsverzeichnis

AI	bbildu	ingsverzeichnis	v
Та	abelle	nverzeichnis	IX
AI	bkürz	ungsverzeichnis	хі
Sy	mbol	lverzeichnis	XIII
1	Einl	eitung	1
	1.1	Motivation	1
	1.2	Stand der Technik	2
	1.5	Ziel und Auldau der Arbeit	ა
2	Gru	ndlagen elektrischer Maschinen und Entwurf der Referenzmaschine	7
	2.1	Grundlagen elektrischer Maschinen	7
		2.1.1 Ausführungsformen	7
		2.1.2 Aufbau	8
		2.1.3 Maschinentopologien	9
		2.1.4 Vergleich der Maschinentopologien	10
	2.2	Wicklungen in elektrischen Maschinen	11
		2.2.1 Bezeichnung der Wicklungen	11
		2.2.2 Einteilung der Wicklungen	14
		2.2.3 Wicklungsfaktor	15
	2.3	Grundlagen des Reluktanznetzwerkes	17
		2.3.1 Idee des Reluktanznetzwerkes	18
		2.3.2 Der magnetische Widerstand	19
	~ .	2.3.3 Lösung des Gleichungssystems	20
	2.4	Entwurf der Referenzmaschine	21
		2.4.1 Anforderungen an die Referenzmaschine	22
		2.4.2 Design der Referenzmaschine	22
		2.4.3 Wicklung der Referenzmaschine	23
3	Des	ign der innovativen Flussbarrierenmaschine	27
	3.1	Grundlagen der Flussbarrieren	27
		3.1.1 Grundlegende Idee der Verlustreduzierung	27
		3.1.2 Umsetzung als Flussbarrieren	28
		3.1.3 Wicklungsfaktor bei Verwendung von Flussbarrieren \ldots	30
		3.1.4 Alternative Statortopologien mit Flussbarrieren	31
	3.2	Parametrierter Aufbau	31
	3.3	Analytische Parameterbestimmung	35
		3.3.1 Aufstellung des Reluktanznetzwerkes	36

 3.3.3 Lösung des Reluktanznetzwerkes 3.3.4 Bestimmung der Verteilung der magnet 3.3.5 Bestimmung der geometrischen Paramet 3.4 Simulative Parameterbestimmung 3.4.1 Statorbetrachtung	enetzwerk
 3.3.4 Bestimmung der Verteilung der magnet 3.3.5 Bestimmung der geometrischen Parame 3.4 Simulative Parameterbestimmung	
 3.3.5 Bestimmung der geometrischen Parama 3.4 Simulative Parameterbestimmung	ischen Spannungen 42
 3.4 Simulative Parameterbestimmung	eter
 3.4.1 Statorbetrachtung	
 3.4.2 Stator- und Rotorbetrachtung 4 Auswirkungen der Werkstoffeigenschaften 4.1 Grundlagen der Elektrobleche	
 4 Auswirkungen der Werkstoffeigenschaften 4.1 Grundlagen der Elektrobleche	
 4.1 Grundlagen der Elektrobleche	57
 4.1.1 Grundbegriffe des Magnetismus	
 4.1.2 Ferromagnetismus	
 4.1.3 Einsatz von Elektroblechen	
 4.1.4 Kornorientierung	
 4.1.5 Laminierung	
 4.1.6 Mechanische Beanspruchung 4.2 Einfluss der Werkstoffeigenschaften auf das Lu 4.2.1 Auswirkung der Laminierung 4.2.2 Auswirkung der Kornorientierung 4.2.3 Auswirkung der Kornorientierung und Korr 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung	
 4.2 Einfluss der Werkstoffeigenschaften auf das Lu 4.2.1 Auswirkung der Laminierung 4.2.2 Auswirkung der Kornorientierung 4.2.3 Auswirkung der Kornorientierung und Korr 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung 5.1.1 Stromwärmeverluste 5.1.2 Eisenverluste 5.1.3 Magnetverluste 5.1.3 Magnetverluste 5.1.4 Analytische Verifizierung der FEM-Sim 5.2 FEM-Simulation der Wirbelstromverlus 5.2.3 Verwendung von anisotropem Blechmat 5.2.4 Verwendung von Blechmaterial mit nic 5.2.5 Rückwirkung der Wirbelströme im Statt 5.2.6 Reduzierung der Wirbelströme im Statt 5.2.7 Quantitative Bestimmung der Wirbelströme 5.3 Untersuchung der Magnetverluste 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungseff 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrieren 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 	
 4.2.1 Auswirkung der Laminierung 4.2.2 Auswirkung der Kornorientierung 4.2.3 Auswirkung der Kornorientierung und Korn 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung	ftspaltfeld 67
 4.2.2 Auswirkung der Kornorientierung 4.2.3 Auswirkung der Laminierung und Korn 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung	
 4.2.3 Auswirkung der Laminierung und Korr 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung 5.1.1 Stromwärmeverluste 5.1.2 Eisenverluste	
 4.2.4 Untersuchung und Nachbildung der Eff 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung	orientierung 69
 5 Untersuchung der Verluste 5.1 Grundlagen der Verlustberechnung 5.1.1 Stromwärmeverluste	ekte 70
 5.1 Grundlagen der Verlustberechnung 5.1.1 Stromwärmeverluste	83
 5.1.1 Stromwärmeverluste	
 5.1.2 Eisenverluste	
 5.1.3 Magnetverluste	
 5.2 Bestimmung der Wirbelstromverluste im State 5.2.1 Analytische Verifizierung der FEM-Sim 5.2.2 FEM-Simulation der Wirbelstromverlus 5.2.3 Verwendung von anisotropem Blechmar 5.2.4 Verwendung von Blechmaterial mit nic 5.2.5 Rückwirkung der Wirbelströme im Stat 5.2.6 Reduzierung der Wirbelströme im Stat 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungsefft 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrieree 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	
 5.2.1 Analytische Verifizierung der FEM-Sim 5.2.2 FEM-Simulation der Wirbelstromverlus 5.2.3 Verwendung von anisotropem Blechmar 5.2.4 Verwendung von Blechmaterial mit nic 5.2.5 Rückwirkung der Wirbelströme im Stat 5.2.6 Reduzierung der Wirbelströme im Stat 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungseff 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrieren 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.2 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	or
 5.2.2 FEM-Simulation der Wirbelstromverlus 5.2.3 Verwendung von anisotropem Blechmar 5.2.4 Verwendung von Blechmaterial mit nick 5.2.5 Rückwirkung der Wirbelströme im Statt 5.2.6 Reduzierung der Wirbelströmverluste in 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungseff 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrieren 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	ulation
 5.2.3 Verwendung von anisotropem Blechmaris. 5.2.4 Verwendung von Blechmaterial mit nick 5.2.5 Rückwirkung der Wirbelströme im Statistiche Statistiche Statistiche Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste	ste im Stator
 5.2.4 Verwendung von Blechmaterial mit nici 5.2.5 Rückwirkung der Wirbelströme im Stat 5.2.6 Reduzierung der Wirbelströmverluste in 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste	terial
 5.2.5 Rückwirkung der Wirbelströme im Stat 5.2.6 Reduzierung der Wirbelströmverluste in 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungseffe 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste	nt linearen Eigenschaften 104
 5.2.6 Reduzierung der Wirbelstromverluste in 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste 5.3.1 Wirbelströme aufgrund der Nutungseffe 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrierer 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	or
 5.2.7 Quantitative Bestimmung der Wirbelst 5.3 Untersuchung der Magnetverluste	m Stator
 5.3 Untersuchung der Magnetverluste	romverluste am Nennpunkt 108
 5.3.1 Wirbelströme aufgrund der Nutungseff 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarriere 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	
 5.3.2 Wirbelströme aufgrund der Statorharm 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarriere 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschine 	ekte
 5.3.3 Reduzierung der Magnetverluste 6 Vergleich des Betriebsverhaltens der Flussbarrieren 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschin 	onischen
 6 Vergleich des Betriebsverhaltens der Flussbarriere 6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschin 	
6.1 FEM-Simulation der Maschinen am Nennpunk 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschi	n- und Referenzmaschine 117
 6.1.1 FEM-Simulation der Flussbarrierenmas 6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschin 	t
6.1.2 FEM-Simulation der Referenzmaschine 6.2 Simulativer Vergleich und Analyse der Maschi	chine
6.2 Simulativer Vergleich und Analyse der Maschin	
	nen
6.3 Zusammenhang zwischen der Flussbarrieren- u	and Referenzmaschine 124
6.3.1 Harmonische bei reiner Statorstromspe	isung
6.3.2 Harmonische im Leerlauf	

