Einfluss der nipinduzierten Effekte auf den Wickelprozess von Papier

Dissertation

zur Erlangung des Grades Doktor-Ingenieur der Fakultät für Maschinenbau der Ruhr-Universität Bochum

von

Bernd Güldenberg

aus Jülich

Bochum 2000

Dissertation eingereicht am:7. Januar 2000Tag der münglichen Prüfung:12. Mai 2000

Erster Referent:Prof. Dr.-Ing. E. G. WelpZweiter Referent:Prof. Dr.-Ing. Dr. h.c. L. Göttsching

Schriftenreihe Institut für Konstruktionstechnik

Heft 00.2

Bernd Güldenberg

Einfluss der nipinduzierten Effekte auf den Wickelprozess von Papier

Shaker Verlag Aachen 2000 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Güldenberg, Bernd: Einfluss der nipinduzierten Effekte auf den Wickelprozess von Papier/ Bernd Güldenberg. Aachen : Shaker, 2000 (Schriftenreihe Institut für Konstruktionstechnik ; Bd. 2000,2) Zugl.: Bochum, Univ., Diss., 2000 ISBN 3-8265-8026-5

Copyright Shaker Verlag 2000

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8265-8026-5 ISSN 1616-5497

> Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

für Sabine

VORWORT DES INSTITUTES

Im Rahmen der stetig wachsenden Produktivitäts- und Qualitätsanforderungen in der papiererzeugenden und -weiterverarbeitenden Industrie gewinnt die Wickeltechnik als mehrfacher Bestandteil in den Produktionsabschnitten zunehmend an Bedeutung. Hierbei handelt es sich um Off- und Online-Wickelprozesse, die auf hochautomatisierten Wickelmaschinen zur Herstellung von Papierrollen als Vor- und Fertigprodukte beherrscht werden müssen. Bezüglich der Qualitätsanforderungen geht es insbesondere um einen schädigungsfreien Wickelaufbau mit entsprechender Zylindrizität und Transportstabilität der Papierrollen und bezüglich der Produktivitätsanforderungen um stabile und höchste Produktionsgeschwindigkeiten, verbunden mit einem automatisierten und kontrollierten Wickelprozess.

Um die damit verbundenen maschinentechnischen Entwicklungsziele zu erreichen, ist eine genaue Kenntnis des Wickelvorgangs im Zusammenspiel mit dem Materialverhalten von Papier erforderlich. Analysen zum Stand der Technik und Forschung, wie sie auch dieser Arbeit zugrunde liegen, zeigen erhebliche Wissensdefizite in den grundlegenden Zusammenhängen des Wickelvorgangs auf. Hierbei sind die kinetischen und kinematischen Vorgänge beim Wickeln hervorzuheben, die letztendlich zum Spannungs-Dehnungs-Zustand der spiralförmig aufgewickelten Papierbahn führen. Ausgehend von der Kenntnis dieser Zustände lassen sich dann entsprechende maschinentechnische Maßnahmen für die Qualitäts- und Produktivitätsanforderungen ableiten.

Vor diesem Hintergrund konzentriert sich diese Dissertation auf die wickelmechanische Analyse der sogenannten Nipwirkung, die in Walzenwicklern in der Kontaktstelle zwischen Wickel und Walze(n) auftritt und ganz wesentlich den Wickelprozess und damit das Wickelergebnis beeinflusst. In den theoretischen und experimentellen Untersuchungen wird zunächst auf systematische Weise gezeigt, dass sich der reale Wickelprozess stufenweise auflösen und für die Untersuchungen in Partialmodelle überführen lässt. Auf dieser Basis werden sodann Wickelmodelle für Simulationsrechnungen zur Bestimmung der Spannungs-Dehnungs-Zustände in den jeweiligen Wickelzonen entwickelt. Hiermit gelingt es erstmals, den Spannungs-Dehnungs-Zustand in der sogenannten aktiven Wickelspirale zu berechnen.

