Ruhr-Universität Bochum

Fakultät für Elektrotechnik und Informationstechnik

Zum Entwurf digitaler Systeme zur asynchronen Abtastratenumsetzung

DISSERTATION

zur Erlangung des Grades eines Doktor-Ingenieurs

vorgelegt von GENNARO EVANGELISTA Roccadaspide (Salerno) Bochum, den 25. Oktober 2000

Dissertation eingereicht: Referent: Koreferent: Tag der mündlichen Prüfung: 25. Oktober 2000 Prof. Dr.-Ing. H. G. Göckler Priv.-Doz. Dr.-Ing. R. Rabenstein 08. Dezember 2000 Schriftenreihe Digitale Signalverarbeitung

Band 1

Gennaro Evangelista

Zum Entwurf digitaler Systeme zur asynchronen Abtastratenumsetzung

Shaker Verlag Aachen 2001 Die Deutsche Bibliothek - CIP-Einheitsaufnahme *Evangelista, Gennaro:* Zum Entwurf digitaler Systeme zur asynchronen Abtastratenumsetzung/ Gennaro Evangelista. Aachen : Shaker, 2001 (Schriftenreihe Digitale Signalverarbeitung; Bd. 1) Zugl.: Bochum, Univ., Diss., 2000 ISBN 3-8265-8429-5

Copyright Shaker Verlag 2001

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8265-8429-5 ISSN 1617-2221

> Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Vorwort

Die vorliegende Dissertation entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Digitale Signalverarbeitung am Lehrstuhl für Nachrichtentechnik der Ruhr-Universität Bochum.

Mein besonderer Dank gilt Herrn Professor H. G. Göckler für die jederzeit vorhandene Gesprächsbereitsschaft bzgl. dieser Arbeit und weiterführenden fachlichen aber auch außerfachlichen Themen. Vor allem danke ich ihm für die offene und außergewöhnlich freundschaftlichen Atmosphäre, für die sorgfältige und kritische Durchsicht dieses Manuskripts und für seine zahlreichen Anregungen bzgl. Inhalt und Darstellung.

Für die Übernahme des Korreferats und die äußerst schnelle und gründliche Durchsicht des Manuskripts bedanke ich mich bei Herrn Dr.-Ing. habil. R. Rabenstein.

Herrn Professor H. D. Fischer möchte ich für das gute Arbeitsklima und für die freundschaftliche und faire Unterstützung der Arbeitsgruppe (und damit auch von mir) danken.

Meiner Freundin und Kollegin Frau Dipl.-Ing. Alexandra Groth danke ich besonders für die moralische Unterstützung und die ausgiebigen und anregenden Diskussionen.

Weiterhin bedanke ich mich bei allen aktuellen und ehemaligen Mitarbeiterinnen und Mitarbeitern des Lehrstuhls, sowie bei den zahlreichen Studien- und Diplomarbeitern, die zum Gelingen dieser Arbeit beigetragen haben.

Schließlich danke ich meinen Eltern, die mich jederzeit unterstützt haben.