6.4 Auswirkungen fertigungsbedingter Ungenauigkeiten	129
6.4.1 Ungleichmäßige Länge der Einzelbleche im Statorzahn	129
6.4.2 Radiale Verschiebung des Rotors	131
6.4.3 Verdrehung der U-Module bei axialer Segmentierung	132
7 Validierung der Flussbarrieren- und Referenzmaschine	135
7.1 Anpassungen der Flussbarrierenmaschine	135
7.1.1 Temperaturentwicklung	135
7.1.2 Fertigung	136
7.1.3 Auswirkungen des Biegens auf die magnetischen Eigenschaften	137
7.1.4 Alternative innovative Statorgeometrie	138
7.1.5 Zusammenhang zwischen beiden Statorgeometrien	140
7.2 Validierung der Flussbarrierenmaschine am Prüfstand	142
7.2.1 Messung der Flussbarrierenmaschine Version 2	142
7.2.2 Vergleichende FEM-Simulation der Flussbarrierenmaschine Versi	on 2 . 145
7.3 Validierung der Referenzmaschine	147
7.3.1 Messung der Referenzmaschine	147
7.3.2 Vergleichende FEM-Simulation der Referenzmaschine	149
7.4 Analyse und Vergleich der Maschinen am Prüfstand	151
8 Fazit und Ausblick	155
8.1 Zusammenfassung der Arbeit	155
8.2 Ausblick	157
A Daten der Maschinen	i
B Herleitung der Zahnhöhe	iii
C Matrizen zur Lösung des Reluktanznetzwerkes	v
C Matrizen zur Lösung des Reluktanznetzwerkes D Prüfstandsgeräte	v vii

Abbildungsverzeichnis

1.1	Anzahl der neu zugelassenen Elektroautos in Deutschland von 2012 bis 2022 .	1
2.1	Aufbau elektrischer Maschinen	8
2.2	Topologien elektrischer Drehfeldmaschinen	9
2.3	Bestandteile einer Wicklung	12
2.4	Wicklungen mit unterschiedlicher Anzahl der Schichten	13
2.5	Vergleich der Spulenweiten	13
2.6	Einteilung der Wicklungsarten anhand ihrer Lochzahl	14
2.7	Rechteckiger durchflossener Sektor	19
2.8	Radial und polar durchflossener Sektor	20
2.9	Querschnitt der Referenzmaschine	23
2.10	Wicklungsaufbau der Einschichtwicklung	23
2.11	Bewickelter Stator der Referenzmaschine	25
9.1	Quarsahnitt ainer PMSM mit 12 Nuten, 10 Polen und Zweischichtwicklung	28
3.1	Reluktenznetzwerk für eine Zehrteilung zur Herleitung der Flussberrieren	20
3.2 3.3	Anordnung der Flussbarrieren	29
3.0	Waitara Statartanalogian mit Flugsbarriaran	23
0.4 3.5	Overschnitt der innovativen Statorgeometrie	32
3.6	Competitio singe II Module	22
3.7	Geometrie eines U-Moduls zur Bestimmung der Fläche	35
3.8	Flusspfade in der Statorgeometrie	36
3.9	Beluktanznetzwerk des halben Stators	37
3.10	Definition der magnetischen Widerstände	37
3.11	Feldverlauf einer Doppelleitung	39
3.12	Flusspfade für maximalen und minimalen Widerstand	40
3.13	Verteilung der magnetischen Spannungen hei Speisung einer Spule	42
3.14	Verteilung der magnetischen Spannungen bei Speisung aller drei Stränge	43
3.15	Analytische Bestimmung der 7 Harmonischen	45
3.16	Analytische Bestimmung der 5. Harmonischen	46
3.17	Analytische Bestimmung der 1 Harmonischen	47
3.18	FEM-Modell bei reiner Statorbetrachtung	48
3.19	Simulative Bestimmung der 7. Harmonischen	48
3.20	Luftspaltflussdichte aus der FEM-Simulation und der Analytik	49
3.21	Simulative Bestimmung der 5. Harmonischen	50
3.22	Simulative Bestimmung der 1. Harmonischen	50
3.23	Maschinenmodell für die Bestimmung der Geometrie	51
3.24	Simulative Bestimmung des Drehmomentes über eine Parametervariation	52
3.25	Simulative Bestimmung der Magnetverluste über eine Parametervariation	53
3.26	Simulative Bestimmung der Eisenverluste über eine Parametervariation	54
-	0	