Im Rahmen der experimentellen Untersuchungen wird ein neuartiges Messverfahren auf der Basis digitaler Bildverarbeitung zur Erfassung der kinematischen Zusammenhänge in den äußeren Lagen der aktiven Wickelspirale vorgestellt. Die damit durchgeführten Experimente in einem Wickelversuchsstand mit verschiedenen Papiersorten bestätigen einerseits die theoretischen Modellierungsansätze und liefern andererseits Einblick in die wickelmechanischen Zusammenhänge der Lagenverschiebungen in den äußeren Lagen eines Wickels unter Nipwirkung, die maßgeblich zum Spannungs-Dehnungs-Zustand (Wickelhärte) des Wickels beitragen.

Mit den Ergebnissen dieser Untersuchungen liegen erweiterte wickelmechanische Grundlagen vor, die sich in der industriellen Praxis vielfältig von der Behebung fehlerhafter Wickelprozesse bis hin zur Konzeption von geregelten Wickelprozessen anwenden lassen.

Ewald G. Welp

VORWORT DES AUTORS

Die vorliegende Arbeit ist während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Maschinenelemente und Konstruktionslehre der Ruhr-Universität Bochum entstanden. Dem Lehrstuhlinhaber Herrn Prof. Dr.-Ing. E. G. Welp danke ich für die sehr lehrreiche und interessante Zeit, die vertrauensvolle Zusammenarbeit und die wissenschaftliche Unterstützung bei der Anfertigung dieser Arbeit.

Herrn Prof. Dr.-Ing. Dr. h.c. L. Göttsching, Leiter des Institutes für Papierfabrikation der Technischen Universität Darmstadt, danke ich für sein Interesse an meiner Forschungsarbeit sowie die freundliche Übernahme des Koreferates.

Mein besonderer Dank gilt Herrn Dr.-Ing. D. Schüler für die zahlreichen, sehr fruchtbaren Diskussionen und wertvollen Impulse und Herrn Dr. Tekn. H. Vomhoff für die kritische Durchsicht des Manusskriptes und seine konstruktiven Hinweise.

Darüberhinaus danke ich allen Mitarbeitern und Studenten des Lehrstuhls, die zum Gelingen dieser Arbeit beigetragen haben. Insbesondere gilt mein Dank den Herren R. Pflips, K.-D. Jung, cand.-Ing. P. Knoll, cand.-Ing. J. Golz und den Mitarbeitern der Werkstatt für ihren unermüdlichen Einsatz beim Aufbau des Prüfstandes und der Durchführung der experimentellen Untersuchungen sowie den Herren Dipl.-Ing. A. Haffert, Dipl-Ing. H. Humberg und Dipl.-Ing. O. Kopp für ihr Engagement im Rahmen von Studien- und Diplomarbeiten.

Ganz herzlich danke ich den Herrn Dipl.-Ing. M. Liebig, Modo Paper Stockstadt, Dr.-Ing. R. Paetow, Haindl Papier Walsum, und Dipl.-Ing. S. Loewenberg, Haindl Papier Schwedt, für die Bereitstellung der Versuchspapiere. Die Materialuntersuchungen wurden zum Teil in der Papiertechnischen Stiftung, München, dem Institut für Druckmaschinen und Druckverfahren der Technischen Universität Darmstadt und dem Institut für Papierfabrikation der Technischen Universität Darmstadt durchgeführt. Den Verantwortlichen sei für die Bereitstellung der Versuchseinrichtungen gedankt.

Mein ganz spezieller Dank gilt meinen Eltern, Sibille und Willi Güldenberg, die durch Ihren Rückhalt und Ihre Unterstützung während meines gesamten Ausbildungsweges erst die Voraussetzung für diese Arbeit geschaffen haben. Und schließlich danke ich meiner Frau Sabine, dass sie mit viel Geduld und Verständnis auf so manche gemeinsame Stunde verzichtet hat und mir so die notwendige Rückendeckung gegeben hat, um diese Arbeit erfolgreich zu beenden.