Bochum, Dezember 2000

Gennaro Evangelista

Inhaltsverzeichnis

Ν	otati	on		v
1	Ein	leitung	ž	1
	1.1	Anwei	adungsgebiete der asynchronen Abtastratenumsetzung	2
	1.2	Aufga	benstellung	3
	1.3	Ziele	~ · · · · · · · · · · · · · · · · · · ·	4
	1.4	Übers	icht	5
2	\mathbf{Ein}	einfac	hes Modell: Kaskade von DA- und AD-Umsetzung	7
	2.1	Mathe	ematische Beschreibung	7
	2.2	Annal	ımen für das Referenz- und Eingangssignal	8
	2.3	Forde	rungen an asynchrone Abtastratenumsetzer	9
	2.4	Realis	ierung mit DA- und AD-Umsetzer	13
	2.5	Zusan	ımenfassung	14
3	Das (D4	erwei	terte Modell: Digitaler asynchroner Abtastratenumsetzer	15
	3.1	Mathe	ematische Beschreibung	18
	3.2	Spezif	ikation des DAAU	21
	0.2	3 2 1	Wunschfunktionen von asvnchronen Abtastratenumsetzern	21
		322	Ermittlung der systembestimmenden Funktion	23
		323	Spezifikation des diskreten Filters $h_{\text{Dis}}(\lambda^{\frac{T_1}{2}})$	25
		324	Spezifikation des Interpolators $h_{\text{Int}}(t)$	27
		3 2 5	Bedingungen für eine lineare Phase	28
	33	Kriter	ien zur Beurteilung der Qualität	29
	0.0	3.3.1	Abschätzung des L_{∞} -Fehlers des Gesamtsystems durch die	
			L_{∞} -Fehler der Teilsysteme	34
		3.3.2	Abschätzung des SNR ₁ durch die L_2 -Fehler der Teilsysteme	37
	3.4	Algori	thmen zur Realisierung des DAAU	40
		3.4.1	DAAU1: Direkte Gesamt-Realisierung	40
		3.4.2	DAAU2: Geschlossene Realisierung nach (3.14)	42
		3.4.3	Zur Realisierung des diskreten Filters $h_{\text{Dig}}(\lambda \frac{T_1}{L})$	44
		3.4.4	Zur Realisierung des Interpolators $h_{\text{Int}}(t)$	45
	3.5	Aufwa	undsabschätzungen	48
		3.5.1	Aufwand für den DAAU1	50

		3.5.2 Aufwand für den DAAU2	50				
		3.5.3 Aufwandsvergleich	51				
	3.6	Auswirkungen der Abwärtstastung	53				
	3.7	Zusammenfassung	54				
4	\mathbf{Ent}	wurf des diskreten Filters $h_{ ext{Dig}}(\lambda rac{T_1}{L})$	55				
	4.1	Minimierung des L_{∞} -Fehlers mit dem MPR-Verfahren	56				
	4.2	L_2 -Approximation mit spezifiziertem Übergangsbereich (L2SPLINE) .	58				
	4.3	L_2 -Approximation mit don't-care Bereichen (L2KONT)	60				
	4.4	L-tel Bandfilterentwurf nach Oetken	61				
	4.5	Diskrete L_2 -Approximation (L2DISK)	63				
	4.6	Constrained Least Square (CLS)-Entwurf	65				
	4.7	Zusammenfassung: Entwurfskriterien und -verfahren	68				
5	\mathbf{Ent}	wurf des kontinuierlichen Interpolators $h_{\mathrm{Int}}(t)$	71				
	5.1	LAGRANGE-Interpolation	71				
		5.1.1 Mathematische Beschreibung	73				
		5.1.2 Frequenzgang	75				
		5.1.3 Randbehandlung	76				
	5.2	Approximation mit TSCHEBYSCHEFF- und LEGENDRE-Polynomen	78				
	5.3	Interpolation mit Splines					
	5.4	Weitere bekannte, zeitbereichsbezogene Approximationsverfahren					
	5.5	Approximation mittels Frequenz-Transformationen	81				
	5.6	Zeit- und Frequenzbereichsapproximation mit geschlossen beschrie- benem Polynom	83				
		5.6.1 Zeitbereichsapproximation mit geschlossen beschriebenem Po- lynom	83				
		5.6.2 Frequenzbereichs-Approximation mit geschlossen beschriebe- nem Polynom	91				
	5.7	Frequenzbereichs-Approximation mit abschnittsweise definiertem Po-					
		lynom	92				
		5.7.1 Bedingungen für lineare Phase	93				
		5.7.2 Amplitudengang	94				
		5.7.3 Strategien zum Entwurf eines optimalen Interpolators	95				
		5.7.4 Einbringen der Interpolationsbedingung	96				
		5.7.5 Entwurf des Interpolators mit der CLS-Approximation: CLS-					
		Interpolator \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	96				
	5.8	Interpolation mit Fractional Sample Delay (FSD) $\ldots \ldots \ldots \ldots$	99				
	5.9	Zusammenfassung	103				