3.27	Simulative Bestimmung der Leistung über eine Parametervariation	54
3.28	Simulative Bestimmung der Drehmomentrippel über eine Parametervariation	55
4.1		<i>a</i> 0
4.1		00
4.2	Entstenung der Hystereseschielle	01
4.3	Produktion von nicht kornorientiertem Elektroblech	02
4.4	Schematische Darstellung der Statornerstellung	03
4.5	Lage der Eisen-Elementarzeile bei der Wurrel- und Gosstextur	04
4.6	Magnetisierungskurven der Eisenkristalle	65
4.7	Schematische Darstellung der Laminierung	66
4.8	Auswirkung des Biegens des Bleches auf die Neukurve	66 66
4.9	Auswirkung des Biegens des Bieches auf die Hysteresekurve	00
4.10	FEM-Modell zur Untersuchung der Werkstoffeffekte mit laminiertem Stator	67
4.11	Harmonischengehalt eines laminierten Blechstapels	68
4.12	Harmonischengehalt eines massivem Blechstapels mit anisotropem Werkstoff	69
4.13	Harmonischengehalt eines laminierten Blechstapels mit anisotropem Werkstoff	70
4.14	Harmonischengenalt bei Anordnung der Flussbarrieren zwischen gleichphäsigen	71
4.15	Versiefechter Meschingerungeheitteren Unterenschungerung Teiligen Einerkerminnen	71
4.10	Palaktenen stemmen einen Saula aus Abbildung 4.15	12
4.10	Reluktanznetzwerk einer Spule aus Abbildung 4.15a	12
4.17	Refuktanznetzwerk einer Spute aus Abbildung 4.150	10
4.10	Luitspaithussdichte der Netzwerke aus den Abbildungen 4.10 und 4.17	13
4.19	Amplituden der Harmonischen aus der Analytik bei konstanten Flussbarrieren 1	70
4.20	Amplituden der Harmonischen aus der Analytik bei gleichmabig steigender	77
4 91	Vereleich des ägnigelenten Wieldungsfelttens	77
4.21	FFM Modell zur Untersuchung der Effekte zusätzlicher Eluscherrieren en	11
4.22	einem Standardstator	78
1 22	Amplituden der Harmonischen aus der FFM Simulation hei konstanten Fluss	10
4.20	harrieren 1	79
4 24	Amplituden der Harmonischen aus der FEM-Simulation bei gleichmäßig stei-	10
1.21	gender Breite der Flussbarrieren 1	79
4.25	Vergleich des Harmonischengehalt des Rotorfeldes	80
5.1	Mittlere Windungslänge einer Spule	84
5.2	Wirbelstrompfad innerhalb eines Bleches	85
5.3	Grenzfrequenzen bei verschiedenen Blechdicken und Permeabilitäten $\ . \ . \ .$	87
5.4	Wirbelstrompfade an den Blochwänden	88
5.5	Luftspaltflussdichte über eine Nut	89
5.6	Pfade der Wirbelströme im Magneten	91
5.7	Modell zur Berechnung der Wirbelströme an einem Einzelblech mit Stator-	
	stromspeisung	93
5.8	Reluktanznetzwerk zur Berechnung der Wirbelströme an einem Einzelblech	
	mit Statorstromspeisung	93
5.9	Querschnitte der Modelle aus Tabelle 5.2	95
5.10	Verlustfaktoren der Wirbelstromverluste bei Skalierung der Maschinenlänge	96
5.11	Wirbelströme am Einzelblech erzeugt durch das Statorfeld	97

5.12	Wirbelstromverluste und Verlustfaktor am Einzelblech erzeugt durch das
	Rotorfeld
5.13	Flusspfade bei verschiedenen Rotorpositionen für das Einzelblech 98
5.14	Wirbelströme am Einzelblech erzeugt durch das Rotorfeld
5.15	Wirbelströme am Blechstapel erzeugt durch das Statorfeld
5.16	Wirbelstromverluste und Verlustfaktor am Blechstapel erzeugt durch das
	Rotorfeld
5.17	Wirbelströme am Blechstapel erzeugt durch das Rotorfeld 100
5.18	Rotorposition bei maximalen Wirbelstromverlusten für den Blechstapel 101
5.19	Wirbelstromverluste und Verlustfaktor in der gesamten Maschinenbetrachtung
	erzeugt durch das Rotorfeld
5.20	Wirbelströme in der gesamten Maschinenbetrachtung erzeugt durch das Rotorfeld102
5.21	Flussdichte durch die Stirnfläche des Einzelbleches erzeugt durch das Rotorfeld103
5.22	Flussdichte durch die Seitenflächen des Einzelbleches erzeugt durch das Rotorfeld104
5.23	Magnetische Flussdichte des Blechstapels
5.24	Rückwirkung der Wirbelströme auf das anregende Feld \ldots \ldots \ldots \ldots \ldots 106
5.25	Reduzierung der Verluste am Einzelblech durch axiale Unterteilung 107
5.26	Approximation der Wirbelstromverluste aus der FEM-Simulation 108
5.27	Abweichungen der Approximation der Wirbelstromverluste aus der FEM-
	Simulation
5.28	Extrapolation der Wirbelstromverluste aus der FEM-Simulation 110
5.29	Reduzierung der Verluste am Nennpunkt durch axiale Unterteilung 111
5.30	Wirbelstromverluste aus der FEM-Simulation bei verschiedenen Blechdicken . 112
5.31	Wirbelstromverluste in den Permanentmagneten 113
5.32	Amplituden der Luftspaltflussdichte der Harmonischen aus der FEM-Simulation114
5.33	Magnetverluste im Leerlauf mit und ohne Flussbarrieren
5.34	Magnetverluste im Nennpunkt mit und ohne Flussbarrieren
5.35	Magnetverluste im Nennpunkt mit und ohne Segmentierung
61	FFM Modell der Flugsberrierenmeschine 118
6.2	FEM Modell der Referenzmaschine
6.3	FEM-Modell der Referenzmaschine mit Flussbarrieren 120
6.4	Verluste im Nennpunkt der Flussbarrieren- und Referenzmaschine 121
6.5	Mechanische Drehmomente im Nennpunkt der Flussbarrieren- und Referenz-
0.0	maschine 122
6.6	Wirkungsgrade im Nennpunkt der Flussbarrieren- und Referenzmaschine
6.7	Modelle zur Evolution der Flussbarrierenmaschine aus der Referenzmaschine 124
6.8	Harmonische bei reiner Stromspeisung bei Evolution der Flussbarrierenmaschine 126
6.9	Harmonische im Leerlauf bei Evolution der Flussbarrierenmaschine
6.10	Mögliche fertigungsbedingte Ungenauigkeiten der Flussbarrierenmaschine 129
6.11	Drehmomente bei Abweichung der Bleche
6.12	Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlichen Abwei-
	chungen der Bleche
6.13	Drehmomente bei einer radialen Verschiebung des Rotors
6.14	Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlicher radialer
	Verschiebung des Rotors
6.15	Drehmomente bei Verdrehung der U-Module 132