Bochum, im August 2000 Bernd Güldenberg

INHALTSVERZEICHNIS

1	ZUSAMMENFASSUNG	1
2	AUSGANGSSITUATION UND ZIEL	2
2.1	Qualitäts- und Produktivitätsanforderungen an den Wickelprozess	5
2.2	Einflussparameter des Wickelprozesses	9
2.3 2.3.1 2.3.2	Stand der Technik und Entwicklungstrends Maschinentechnik Entwicklungstrends	. 13 . 13 . 19
2.4	Stand der Forschung	. 21
2.4.1 2.4.2	Spannungszustand der inneren Lagen Spannungszustand der äußeren Lagen	. 21 . 24
2.5	Problemstellung und Zielsetzung	. 30
2.6	Lösungsansatz und Vorgehen	. 32
3	MATERIALVERHALTEN VON PAPIER	. 36
3.1	Auswahl der Papiersorten	. 39
3.2	Spannungs-Dehnungs-Verhalten in Maschinenrichtung (MD)	. 41
3.2.1	Modellierung	. 41
3.2.2	Ermittelte Materialkennwerte	. 42
3.3	Spannungs-Dehnungs-Verhalten in Dickenrichtung (ZD)	. 45
3.3.1		. 46
3.3.2		. 47
3.4	Querkontraktion	. 50
3.5	Reibverhalten	. 52
3.5.1 3.5.2	Modellierung	. 52 . 55
3.6	Übersicht über die verwendeten Materialkennwerte	. 58

4	THEORETISCHE ANALYSE DES WICKELPROZESSES	59
4.1	Lagenverschiebungen in der passiven und aktiven Wickelspirale	59
4.2	Lagenverschiebungen und zugehörige Tangentialspannungsänderungen	61
4.3 4.3.1	Analyse des Spannungszustands der inneren Lagen (passive Wickelspirale)	66 66
4.3.2	Radial- und Tangentialspannungsverlauf	70
4.3.3	Analyze des Spannungszustands der äußeren Lagen (aktive Wickelanizele)	73
4.4.1 4.4.2 4.4.3 4.4.4	Analyse des Spannungszustands der auseren Lagen (aktive Wickelspirale) Tangentiale Lagenverschiebungen in der aktiven Wickelspirale Besonderheiten des Wälzvorgangs zwischen Wickel und Walze. Kinetisches Modell für die Außenlage Kinematisches Modell für die aktive Wickelspirale	77 81 85 . 100
5	EXPERIMENTELLE ANALYSE DES WICKELPROZESSES	110
5.1 5.1.1 5.1.2	Messverfahren	110 111 .115
5.2 5.2.1 5.2.2 5.2.3	Auswertung der Messergebnisse Radiale Lagenverschiebungen Tangentiale Lagenverschiebungen Tangentialspannungsverlauf in der aktiven Wickelspirale	. 120 . 120 . 121 . 122
5.3	Genauigkeit und Reproduzierbarkeit des Messverfahrens	. 124
5.4 5.4.1 5.4.2	Parametervariation	. 130 . 130 . 131
5.5 5.5.1 5.5.2	Lokalisierung von Haft- und Gleitbereichen Versuchsdurchführung Ergebnisse	. 140 . 140 . 141
6		. 143
7		. 145
8	Anhang	. 156