6	Ver: Koe	fahren effizien	zum Entwurf nichtrekursiver Filter mit quantisierten ten 105			
	6.1	Direkt	e Quantisierung			
	6.2	Sucha	lgorithmen			
	6.3	Iterati	ve Quantisierung			
7	Übe Abt	ersicht astrat	und Einordnung bekannter Verfahren zur asynchronen enumsetzung 111			
	7.1	Vom I	DAAU ableitbare Systeme			
		7.1.1	Mathematische Approximationsverfahren			
		7.1.2	Hybride Systeme			
	7.2	Nicht	vom DAAU ableitbare hybride Systeme			
		7.2.1	Quasi-kontinuier licher Interpolator $h_{\rm Int}(t)$ und Dezimator 114			
		7.2.2	Digitaler Interpolator, quasi-kontinuierlicher Interpolator $h_{\text{Int}}(t)$ und Dezimator			
	7.3	Altern	ative Ansätze			
		7.3.1	Adaptive Filter			
		7.3.2	Systemidentifikation			
	7.4	Fazit				
8	\mathbf{Unt}	ersuch	ungsergebnisse 119			
	8.1	Entwu	uf von $h_{\mathrm{Dig}}(\lambda \frac{T_1}{L})$ mit quantisierten Koeffizienten			
		8.1.1	Tiefpaßentwurf mit $D_{\mathrm{Dig},1}(\mathrm{e}^{\mathrm{j}\omega T_1/L})$			
		8.1.2	Entwurf von <i>L</i> -tel Bandfiltern mit $D_{\text{Dig},2}(e^{i\omega T_1/L})$			
	8.2	Entwu	uf des Interpolators $h_{\text{Int}}(t)$			
	8.3	8.3 Entwurf des Gesamtsystems (DAAU)				
		8.3.1	Prüfung der Abschätzformeln zum Aufteilen des $L_{2^{-}}$ bzw. $L_{\infty^{-}}$ Fehlers			
		8.3.2	Untersuchung für $M > 1$			
		8.3.3	Zur Wahl des Aufwärtstastfaktors L			
		8.3.4	Untersuchung verschiedener DAAU bei Variation von L 137			
		8.3.5	Aufwand für den DAAU bei Variation von L und konstantem L_{∞} -Fehler			
	8.4	Simula	ation zur Verifikation der Systemeigenschaften \ldots \ldots 144			

9 Zusammenfassung und Ausblick

149

A Anh	ang	153
A.1	Asynchrone Abtastratenumsetzung komplexwertiger Signale	153
A.2	Eigenschaften der Faltung in (2.4) und (2.5)	155
	A.2.1 Linearität	155
	A.2.2 Assoziativität	155
	A.2.3 Kommutativität	156
A.3	Abschätzungen für $ e(t) _{\infty}$ und $ E_{aAU}(j\omega) _{\infty}$	156
A.4	Zusammenhang zwischen den Fehlernormen nach [166]	157
A.5	Anmerkung zum DAAU2	158
A.6	Signal quantisierung	158
A.7	Steuerung bzw. Messung und Quantisierung des Zeitintervalls $\tau_{\Delta}[\nu]$	
	beim Interpolator	159
A.8	Koeffizienten $c_{\mu,\nu}$ der LAGRANGE-Interpolation	161
A.9	Berechnung des Integrals in (5.12)	162
A.10	Berechnung der Lösung (5.40) der l_2 -Approximation mit Gleichsheits-	
	anforderungen	163
A.11	Details zum Entwurf des CLS-Interpolators	164
A.12	Binärzahlendarstellung und Skalierung	165
Literat	urverzeichnis	167