6.16 Drehmomentrippel bezogen auf das Drehmoment bei unterschiedlicher Vero	
	hung der U-Module
	5
7.1	Winkel der Rückfederung eines einzelnen Bleches über den Biegeradius 137
7.2	Gebogene Bleche mit unterschiedlichen Radien
7.3	Magnetisierungskurven eines Einzelbleches bei verschiedenen Blechradien ge-
	messen durch Epstein-Test
7.4	Eisenverluste eines Einzelbleches bei verschiedenen Blechradien gemessen durch
	Epstein-Test
7.5	Querschnitt der Statorgeometrie V2
7.6	Gefertigter Stator der Flussbarrierenmaschine V2
7.7	Bewickelter Stator der Flussbarrierenmaschine V2
7.8	Drehmoment über den Außenradius der gebogenen Bleche 140
7.9	Verluste über den Außenradius der gebogenen Bleche
7.10	Wirbelstromverluste im Stator bei verschiedenen Außenradien der gebogenen
	Bleche
7.11	Messaufbau und Leistungsmessgeräte für die Messungen der Maschinen 143
7.12	Gemessene Strangspannung im Leerlauf der Flussbarrierenmaschine V2 \ldots . 145
7.13	Gemessenes Wirkungsgradkennfeld der Flussbarrierenmaschine V2 \ldots . 144
7.14	Simulierte Strangspannung im Leerlauf der Flussbarrierenmaschine V2 \ldots . 144
7.15	Simuliertes Wirkungsgradkennfeld der Flussbarrierenmaschine V2 146
7.16	Gemessene Strangspannung im Leerlauf der Referenzmaschine
7.17	Gemessenes Wirkungsgradkennfeld der Referenzmaschine
7.18	Simulierte Strangspannung im Leerlauf der Referenzmaschine 148
7.19	Simuliertes Wirkungsgradkennfeld der Referenzmaschine
7.20	Vergleich der Wirkungsgradkennfelder bei gleichen Konditionen 156

Tabellenverzeichnis

$2.1 \\ 2.2$	Gegenüberstellung verschiedener Maschinentopologien	11 18
$\frac{3.1}{3.2}$	Funktionswerte der Verteilung der magnetischen Spannungen Funktionswerte der Luftspaltflussdichte bei Stromspeisung aus der FEM-	44
0.2	Simulation und der Analytik	49
4.1	Abweichungen zwischen den Amplituden der Harmonischen bei massivem und laminierten Stator	68
4.2	Abweichungen zwischen den Amplituden der Harmonischen bei isotropen und anisotropen Stator	69
4.3	Abweichungen zwischen den Amplituden der Harmonischen bei massivem Stator mit isotropem Werkstoff und laminiertem Stator mit anisotropem	70
4.4	Abweichungen zwischen den Amplituden der Harmonischen bei massivem Blechstapel mit isotropem Werkstoff und laminiertem Blechstapel mit aniso-	10
4.5	tropem Werkstoff bei Stärkung der 5. Harmonischen	71
	Flussbarrieren und des äquivalenten Wicklungsfaktors	75
$5.1 \\ 5.2 \\ 5.3$	Relevante Daten für die analytische Wirbelstromberechnung	94 95 113
$ \begin{array}{l} 6.1 \\ 6.2 \\ 6.3 \end{array} $	Betriebspunkt der Flussbarrierenmaschine im Nennpunkt aus der FEM-Simulation Betriebspunkt der Referenzmaschine im Nennpunkt aus der FEM-Simulation Simulationsmodelle für die Maschinenevolution	118 119 125
$7.1 \\ 7.2$	Kenndaten im Nennpunkt der Flussbarrierenmaschine V2 aus der Messung . The Kenndaten im Nennpunkt der Flussbarrierenmaschine V2 aus der FEM-	144
73	Simulation	146 148
7.4	Kenndaten im Nennpunkt der Referenzmaschine aus der FEM-Simulation	150
7.5	Maximaler Wirkungsgrad beider Maschinen	152
A.1	Eckdaten der Maschinen	i
A.2	Kenndaten der Permanentmagneten	i
D.1	Siemens NebenschlMot. 1GG5134-0GK46-6VV1-Z	vii
D.2	Geräte für die mechanische und elektrische Leistungsmessung	vii
D.3	Lusatziicne Messgerate	V11

Abkürzungsverzeichnis

- ASM Asynchronmaschine
- **FEM** Finite-Elemente-Methode
- FB Flussbarriere
- FSM Flux-switching permanenterregte Synchronmaschine
- **PMSM** permanenterregte Synchronmaschine
- \mathbf{QR} Querrichtung
- RM Reluktanzmaschine
- ${\bf SM} \qquad {\rm Synchronmaschine} \qquad$
- WR Walzrichtung

Symbolverzeichnis

Formelzeichen	Beschreibung	Einheit
<i>a</i> ,	Fourierkoeffizient	_
a _K	Anzahl der parallelen Zweige	_
A	Fläche	m^2
Acu	Kupferfläche	m^2
A	Leiterfläche	m^2
Appendix	Durchflussfläche des magnetischen Widerstandes der ν -	m^2
$- PM, ax(\nu)$	ten Harmonischen in den Permanentmagneten in axiale	
	Richtung	
$A_{\rm PM top}(u)$	Durchflussfläche des magnetischen Widerstandes der	m^2
$-r m, tan(\nu)$	ν -ten Harmonischen in den Permanentmagneten in tan-	
	gentiale Richtung	
A_{Ω}	Nutfläche	m^2
$b_{\rm FB}$	Flussbarrierenbreite	m
$b_{\rm FB,1}$	Flussbarrierenbreite am Zahnkopf	m
$b_{\rm FB,2}$	Flussbarrierenbreite am Joch	m
$b_{\rm FB,m}$	Mittlere Flussbarrierenbreite	m
b_k	Fourierkoeffizient	_
$b_{\rm p}$	Polbreite	m
$b_{\rm PM}$	Magnetbreite	m
$b_{\rm Q}$	Nutbreite	m
b_{Sp}	Spulenbreite	m
$b_{\rm Z}$	Zahnbreite	m
В	Magnetische Flussdichte	Т
B_{δ}	Luftspaltflussdichte	Т
\hat{B}_{δ}	Amplitude der Luftspaltflussdichte	Т
$B_{\delta, avg}$	Durchschnittliche Luftspaltflussdichte	Т
$B_{\delta,\max}$	Maximale Luftspaltflussdichte	Т
$B_{\delta,\min}$	Minimale Luftspaltflussdichte	Т
$\hat{B}_{\delta(\nu)}$	Amplitude der Luftspaltflussdichte der ν -ten Harmoni-	Т
\hat{D}	Annulitude des meticeles Elucadielte im Eisen	T
D _{Fe}	Remenengflugsdichte	I T
$D_{\rm r}$	Meterialspezifischer Wert der anormalen Wirhelstrom	1
C	verluste	—
$d_{\rm Fe}$	Blechdicke	m
D_{1a}	Statoraußendurchmesser	m
$D_{1\mathrm{i}}$	Statorinnendurchmesser	m