VERZEICHNIS DER FORMELZEICHEN UND INDIZES

Formelzeichen

cv	[-]	Geschwindigkeitsverhältnis
d	[mm]	Durchmesser
Е	[N/mm²]	Elastizitätsmodul
F	[N]	Kraft
G	[N/mm²]	Gleitmodul
h ₀	[mm]	Bahndicke, unverformt
i	[-]	Nummer der beobachteten Lage
j	[-]	Anzahl der äußeren Lagen relativ zur Lage i
K ₁	[N/mm²]	Materialkonstante aus Pfeiffers Materialgesetz
K ₂	[-]	Materialkonstante aus Pfeiffers Materialgesetz
I	[mm]	Länge einer Lage
М	[Nm], [Nm/mm]	Drehmoment bzw. Drehmoment bezogen auf die Bahnbreite
Ν	[-]	Nummer der Außenlage
р	[N/mm²]	Normaldruck
q	[N/mm²]	Reibschubspannung
r	[mm]	Koordinate
R	[mm]	Radius
S	[mm]	Bahnkoordinate
s _{rel}	[-]	relativer Schlupf zweier Wälzkörper
S	[N/mm²]	Grenzspannung aus Paetows Materialgesetz
t	[s]	Zeit
Т	[N/mm]	Linienkraft, bezogen auf die Bahnbreite
Τ _Ε	[N/mm]	Bahnzug im Einlauf
T_{N}	[N/mm]	Linienkraft im Nip, kurz: Nipkraft
u	[mm]	Verschiebung
u _r	[mm]	akkumulierte radiale Verschiebung
ut	[mm]	akkumulierte tangentiale Verschiebung
δu _r	[mm]	radiale Verschiebung einer Lage aufgrund einer neu aufgewickelten Lage
δu_t	[mm]	tangentiale Verschiebung einer Lage aufgrund einer neu aufgewickelten Lage
Δu_{t}	[mm]	akkumulierte tangentiale Verschiebungsdifferenz einer Lage
$\Delta\delta u_t$	[mm]	tangentiale Verschiebungsdifferenz einer Lage aufgrund einer neu aufgewickelten Lage
v	[m/min]	Geschwindigkeit

ε	[-]	Dehnung
γ	[-]	Scherung
μ	[-]	Reibbeiwert
υ	[-]	Querkontraktionszahl
σ	[N/mm²]	Normalspannung
τ	[N/mm²]	Schubspannung
ω	[Rad/s]	Winkelgeschwindigkeit

Indizes

- 0 Ausgangswert
- a axial
- b Bahn
- c Hülse
- CD Querrichtung des Papiers
- E Einlauf
- G Gleitzustand
- H Haftzustand
- ini initial
- K Krümmung
- m mittel
- MD Maschinenrichtung des Papiers
- N normal
- Nip Nip
- r radial
- S Stützwalze
- s0 Wert an der Stelle s=0
- t tangential
- t0 Ausgangswert zum Zeitpunkt t=0
- ur aufgrund radialer Verschiebung
- Δut aufgrund tangentialer Verschiebungsdifferenz
- w Wälzkreis
- ZD Dickenrichtung des Papiers

ABBILDUNGSVERZEICHNIS

Abb. 1	Schema des Papierherstellungsprozesses für Zeitungsdruckpapier (ZDP) und holzfreies gestrichenes Papier (WFC), in Anlehnung an [2]	. 2
Abb. 2	Beispiel für Rollenfehler nach [4]: 1weiche Hülse, 2nicht plane Stirnseiten durch Bahnverlaufen, 3Teleskopieren, 4Riegelbildung	. 3
Abb. 3	Beispiele für Papierschädigungen im Wickelprozess nach [4]: 1Kreppfalten, 2Bahnriss in MD, 3Kernplatzer	. 4
Abb. 4	Anforderungen an den Wickelprozess	5
Abb. 5	Optimaler Wickelhärteverlauf nach [6]	6
Abb. 6	Beispiel einer Produktivitätsanalyse von Rollmaschinen nach [2]	7
Abb. 7	Leistungsdiagramm einer Rollmaschine nach [2]	8
Abb. 8	Einflussparameter auf den Wickelprozess	9
Abb. 9	Beitrag einzelner Prozessparameter zum Wickelhärteverlauf einer Rolle, in Anlehnung an [8], [9], [10], [11]	11
Abb. 10	Popewicklung und Fertigrollenwicklung im Produktionsprozess	13
Abb. 11	Antriebskonzept als Ordnungskriterium verschiedener Wicklerbauarten	15
Abb. 12	Anordnung der Fertigrollen als Ordnungskriterium verschiedener Wicklerbauarten	16
Abb. 13	Modifikationen des Tragwalzenprinzips	17
Abb. 14	Modifikationen des Stützwalzenprinzips	18
Abb. 15	Bedarfsanalyse für Tiefdruck-Großrollen nach [2]	20
Abb. 16	Typische Radial- und Tangentialspannungsverläufe im Papierwickel bei konstanter einlaufender Bahnspannung	23
Abb. 17	Tischversuchsaufbau zur Analyse der Nipmechanik im Wickelprozess nach [43]	25
Abb. 18	Wickelmechanische Versuchsstände nach [47], [49]	26
Abb. 19	Bahnzug nach dem Nip als Funktion der Nipkraft nach [47]	27
Abb. 20	Tangentialspannungsverläufe für zwei verschiedene Wickelprinzipien nach [51]	27
Abb. 21	Wickelmechanischer Versuchsstand und Messergebnisse nach [50]	28
Abb. 22	Modellierung des Wickelprozesses mit Hilfe von zwei Basismodellen am Beispiel eines Tragwalzenwicklers	32
Abb. 23	Klassen von Partialmodellen	33
Abb. 24	Übersicht über die Partialmodelle, die im Rahmen experimenteller oder theoretischer Untersuchungen in dieser Arbeit behandelt werden	35
Abb. 25	Koordinatensysteme zur Beschreibung des Werkstoffverhaltens und des Wickelprozesses	36
Abb. 26	Mikrotomschnitte der verwendeten Papiersorten quer zur Laufrichtung	40