Notation

Symbole

β_{ν}	Koeffizienten der Binärdarstellung Darstellung von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$
	(entspricht einem bit, 0 oder 1), S.165
$\beta_{\text{Koeff}}(\lambda T)$	zeitvariante Koeffizienten der Spline-Interpolation, S.80
$\beta_{\rm Spline}^{-1}(\lambda T)$	diskrete Teil-Impulsantwort der Spline-Interpolation, S.79
$\delta(t)$	DIRAC-Impuls, S.7
$\delta_0(kT)$	Impulsfolge (1 für $k = 0$, sonst 0), S.74
$\Delta \nu$	gewünschte Verzögerung eines FSDs, S.99
δ^{Alt}	Fehler auf der Alternante der $l_\infty\text{-}\mathrm{Approximation}$ in Abschnitt
	5.6.1.2, S.89
$\delta_{\mathrm{CLS}}(\mathrm{e}^{\mathrm{j}\omega T_1/L})$	Fehlergrenze beim CLS-Algorithmus, S.65
$\delta_{\rm CLS}(j\omega)$	Fehlergrenze beim CLS-Algorithmus, S.97
$\delta_{\rm CLS}$	konstantes $\delta_{\text{CLS}}(\omega)$ bzw. $\delta_{\text{CLS}}(e^{i\omega T_1/L})$
$\delta_{\mathrm{D,aAU}}$	maximaler Durchlaßbereichsfehler von $H_{m_0}(j\omega)$, S.36
$\delta_{\mathrm{D,Int}}$	maximaler Durchlaßbereichsfehler von $H_{\text{Int}}(j\omega)$, S.35
$\delta_{\mathrm{D,PP}}$	maximaler Durchlaßbereichsfehler von $H_{m_0}^{\text{PP}}(e^{j\omega MT_1/L})$, S.35
Δf	Breite des Übergangsbereichs von $H_{\text{Spline}}(j\omega)$, S.58
Δh	Abweichung von der idealen Impulsantwort (vektoriell), S.61
$\Delta h_{\text{Dig}}(\lambda \frac{T_1}{L})$	Fehler durch Quantisierung von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.165
$\delta_{\rm S1,Int}$	maximaler Sperrbereichsfehler von $H_{\text{Int}}(j\omega)$ im Sperrbereich von
	$H_{m_0}^{\mathrm{PP}}(\mathrm{e}^{\mathrm{j}\omega MT_1/L}),\mathrm{S.36}$
$\delta_{ m S2,Int}$	maximaler Sperrbereichsfehler von $H_{\text{Int}}(j\omega)$ im Durchlaßbereich von $H_{m_0}^{\text{PP}}(e^{i\omega MT_1/L})$, S.36
$\delta_{\rm S,aAU}$	maximaler Sperrbereichsfehler von $H_{m_0}(j\omega)$, S.36
$\delta_{S,PP}$	maximaler Sperrbereichsfehler von $H_{m_0}^{\text{PP}}(e^{j\omega MT_1/L})$, S.35
$\Delta w_{\rm i}$	zusätzlich innere Wortlänge bei der Signalquantisierung, S.158
$\varepsilon \left(\lambda \frac{T_1}{L}\right)$	Fehler beim L-tel Bandfilterentwurf nach OETKEN, S.62
$\varepsilon_{\text{Int}}(\omega)$	Durchlaßbereichsfehler von $H_{\text{Int}}(j\omega)$, S.37
$\varepsilon_{\rm PP}(\omega)$	Durchlaßbereichsfehler von $H_{m_0}^{\text{PP}}(e^{j\omega MT_1/L})$, S.37
η	Zahl der Stützwerte der Approximation $h_{\text{Int}}(t)$, $(\lambda_0 + \lambda_1 + 1)$,
	S.46,50
$\zeta - 1$	Ordnung der Approximation $h_{\text{Int}}(t)$, S.46
$\lambda_0 + 1$	Zahl der vergangenen Stützwerte der Approximation $h_{\text{Int}}(t)$,
	S.47,73
λ_1	Zahl der zukünftigen Stützwerte der Approximation $h_{\text{Int}}(t)$, S.47
$ au_{\lambda}^{\mathrm{Alt}}$	Alternante der l_{∞} -Approximation in Abschnitt 5.6.1.2, S.89
Φ	Zahl der diskrete Frequenzen ω_{φ} bei einer diskreten L_2 -Approximation, S.63
ω	Kreisfrequenz, $2\pi f$
ω_{φ}	diskrete Frequenzen, an denen der diskrete L_2 -Fehler minimiert
	wird, S. 63