Formelzeichen	Beschreibung	Einheit
D_{2}	Botoraußendurchmesser	m
E	Elektrische Feldstärke	V/m
f	Frequenz	Hz
f_1	Statorfrequenz	Hz
f _{FP}	Verhältnis der Flussbarrieren zwischen den Spulen zu	_
JFD	den Flussbarrieren zwischen den Strängen	
$f_{\rm G,w}$	Grenzfrequenz der Wirbelströme	$_{\rm Hz}$
$f_{\rm PM(\nu)}$	Frequenz der ν -ten Harmonischen im Permanentmagne-	Hz
· · /	ten	
$f_{ m Wol}$	Wolmansche Grenzfrequenz	Hz
$F(\lambda_{\rm i})$	Faktor der Stromverdrängung	—
h	Höhe	m
$h_{ m Fe}$	Blechhöhe	m
$h_{ m Fe,1}$	Höhe der Blechinnenseite	m
$h_{ m Fe,2}$	Höhe der Blechaußenseite	m
h_{PM}	Magnethöhe	m
h_{Z}	Zahnhöhe	m
H	Magnetische Feldstärke	A/m
$H_{\rm c}$	Koerzitivfeldstärke	A/m
I	Strom	A
$I_{\rm S}$	Strangstrom	А
j	Stromdichte	A/m^2
j _N	Nennstromdichte	A/m^2
$j_{0, PM(\nu)}$	Oberflächenwirbelstromdichte der ν -ten Harmonischen	A/m^2
	im Permanentmagneten	
$j_{\rm PM}(\nu)$	Wirbelstromdichte der ν -ten Harmonischen im Perma-	A/m^2
01 M(0)	nentmagneten	,
J	Magnetische Polarisation	Т
$J_{\rm r}$	Remanente Polarisation	Т
$J_{\rm S}$	Sättigungspolarisation	Т
$\tilde{k_{Cu}}$	Kupferfüllfaktor	_
k_{Pw}	Verlustfaktor bei Skalierung der Maschinenlänge	_
l	Länge	m
$l_{\rm Fe}$	Blechlänge	m
l_{i}	Maschinenlänge	m
$l_{ m m}$	Mittlere Windungslänge	m
l _p	Pollänge	m
$l_{\rm PM}^{\rm F}$	Magnetlänge	m
m	Anzahl der Statorstränge	_
M	Magnetisierung	A/m
$M_{\rm emag}$	Elektromagnetisches Drehmoment	Ńm
$M_{\rm me}$	Mechanisches Drehmoment	Nm
n	Drehzahl	\min^{-1}
$n_{ m N}$	Nenndrehzahl	\min^{-1}
$N_{\rm FB}$	Anzahl der Flussbarrieren	_
$N_{\rm Fe}$	Anzahl der Bleche	—