Abb. 27	Nachgiebigkeits-Materialmodell für Papier nach [72]	41
Abb. 28	Spannungs-Dehnungsverläufe der verwendeten Papiersorten	43
Abb. 29	Experimentell ermittelte Elastizitätsmoduli für Bahnzüge von 01 N/mm	43
Abb. 30	Vergleich der experimentell ermittelten Elastizitätsmoduli mit den berechneten E-Moduli nach Paetow und Hooke	. 44
Abb. 31	Druck-Verformungskurve der Universalprüfmaschine	47
Abb. 32	Belastungskurven dreier aufeinanderfolgender Belastungszyklen und deren Darstellung nach Nullpunktkorrektur auf Basis der Vorkraft	48
Abb. 33	Druck-Verformungskurven von Papier 6 (WF)	48
Abb. 34	Druck-Verformungskurven der verwendeten Papiersorten	49
Abb. 35	Modellierung des Druck-Verformungs-Verhaltens mit Pfeiffers Materialgesetz	50
Abb. 36	Versuchsaufbau und gemessene Reibkurve von Zeitungsdruckpapier	53
Abb. 37	Prüfgeräte und zugehörige Prüfnormen zur Bestimmung der Reibbeiwerte von Papier	55
Abb. 38	Ermittelte Haftreibbeiwerte nach DIN 53119-2 bzw. DIN 53375	56
Abb. 39	Typische Reibkraftverläufe der einzelnen Papiersorten (Messverfahren nach DIN 53375)	57
Abb. 40	Typische Reibkraftverläufe der einzelnen Papiersorten bei Zugabe von Talkum (Messverfahren nach DIN 53375)	57
Abb. 41	Zusammenhang zwischen passiver und aktiver Wickelspirale, radialen und tangentialen Lagenverschiebungen und den behandelten Partialmodellen	59
Abb. 42	Definition von Variablen im Wickel	61
Abb. 43	Radiale und tangentiale Lagenverschiebungen u, und u,	61
Abb. 44	Radiale Verschiebung einer Lage i während des Wickelprozesses	62
Abb. 45	Tangentiale Verschiebung einer Lage i während des Wickelprozesses	63
Abb. 46	Identifizierung einzelner Lagenmarkierungen und Lagen mit Hilfe der Variablen i und j	63
Abb. 47	Annäherung der Wickelspirale durch konzentrische Ringe	66
Abb. 48	Kräftegleichgewicht am Lagenelement	67
Abb. 49	Flussdiagramm des Programms "Wickelmodell"	69
Abb. 50	Graphische Bedienoberfläche des Programms "Wickelmodell"	69
Abb. 51	Radial- und Tangentialspannungsverläufe verschiedener Papiersorten	71
Abb. 52	Wert der Radialspannung im Plateaubereich des Spannungsverlaufes als Funktion des einlaufenden Bahnzuges für verschiedene Papiersorten	72
Abb. 53	Entwicklung der akkumulierten radialen Verschiebungen u _r (i,j) bei fortschreitendem Wickelprozess	73
Abb. 54	Radiale Verschiebungen δu_r und Bahnzugänderungen δT_{ur} in den Außenlagen eines Wickels	74