A	Additionsrate, S.48				
a_{μ}	Koeffizienten des Polynoms für eine geschlossene Darstellung				
۴	von $h_{\text{Int}}(t)$, S.46				
A_{aAII}	Matrix der CLS-Approximation für $h_{\text{Int}}(t)$, S. 97				
$a_{\rm Gl}$	Vektor der a_{μ} , zuständig für das Einhalten der Gleichheitsan-				
GI	forderungen in (5.25) , S.86				
$A_{\rm IBIB}$	Untermatrix von A_{aAU} zugehörig zu c_1^{IB} , c_1^{IB} , S.98				
$A_{\rm IB LP}$	Untermatrix von A_{aAU} zugehörig zu c_1^{IB} , c_1^{LP} , S.98				
$A_{\rm IBf}$	Untermatrix von A_{2AII} zugehörig zu c_{1B}^{IB} , c_{f} , S.98				
$A_{\rm IB}$	Untermatrix von A_{aAU} zugehörig zu c_{IB}^{IB} , c_{II} , S.98				
	Untermatrix von $A_{A,U}$ zugehörig zu c_{LP}^{LP} , c_{LP}^{LP} , S.98				
A Df	Untermatrix von A_{2AU} zugehörig zu c_1^{LP} , c_5 , S.98				
$A_{\rm LP,u}$	Untermatrix von A_{aAU} zugehörig zu c_1^{LP} , c_2 , S.98				
A _{f f}	Untermatrix von A_{2AU} zugehörig zu c_{f} , c_{f} , S.98				
$A_{\rm f,u}$	Untermatrix von A_{aAU} zugehörig zu c_{f} , c_{u} , S.98				
$A_{n,n}$	Untermatrix von A_{aAU} zugehörig zu c_{u} , S.98				
$A_{1,2}$	Matrix der L_2 -Approximation für $h_{\text{Dig}}(\lambda \frac{T_1}{t})$, S.60				
$A_{\rm Mod}$	Matrix der CLS-Approximation mit Freiheitsgrad c_n , S.98				
a _{Rest}	Vektor der a_{μ} , nicht enthalten in $\boldsymbol{a}_{\text{GL}}$, S.86				
Aspline	Amplitude von $h_{\text{Spline}}(t)$, S.58				
$b_{\text{Spline}}(t)$	quasi-kontinuierliche Teil-Impulsantwort der Spline-Interpola-				
oprino ()	tion, S.79				
\mathbb{B}_t	betrachteter Zeitbereich, S.30				
\mathbb{B}_{ω}	betrachteter Frequenzbereich, S.30				
c	Vektor mit den Elementen $c_{\mu,\nu}$, S.95,97				
C	Matrix mit den Elementen $c_{\mu,\nu}$, S.96				
\mathbb{C}	Menge der komplexen Zahlen				
$c_{\mu,\nu}$	Koeffizienten der Polynome zur abschnittsweisen Darstellung				
	von $h_{\text{Int}}(t)$, S.47,74				
$c_1^{\mathrm{IB}}, c_2^{\mathrm{IB}}$	durch Interpolationsbedingung festgelegte $c_{\mu,\nu}$, S.96,97				
$\boldsymbol{c}_{1}^{\mathrm{LP}}, \boldsymbol{c}_{2}^{\mathrm{LP}}$	durch lineare Phase festgelegte $c_{\mu,\nu}$, S.96,97,98				
$c_{\rm f}$	durch Quantisierung festgelegte $c_{\mu,\nu}$, S.96,97				
c_{Max}	Maximum der $c_{\mu,\nu}$, S.127				
c_{u}	frei bestimmbare $c_{\mu,\nu}$, S.96,97				
$D_{\rm aAU}(j\omega)$	Wunschfunktion des asynchronen Abtastratenumsetzers, S.21				
$D_{ m Dig}$	Vektor mit den Elementen $D_{\text{Dig}}(e^{j\omega_{\varphi}T_1/L})$, S.63				
$D_{\text{Dig}}(e^{j\omega T_1/L})$	Wunschfunktion des diskreten Filters $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.25				
$D_{\rm FSD}({\rm e}^{{\rm j}\omega T})$	idealer Frequenzgang eines FSDs, S.100				
$d_{\rm Int}(t)$	ideales $h_{\text{Int}}(t)$, S.83				
$D_{\rm Int}(j\omega)$	Wunschfunktion des Interpolators $h_{\text{Int}}(t)$, S.27				
$oldsymbol{D}_{ m Mod}$	mit $h_{\rm f}$ modifiziertes $D_{\rm Dig}$, S.64				
$d_{\mathrm{TP}}(t)$	Impulsantwort eines idealen Tiefpasses, S.10				
$D_{\mathrm{TP}}(\mathbf{j}\omega)$	idealer Tiefpaß, S.10				
$D_{UB}(f)$	Funktion zur Spezifikation des Übergangsbereichs, S.26				