p Polpaarzahl- p_{mag} Magnetisches Moment Am^2 P_1 EingangsleistungW P_a Anomale WirbelstromverlusteW P_a Anomale WirbelstromverlusteW P_{re} EisenverlusteW P_{me} Mechanische LeistungW P_{rM} PermanentmagnetverlusteW P_{rM} Permanentmagnetverluste der ν -ten HarmonischenW P_{rM} Klassische WirbelstromverlusteW Q Wärmekg gm^2/s^2 Q_S Anzahl der Statornuten- r_{PM} Magnetradiusm r_{rM} Magnetradiusm r_{rM} Magnetischer Widerstand Ω R_m, δ Magnetischer Widerstand $\Lambda/(Vs)$ R_m, Fe Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m, Fe Magnetischer Widerstand des Joches $A/(Vs)$ R_m, S Elektrischer Strangwiderstand Ω $R_m, Magnetischer Widerstand des ZahnsA/(Vs)R_m, SElektrischer Strangwiderstand\OmegaR_m, Magnetischer Widerstand des ZahnsA/(Vs)R_m, SElektrischer Strangwiderstand\OmegaR_m, Magnetischer Widerstand des ZahnsA/(Vs)$	Formelzeichen	Beschreibung	Einheit
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	Polnaarzahl	_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	р п	Magnetisches Moment	Λm^2
P_a Impargarsaturag V P_a Anomale WirbelstromverlusteW P_p EisenverlusteW P_h HystereseverlusteW P_me Mechanische LeistungW P_{PM} Permanentmagnetverluste der ν -ten HarmonischenW P_{PM} Permanentmagnetverluste der ν -ten HarmonischenW P_{Str} StromwärmeverlusteW Q Wärme W Q Wärmekg m²/s² Q_S Anzahl der Statornuten $ r_{PM}$ Magnetradiusm r_{Sp} Radius der Spulem r_{U} Außentradius der gebogenen Blechem R_m Magnetischer Widerstand Ω R_m, FB Magnetischer Widerstand der Flussbarriere $A/(Vs)$ R_m,FB Magnetischer Widerstand der Flussbarriere $A/(Vs)$ R_m,FB Magnetischer Widerstand der ν -ten Harmonischen in $A/(Vs)$ R_m,FB Magnetischer Widerstand der Soches $A/(Vs)$ R_m,FB Magnetischer Widerstand des Joches $A/(Vs)$ R_m,J Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Spannung V U_1 Induzierte Spannung V U_1 Induzierte Spannung V U_1 Elektrische Spannung V V_1 Induzierte Spannung V V_1 Induzierte Spannung V V_1 Induzierte Spannung<	Pmag P.	Fingangeleistung	W
r_a HummerHummerW $P_{\rm rbc}$ EisenverlusteW $P_{\rm rb}$ HystereseverlusteW $P_{\rm rbc}$ Mechanische LeistungW $P_{\rm rbc}$ PermanentmagnetverlusteW $P_{\rm rbf}$ Permanentmagnetverluste der ν -ten HarmonischenW $P_{\rm str}$ StromwärmeverlusteW $P_{\rm str}$ StromwärmeverlusteW q Lochzahl- Q Wärmekg m²/s² $Q_{\rm S}$ Anzahl der Statornuten- $r_{\rm rbf}$ Radius der Spulem $r_{\rm U}$ Außenradius der gebogenen Blechem $r_{\rm u}$ Außenradius der gebogenen Blechem $R_{\rm m}$ Elektrischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m, \delta}$ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m, FB}$ Magnetischer Widerstand des Joches $A/(Vs)$ $R_{\rm m, FB}$ Magnetischer Widerstand des Joches $A/(Vs)$ $R_{\rm m, FB}$ Magnetischer Widerstand des Zahns $A/(Vs)$ $R_{\rm m, FL}$ Magnetischer Widerstand des Zahns $A/(Vs)$ $R_{\rm m, FL}$ Magnetischer Widerstand des Zahns $A/(Vs)$ $R_{\rm m}$ Magnetischer Spannung V $V_{\rm i}$ Induzierte Spann	P	Anomale Wirbelstromverluste	W
$\begin{array}{lcccc} P_{\rm h} & {\rm Histereseverluste} & {\rm W} \\ P_{\rm me} & {\rm Mechanische Leistung} & {\rm W} \\ P_{\rm PM} & {\rm Permanentmagnetverluste} & {\rm W} \\ P_{\rm PM}(\nu) & {\rm Permanentmagnetverluste} & {\rm W} \\ P_{\rm Str} & {\rm Stromwärmeverluste} & {\rm W} \\ P_{\rm w} & {\rm Klassische Wirbelstromverluste} & {\rm W} \\ P_{\rm w} & {\rm Klassische Wirbelstromverluste} & {\rm W} \\ Q & {\rm Ucchzahl} & - \\ Q & {\rm Wärme} & {\rm kgm^2/s^2} \\ Q_{\rm S} & {\rm AnzahlderStatornuten} & - \\ r_{\rm PM} & {\rm Magnetradius} & {\rm m} \\ r_{\rm Sp} & {\rm RadiusderSpule} & {\rm m} \\ r_{\rm U} & {\rm AufenradiusdergebogenenBleche} & {\rm m} \\ R & {\rm ElektrischerWiderstand} & {\rm A}/({\rm Vs}) \\ R_{\rm m}, {\rm FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, FB} & {\rm MagnetischerWiderstanddesLuftspaltes} & {\rm A}/({\rm Vs}) \\ R_{\rm m, PM}(\nu) & {\rm MagnetischerWiderstanddesZahns} & {\rm A}/({\rm Vs}) \\ R_{\rm m, PM}(\nu) & {\rm MagnetischerWiderstanddesZahns} & {\rm A}/({\rm Vs}) \\ R_{\rm S} & {\rm ElektrischerStrangwiderstand} & {\rm S} \\ R_{\rm th} & {\rm Wärnewiderstand} & {\rm K}/{\rm W} \\ s & {\rm Strecke} & {\rm m} \\ t & {\rm Zeit} & {\rm s} \\ T & {\rm Temperatur} & {\rm K} \\ U & {\rm ElektrischerSpannungder} & {\rm V} \\ U_{\rm LPM}(\nu) & {\rm InduzierteSpannungder\nu-tenHarmonischeninden} & {\rm V} \\ U_{\rm LPM}(\nu) & {\rm InduzierteSpannungder\nu-tenHarmonischeninden} & {\rm V} \\ V_{\rm U} \\ {\rm Magnetische}Spannungder\nu-tenHarmonischeninden} & {\rm V} \\ V_{\rm VD} \\ {\rm Unmen} & {\rm m}^{3} \\ V_{\rm FB} & {\rm MagnetischeSpannungder\nu-tenHarmonischeninden} & {\rm A} \\ V_{\rm V} \\ Volumen & {\rm m}^{3} \\ V_{\rm W} & {\rm Volumen} & {\rm m}^{3} \\ V_{\rm W} & {\rm MagnetischeSpannungder\nu-tenHarmonischeninden} & {\rm A} \\ V_$	Pn	Ficenverluste	W
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I Fe D	Hystorosoverluste	W
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	D D	Mochanische Leistung	W
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n me Den s	Permanentmagnetverlugte	W
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D D	Permanentmagnetverluste der <i>u</i> ten Harmonischen	W
PstrStrömkanneventusteW P_w Klassische WirbelstromverlusteW q Lochzahl- Q Wärmekg m²/s² Q_S Anzahl der Statornuten- r_{PM} Magnetradiusm r_{Sp} Radius der Spulem r_U Außenradius der gebogenen Blechem R_m Elektrischer Widerstand Q R_m, δ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m,FB Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m,FB Magnetischer Widerstand des Joches $A/(Vs)$ R_m,Pe Magnetischer Widerstand des Joches $A/(Vs)$ $R_m,Pm(\nu)$ Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_{th} Wärmewiderstand Ω R_{th} Wärmewiderstand Ω R_{th} Wärmewiderstand V V Induzierte Spannung V U_i Induzierte Spannung V U_i Induzierte Spannung V U_i Induzierte Spannung V V_{iPB} Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{Fe} Eisenvolumen m^3 V_{Fe} Eisenvolumen m^3 V_m Magnetische Spannung V V_i_{FB} Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{Fe} Eisenvolumen	$^{I} PM(\nu)$	Stromwärmovorluste	W
T_w Rassister Wildestonivernatew q Lochzahl- Q Wärmekg m²/s² Q_S Anzahl der Statornuten- r_{PM} Magnetradiusm r_{Sp} Radius der Spulem rU Außenradius der gebogenen Blechem R_m Elektrischer Widerstand Ω R_m , Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m,FB Magnetischer Widerstand des Joches $A/(Vs)$ R_m,J Magnetischer Widerstand des Joches $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Strangwiderstand Ω R_m,Z Magnetischer Strangwiderstand Ω R_th Wärmewiderstand K/Ws s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische Spannung V U_i Induzierte Spannung der ν -ten Harmonischen in den $Permanentmagneten$ U_N Elektrische Nennspannung V U_i Induzierte Spannung V V_i Volumenm³ M Elektrische Spannungsprünge im Luftspalt an einer $Flussbarriere$ V_{Fe} Eisenvolumenm³ V_{Fe}	r Str	Stromwarmevenuste Klassische Wirbelstromwerbuste	W
qDotnam $-$ QWärmekg m²/s²QsAnzahl der Statornuten $ r_{PM}$ Magnetradiusm r_{Sp} Radius der Spulem r_{U} Außenradius der gebogenen Blechem R Elektrischer Widerstand Ω R_m Magnetischer Widerstand $A/(Vs)$ R_m,FB Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m,FB Magnetischer Widerstand des Eisens $A/(Vs)$ R_m,FB Magnetischer Widerstand des Joches $A/(Vs)$ $R_m,PM(\nu)$ Magnetischer Widerstand des Joches $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m,Z Magnetischer Strangwiderstand Ω R_th Wärmewiderstand S S S Elektrischer Strangwiderstand Ω R_th Wärmewiderstand K/W s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische Spannung V U_i Induzierte Spannung der ν -ten Harmonischen in den V U_i Induzierte Spannung der ν -ten Harmonischen in den V U_i Induzierte Spannung der ν -ten Harmonischen in den V U_i Induzierte Spannung der ν -ten Harmonischen in den V V_i_{FB} Größe zur Berechnung des äquivalenten Wicklungfaktors K_{V_FE} Eisenvolumen	Γ _W	Lashashl	vv
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	q	Locnzani	1 . 2/.2