Abb. 55	Radiale Verschiebungen δu _r und Bahnzugänderungen δT _{ur} unterschiedlicher Papiersorten	75
Abb. 56	J-Linien-Test	77
Abb. 57	Akkumulierte tangentiale Verschiebung der Lagen bei Einsatz eines Stützwalzenwicklers	78
Abb. 58	Experimentell ermittelte Gesamtverschiebungs-Linie eines Walzenwicklers	79
Abb. 59	Tangentialverschiebungen aufgrund vorgegebener Tangentialdehnungsänderungen	80
Abb. 60	Aufnahme des Nipbereichs (Papier 5: WFC, Nipkraft: $T_N = 20$ N/mm)	81
Abb. 61	Einteilung der Wälzvorgänge in unterschiedliche Klassen	82
Abb. 62	Kinetisches Modell zur Analyse der Haft- und Gleitvorgänge in der Außenlage eines Wickels	85
Abb. 63	Gleichgewicht der Linienkräfte am Bahnelement der Außenlage	87
Abb. 64	Flussdiagramm des Programms "Kinetisches Modell"	93
Abb. 65	Graphische Bedienoberfläche des Programms "Kinetisches Modell"	93
Abb. 66	Schematische Darstellung der Geschwindigkeitsverläufe im kinetischen Modell	94
Abb. 67	Verlauf der Reibschubspannungen und Geschwindigkeiten im Einflussbereich des Nips als Berechnungsergebnis für den Standardfall	. 96
Abb. 68	Geschwindigkeitsprofil im Nipzentrum für das Festkörpermodell des Wickels	102
Abb. 69	Vermessung des Nipbereichs	102
Abb. 70	Geschwindigkeitsprofil im Nipzentrum nach Annahme (1)	104
Abb. 71	Verlauf der Differenz der Haftgeschwindigkeit und der Geschwindigkeit im Nipzentrum in Abhängigkeit der Anzahl neu aufgewickelter Lagen	105
Abb. 72	Gleitwinkel im Einlauf in Abhängigkeit der Anzahl neu aufgewickelter	106
Abb. 73	Geschwindigkeitsverlauf einer Lage i in Abhängigkeit des Drehwinkels und daraus resultierende mittlere Lagengeschwindigkeiten pro Umdrehung	107
Abb. 74	Einfluss des max. Gleitwinkel α_{Gmax} und der Anzahl sich mit der Stützwalze drehenden Lagen n _s auf den Bahnzugverlauf	108
Abb. 75	Schematischer Aufbau des Wickelversuchsstandes	111
Abb. 76	Foto des Wickelversuchsstandes	112
Abb. 77	Vorlauf der Lagenmarkierungen	113
Abb. 78	Aufbau der Messtechnik	113
Abb. 79	Flussdiagramm des Messprogramms	114
Abb. 80	Bedienoberfläche des Messprogramms	115
Abb. 81	Prozess der digitalen Bildverarbeitung	118
Abb. 82	Ermittlung der akkumulierten radialen und tangentialen Verschiebung einer Lagenmarkierung	119