e(t)	Fehler, $y(t) - x_{\rm K}(t)$, S.29
$E(j\omega)$	Fehler, $Y(j\omega) = X_{\rm K}(j\omega)$, S.29
$e_{aAU}(t)$	Zeitfunktion zu $E_{aAU}(j\omega)$
$E_{aAU}(j\omega)$	Fehler, $ H_{m_0}(j\omega) = D_{aAU}(j\omega)$, S.29
E_{Dig}	Vektor mit den Elementen $E_{\text{Dia}}(e^{j\omega_{\varphi}T_1/L})$. S.63
$E_{\text{Dig}}(e^{j\omega T_1/L})$	Fehler von $H_{\text{Dig}}(e^{j\omega T_1/L})$, S.56.S.60
$E_{\rm ESD}({\rm e}^{{\rm j}\omega T},\Delta\nu)$	Fehler eines FSDs. S.100
<i>e</i> _{Int}	Vektor mit den Elementen $e_{\text{Int}}(\tau_{r})$, S.87
$e_{\text{Int}}(\tau_r)$	Fehler der l_{2^-} und l_{∞} -Approximation, S.87
$E_{\rm Int}(i\omega)$	Frequenzbereichs-Fehler des Interpolators: $H_{\text{Int}}(i\omega) - D_{\text{Int}}(i\omega)$
f	Frequenz
f	Vektor mit den frequenzabhängigen Termen von $H_{0,\text{Dis}}(e^{j\omega T_1/L})$.
5	S.60
F	Matrix mit den Elementen $e^{-j\omega_{\varphi}\lambda T_1/L}$ α Zeile λ Spalte S 63 63
f_0	Mittenfrequenz des Übergangsbereichs von $H_{\text{Spling}}(i\omega)$, S.59
50 f . 1	Abtastfrequenz des Eingangssignals $x(t_{11})$ S 1
f AD	Abtastfrequenz des Ausgangssignals $u(t_{2n})$, S.1
f	Vektor mit den Elementen $f_{AM}(\omega, \mu, \nu) \ge 95$
F_{AU}	Matrix mit den Zeilenvektoren $\mathbf{f}_{aA}^{T}(\omega, \mu, \nu)$, S.80 Natrix mit den Zeilenvektoren $\mathbf{f}_{aA}^{T}(\omega, \mu, \nu)$, S.97
$f_{-AII}(\omega \mu \nu)$	Hilfsfunktion bei der Bestimmung von $H_0(i\omega)$ S 95
$F_{\rm f}$	Untermatrix von F zugehörig zu h_{ℓ} , S.64
$F_{\rm f}$	Untermatrix von $F_{\rm AU}$ zugehörig zu $c_{\rm f.}$ S.98
f_G	Grenzfrequenz des Spektrums von $x_K(t)$ und $x(kT_1)$. S.10
F_{IB}	Untermatrix von F_{2AU} zugehörig zu c_{1B}^{IB} , S.98
F_{LP}	Untermatrix von F_{aAU} zugehörig zu c_{LP}^{1} , S.98
$F_{ m Mod}$	Matrix der CLS-Approximation mit Freiheitsgrad $c_{\rm p}$, S. 98
fs	Sperifrequenz eines Filters, S.59
$F_{\rm u}$	Untermatrix von F zugehörig zu h_n , S.64
F_{u}	Untermatrix von F_{aAU} zugehörig zu c_{u} , S.98
G	Diagonalmatrix mit den Elementen $G(e^{j\omega_{\varphi}T_1/L})$, S.63
$G(e^{j\omega T_1/L})$	Funktion zur Gewichtung des Fehlers von $H_{\text{Dig}}(e^{j\omega T_1/L})$, S.56
$h_{\Delta\nu}(\nu T)$	Impulsantwort eines FSDs, S.99
$H_{\Delta\nu}(e^{j\omega T})$	Frequenzgang von $h_{\Delta\nu}(\nu)$, S.99
$h_{\text{Dez}}(\lambda \frac{T_2}{M})$	diskretes Filter vor Abwärtstastung mit M (Anti-Aliasing-
Don (M)	Filter), S.114
$h_{ m Dig}$	Vektor mit den Elementen $h_{\text{Dig}}(\lambda^{\frac{T_1}{2}}), \lambda \in [0, \frac{N_{\text{Dig}}-1}{2}]$, S.60
$h_{\text{Dig}}(\lambda \frac{T_1}{r})$	diskretes Filter nach Aufwärtstastung mit L (Anti-Imaging-
Dig (L)	Filter). S.15
$oldsymbol{H}_{ ext{Dig}}$	Vektor mit den Elementen $H_{\text{Dig}}(e^{j\omega_{\varphi}T_1/L})$, S.63
$H_{\text{Dig}}(e^{j\omega T_1/L})$	Frequenzgang oder Amplitudengang von $h_{\text{Dig}}(\lambda \frac{T_1}{2})$, S.16.S.60
$h_{\mathrm{D}}^{\mathrm{Q}}(\lambda \frac{T_{1}}{1})$	quantisierte Koeffizienten des Filters $h_{\text{Dis}}(\lambda \frac{T_1}{2})$ S 165
$h_{\rm f}$	Vektor mit den bekannten (fixed) $h_{\text{Dig}}(\lambda \frac{T_1}{L})$ S 64
$h_{\text{Cosamt}}(t)$	Gesamtimpulsantwort eines asynchronen Abtastratenumsetzers
·· Gesami (*)	ohne Abwärtstastung S 158