QSAlizan der Statornitten- r_{PM} Magnetradiusm r_{Sp} Radius der Spulem r_U Außenradius der gebogenen Blechem R Elektrischer Widerstand Ω R_m Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m, δ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ R_m, FB Magnetischer Widerstand des Eisens $A/(Vs)$ R_m, FB Magnetischer Widerstand des Eisens $A/(Vs)$ R_m, FB Magnetischer Widerstand des Joches $A/(Vs)$ R_m, J Magnetischer Widerstand des Joches $A/(Vs)$ R_m, J Magnetischer Widerstand des Zahns $A/(Vs)$ R_m, Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_m, Z Magnetischer Widerstand des Zahns $A/(Vs)$ R_s Elektrischer Strangwiderstand Ω R_th Wärmewiderstand S s Streckem t Zeits T Periode $1/s$ T Temperatur K U Elektrische Spannung V U_i Induzierte Spannung der ν -ten Harmonischen in den V V V_{FB} Magnetische Spannung der ν -ten Harmonischen in den V V V_{FB} Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{FB} Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{FB} Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{FE} Eisenvolumen<	Q	Warme Arrecht der Statemater	kg m-/s-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{\rm S}$	Anzani der Statornuten	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r_{\rm PM}$	Magnetradius	m
$T_{\rm U}$ Aubenradius der geoogenen Biechem R Elektrischer Widerstand Ω $R_{\rm m}$ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m,FB}$ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m,FB}$ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m,FB}$ Magnetischer Widerstand des Luftspaltes $A/(Vs)$ $R_{\rm m,FE}$ Magnetischer Widerstand des Joches $A/(Vs)$ $R_{\rm m,J}$ Magnetischer Widerstand des Joches $A/(Vs)$ $R_{\rm m,Z}$ Magnetischer Widerstand des Zahns $A/(Vs)$ $R_{\rm m,Z}$ Magnetischer Strangwiderstand Ω $R_{\rm th}$ Wärnewiderstand K/W s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische Spannung V U_i Induzierte Spannung der ν -ten Harmonischen in den Permanentmagneten V U_i Induzierte Spannung der ν -ten Harmonischen in den Permanentmagneten V U_i Induzierte Spannung der ν -ten Harmonischen in den Permanentmagneten V V_i Volumen m^3 $V_{i_{PB}}^{FB}$ Magnetische Spannung der ν -ten Harmonischen in den 	r_{Sp}	Radius der Spule	m
RElektrischer WiderstandM $R_{\rm m}$ Magnetischer WiderstandA/(V s) $R_{\rm m,\delta}$ Magnetischer Widerstand des LuftspaltesA/(V s) $R_{\rm m,FB}$ Magnetischer Widerstand der FlussbarriereA/(V s) $R_{\rm m,Fe}$ Magnetischer Widerstand des EisensA/(V s) $R_{\rm m,F}$ Magnetischer Widerstand des JochesA/(V s) $R_{\rm m,J}$ Magnetischer Widerstand des JochesA/(V s) $R_{\rm m,Z}$ Magnetischer Widerstand der ν -ten Harmonischen in den PermanentmagnetenA/(V s) $R_{\rm m,Z}$ Magnetischer Widerstand des ZahnsA/(V s) $R_{\rm s}$ Elektrischer Strangwiderstand Ω $R_{\rm th}$ Wärmewiderstand Ω $R_{\rm th}$ Wärmewiderstand S s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische Spannung V $U_{\rm i}$ Induzierte Spannung der ν -ten Harmonischen in den Permanentmagneten V $U_{\rm N}$ Elektrische Nennspannung V $U_{\rm s}$ Strangspannung V $V_{\rm brenm^3$ $M_{\rm spectische Spannungsprünge im Luftspalt an einerFlussbarriereAV_{\rm pe}Größe zur Berechnung des äquivalenten WicklungfaktorsAV_{\rm re}Eisenvolumenm^3V_{\rm re}Eisenvolumenm^3W_{\rm m}Magnetische SpannungA$	r _U	Aubenradius der gebogenen Bleche	m
$\begin{array}{llllllllllllllllllllllllllllllllllll$	R	Elektrischer Widerstand	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	R _m	Magnetischer Widerstand	A/(Vs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$R_{m,\delta}$	Magnetischer Widerstand des Luftspaltes	A/(Vs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$R_{\rm m,FB}$	Magnetischer Widerstand der Flussbarriere	A/(Vs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$R_{\rm m,Fe}$	Magnetischer Widerstand des Eisens	A/(Vs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	R _{m,J}	Magnetischer Widerstand des Joches	A/(Vs)
$R_{m,Z}$ Magnetischer Widerstand des Zahns $A/(Vs)$ R_S Elektrischer Widerstand Ω R_{th} Wärmewiderstand K/W s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische SpannungV U_i Induzierte Spannung der ν -ten Harmonischen in den PermanentmagnetenV U_N Elektrische NennspannungV U_S StrangspannungV $V_{i_{FB}}$ Magnetische Spannungsprünge im Luftspalt an einer Flussbarriere A $V_{i_{\nu}}$ Größe zur Berechnung des äquivalenten Wicklungfaktors A w_m Windungszahl $ w_{v_1}$	$R_{\mathrm{m,PM}(\nu)}$	Magnetischer Widerstand der ν -ten Harmonischen in den Permanentmagneten	A/(V s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B	Magnetischer Widerstand des Zahns	$A/(V_s)$
$R_{\rm th}$ WärmewiderstandK/W $R_{\rm th}$ WärmewiderstandK/W s Streckem t Zeits T Periode1/s T TemperaturK U Elektrische SpannungV U_i Induzierte Spannung der ν -ten Harmonischen in den PermanentmagnetenV U_N Elektrische NennspannungV U_S StrangspannungV V Volumenm ³ $V_{\rm iFB}^{\delta}$ Magnetische Spannungsprünge im Luftspalt an einer FlussbarriereA $V_{\rm ic}$ Eisenvolumenm ³ $V_{\rm fe}$ Eisenvolumenm ³ $W_{\rm m}$ Magnetische SpannungA w Windungszahl-	Rs	Elektrischer Strangwiderstand	Ω
$v_{\rm in}$ Number Strand $i_{\rm i}$ s Streckem t Zeits T Periode $1/s$ T TemperaturK U Elektrische SpannungV U_i Induzierte Spannung der ν -ten Harmonischen in den PermanentmagnetenV U_N Elektrische NennspannungV U_S StrangspannungV V Volumenm ³ $V_{i_{\rm FB}}^{\delta}$ Magnetische Spannungsprünge im Luftspalt an einer FlussbarriereA $V_{\rm fe}$ Eisenvolumenm ³ $V_{\rm fe}$ Eisenvolumenm ³ w Windungszahl- w Statorwindungszahl-	R ₄ h	Wärmewiderstand	K/W
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s	Strecke	m
TPeriode $1/s$ TTemperaturKUElektrische SpannungVUiInduzierte Spannung der ν -ten Harmonischen in den PermanentmagnetenVUNElektrische NennspannungVUSStrangspannungVVVolumenm³ViFB (ν)Größe zur Berechnung des äquivalenten WicklungfaktorsAWrUsspannungAwuWindungszahl-	t	Zeit	s
TTemperaturKTTemperaturKUElektrische SpannungVUiInduzierte Spannung der ν -ten Harmonischen in den PermanentmagnetenVUNElektrische NennspannungVUSStrangspannungVVVolumenm³ViFBMagnetische Spannung des äquivalenten WicklungfaktorsAVFEEisenvolumenm³VFeEisenvolumenm³WmMagnetische SpannungAWuWindungszahl-	T	Periode	1/s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T T	Temperatur	1/5 K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	Elektrische Spannung	V
$\begin{array}{ccccc} V & & & & & & & & & & & & & & & & & & $	U.	Induzierte Spannung	V
$\begin{array}{cccc} V_{i} \mathcal{P}_{M(\nu)} & & & & & & & & & & \\ & & & & & & & & $	U. m. (Induzierte Spannung der <i>u</i> ten Harmonischen in den	v
$\begin{array}{cccc} V_{\rm N} & {\rm Elektrische Nennspannung} & V \\ U_{\rm S} & {\rm Strangspannung} & V \\ V_{\rm S} & {\rm Strangspannung} & V \\ V & {\rm Volumen} & {\rm m}^3 \\ {\rm Magnetische Spannungssprünge im Luftspalt an einer} & {\rm A} \\ {\rm Flussbarriere} & {\rm Flussbarriere} \\ V_{\rm Fe}^{\rm FB} & {\rm Größe \ zur \ Berechnung \ des \ \"aquivalenten \ Wicklungfaktors} & {\rm A} \\ V_{\rm Fe} & {\rm Eisenvolumen} & {\rm m}^3 \\ V_{\rm m} & {\rm Magnetische \ Spannung} & {\rm A} \\ w & {\rm Windungszahl} & - \\ w_1 & {\rm Statorwindungszahl} & - \\ \end{array}$	$O_{i,PM}(\nu)$	Permanentmagneten	v
$\begin{array}{cccc} V_{\rm N} & & {\rm Electric terms paining} & & V \\ U_{\rm S} & & {\rm Strangspanning} & & V \\ V_{\rm S} & & {\rm Strangspanning} & & V \\ V & Volumen & & {\rm m}^3 \\ Magnetische Spannungssprünge im Luftspalt an einer & {\rm A} \\ Flussbarriere & & \\ V_{\rm Fe}^{\rm FB} & & {\rm Größe \ zur \ Berechnung \ des \ \"aquivalenten \ Wicklungfaktors} & {\rm A} \\ V_{\rm Fe} & & {\rm Eisenvolumen} & {\rm m}^3 \\ V_{\rm m} & & {\rm Magnetische \ Spannung} & {\rm A} \\ w & & {\rm Windungszahl} & - \\ w_1 & & {\rm Statorwindungszahl} & - \\ \end{array}$	<i>U</i> .	Floktrische Nongspannung	V
V Volumen m ³ $V_{i_{FB}}^{\delta}$ Magnetische Spannungssprünge im Luftspalt an einer A $V_{i_{FB}}^{FB}$ Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{Fe} Eisenvolumen m ³ V_{m} Magnetische Spannung A w Windungszahl - w_1 Statorwindungszahl -	U _N	Strongsponnung	V
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	VS V	Volumon	v m ³
$V_{i_{FB}}$ Magnetische Spannungssprunge im Eurispart al enter A $V_{i_{FB}}^{FB}$ Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{Fe} Eisenvolumen m ³ V_m Magnetische Spannung A w Windungszahl -	V Vδ	Magnetische Spannungssprünge im Luftspalt an einer	111
$V_{(\nu)}^{\text{FB}}$ Größe zur Berechnung des äquivalenten Wicklungfaktors A V_{Fe} Eisenvolumen m ³ V_{m} Magnetische Spannung A w Windungszahl - w_1 Statorwindungszahl -	۲ i _{FB}	Flussbarriere	л
$V_{\rm Fe}$ Eisenvolumen ${ m m}^3$ $V_{\rm m}$ Magnetische Spannung A w Windungszahl - w_1 Statorwindungszahl -	$V_{(\nu)}^{\text{FB}}$	Größe zur Berechnung des äquivalenten Wicklungfaktors	Α
$V_{\rm m}$ Magnetische Spannung A w Windungszahl – w_1 Statorwindungszahl –	VFe	Eisenvolumen	m^3
w Windungszahl – w_1 Statorwindungszahl –	Vm	Magnetische Spannung	А
w ₁ Statorwindungszahl –	w	Windungszahl	_
	w_1	Statorwindungszahl	_