Vergleich der gemessenen und der berechneten, akkumulierten radialen Verschiebung u _r	120
$\label{eq:tangentiale} Tangentiale \mbox{Verschiebungsdifferenz} \ \Delta \delta u_t(i,j) \ und \ akkumulierte \\ tangentiale \ Verschiebungsdifferenz \ \Delta u_t(i,j) \ \dots \ $	121
Tangentialspannungsverlauf in der aktiven Wickelspirale unter Berücksichtigung der Tangentialspannungsänderungen aus radialen und tangentialen Lagenverschiebungen	123
Typische Verläufe der Verschiebungsdifferenz $\Delta \delta u_t$ und der akkumulierten tangentialen Verschiebungsdifferenz Δu_t für Papier 6	124
Typische Verläufe der Verschiebungsdifferenz $\Delta \delta u_t$ und akkumulierten tangentialen Verschiebungsdifferenz Δu_t für Papier 1	125
Lagenmarkierungen der Messreihen gemäß Abb. 86 und Abb. 87	126
Reproduzierbarkeit der Prozessparameter-Einstellungen Bahnzug T_E und Nipkraft T_N	127
Entwicklung der akkumulierten tangentialen Verschiebungsdifferenz in der Hülsennähe	128
Einfluss der Nachgiebigkeit des Wickels auf die akkumulierte tangentiale Verschiebungsdifferenz	129
Einfluss des Parameters "einlaufender Bahnzug T _E " auf den nipinduzierten Tangentialspannungsaufbau	132
Einfluss des Parameters "einlaufender Bahnzug T _E " hinsichtlich der Verteilung der nipinduzierten Tangentialspannung auf die einzelnen Nipdurchläufe	. 132
Einfluss des Parameters "Nipkraft T _N " auf den nipinduzierten Tangentialspannungsaufbau	134
Einfluss des Parameters "Nipkraft $T_{\rm N}$ " hinsichtlich der Verteilung der nipinduzierten Tangentialspannung auf die einzelnen Nipdurchläufe $\ldots\ldots\ldots\ldots$	134
Einfluss des Parameters "Reibbeiwert" auf den nipinduzierten Tangentialspannungsaufbau	136
Einfluss des Parameters "Reibbeiwert" hinsichtlich der Verteilung der nipinduzierten Tangentialspannung auf die einzelnen Nipdurchläufe	136
Verhältnis der nipinduzierten Tangentialdehnung, der nipinduzierten Tangentialspannung bzw. des nipinduzierten Bahnzuges der einzelnen Papiersorten zum Mittelwert aller Papiersorten	. 137
Einfluss des Parameters "Papiersorte" auf den nipinduzierten Tangentialspannungsaufbau	138
Einfluss des Parameters "Papiersorte" hinsichtlich der Verteilung der nipinduzierten Tangentialspannung auf die einzelnen Nipdurchläufe	138
$\label{eq:constraint} Versuchsanordnung zur Ermittlung der Lagenverschiebung u_t als Funktion des Drehwinkels \phi$	140
Tangentiale Verschiebung als Funktion des Drehwinkels	142
	Vergleich der gemessenen und der berechneten, akkumulierten radialen Verschiebung u,

TABELLENVERZEICHNIS

Tab. 1	Vergleich von Popewicklung und Fertigrollenwicklung	14
Tab. 2	Ordnungsschema bedeutender Wickelmodelle zur Berechnung des Spannungsaufbaus im Wickel	22
Tab. 3	Übersicht über existierende Messverfahren zur Beurteilung des Spannungsaufbaus im Wickel	24
Tab. 4	Hauptbelastungen des Papiers im Wickelprozess	38
Tab. 5	Charakterisierung der im Rahmen der experimentellen Untersuchungen verwendeten Papiersorten	39
Tab. 6	Bewertung einzelner Einflussfaktoren auf die Reibbeiwerte	54
Tab. 7	Übersicht der Materialkennwerte der verwendeten Papierproben	58
Tab. 8	Zu erwartende radiale Gesamtverschiebung u_(j=15) und daraus resultierende Bahnzugänderung $\Delta {\sf T}_{ur}$ während der experimentellen Untersuchungen	76
Tab. 9	Berechnungsergebnisse des kinetischen Modells	98
Tab. 10	Vergleich der experimentellen und berechneten, akkumulierten radialen Verschiebung u _r [mm]	121
Tab. 11	Parametereinstellungen eines Versuchszyklus	131
Tab. 12	Tangentialspannung im Einlauf und im Auslauf der aktiven Wickelspirale bei Variation des einlaufenden Bahnzuges	131