Formelzeichen	Beschreibung	Einheit
4U~	Spylonwindungzahl	
WSp W-	Spulenwiite	-
w _{Sp}	Wintel	III rod
a	Winkel der Spyleppesition	rad
α _i	Winkel der Elussbarrierenposition	rad
$\alpha_{i_{FB}}$	Nuterwinkel	rad
α_Q	Öffnungswinkel den Elussbarnione	rad
ρ_{FB}	Öffnungswinkel der Flussbarnere	rad
$\rho_{\mathbf{Q}}$	Öffnungswinkel der rohogenen Pleche	rad
$\rho_{\rm U}$	Öffnungswinker der gebogenen Dieche	rad
PZ S	Unnungswinker des Zanns	rad
0	Lunspan Vandasharan dan H. Madala	III La d
$\Delta \rho$	Paliala Alaria a la Chata da la	rad
$\Delta n_{\rm Fe}$	Radiale Abweichung der Statorbieche	m
0i	Eindringtiefe	m
$o_{i,PM(\nu)}$	Eindringtiefe der ν -ten Harmonischen im Permänentma-	m
A M	gneten Dadiala Alemaialamendas Datamaittalamenletas	
ΔM_2	Drahmamantrippal	III Nam
$\Delta M_{\rm emag}$	Winkup gagene d	INIII
η	Wirkungsgrau Tenen and tunke officient den Demonsterneliskte	- 07 /12
$\gamma_{\rm B_r}$	Temperaturkoeffizient der Kenzitigfeldstärke	70/K
γ_{H_c}	Verhältnig von Blochdicke zu Findringtiefe	70/K
λ_{i}	Wähnen alleit fühlt alleit	- W/(V)
$\lambda_{\rm Q}$	Warmeleitianigkeit	W/(m K)
μ	Magnetische Permeabilität	V s/(Am) V s/(Am)
μ_0	Magnetische Permeabilität von Vakuum	V s/(Am)
$\mu_{ m r}$	Relative Permeabilitat	-
$\mu_{ m r,PM}$	Relative Permeabilitat der Permanentmagneten	-
$\mu_{ m r,QR}$	Relative Permeabilitat in Querrichtung	_
$\mu_{ m r,WR}$	Relative Permeabilitat in Walzrichtung	-
ν	Ordnungszahl	1 /
ω	Kreisirequenz	1/8
φ	Elektrisches Potential	V
Φ	Magnetischer Fluss	VS
Φ_{H}	Hauptfluss	Vs
$\Phi_{\mathrm{PM}(\nu)}$	Amplitude des magnetischen Flusses der ν -ten Harmo-	Vs
	nischen in den Permanentmagneten	, 3
ρ	Dichte	g/m ³
$ ho_{\mathrm{PM}}$	Spezifischer elektrischer Widerstand der Permanentma-	$\Omega\mathrm{m}$
	gneten	<i>G</i> /
$\sigma_{ m el}$	Spezifische elektrische Leitfähigkeit	S/m
$\sigma_{ m Fe}$	Spezifische elektrische Leitfähigkeit des Eisens	S/m
$ au_{ m p}$	Polteilung	m
$ au_{ m Q}$	Nutteilung	m
$\tau_{Q(\nu)}$	Nutteilung der ν -ten Harmonischen	m
θ	Durchflutung	A
$\Theta_{\rm a}$	Summe der Beträge der betrachteten Durchflutungen	А

Formelzeichen	Beschreibung	Einheit
θ	Umfangswinkel	rad
$\xi_{(\nu)}$	Wicklungsfaktor der ν -ten Harmonischen	_
$\xi_{N(\nu)}$	Nutschlitzbreitenfaktor der ν -ten Harmonischen	—
$\xi_{S(\nu)}$	Sehungsfaktor der ν -ten Harmonischen	_
$\xi_{Z(\nu)}$	Zonungsfaktor der ν -ten Harmonischen	_