$H_{\text{Gesamt}}(j\omega)$	Fouriert ransformiert e von $h_{\text{Gesamt}}(t)$, S.158
$m{h}_{ m Gl}$	Vektor der Gleichheitsanforderungen, S.86
$h_{\text{Int}}(t)$	Impulsantwort der Approximation bzw. Interpolation, S.15
$H_{\rm Int}(j\omega)$	Fouriert ransformiert e von $h_{\text{Int}}(t)$, S.16
$m{h}_{ m L2}$	Vektor der L_2 -Approximation für $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.60
$H_{lm}(z_{\rm S})$	Übertragungsfunktion eines der LM Teilsysteme in einer effizi-
	enten Realisierung der synchronen Abtastratenumsetzung, S.41
$h_{m_0}(t)$	eine von ${\cal M}$ Impulsantworten zur Beschreibung des asynchronen
	Abtastratenumsetzers in Bild 3.1, S.20
$H_{m_0}(j\omega)$	Fouriertransformierte von $h_{m_0}(t)$, S.20
$H_{m_0}^{ m wc}(j\omega)$	$H_{m_0}(j\omega)$, das $D_{aAU}(j\omega)$ am schlechtesten approximiert, S.23
$h_{m_0}^{\text{PP}}(\lambda \frac{M}{L}T_1)$	eine der M Polyphasen-Komponenten von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.19
$H_{m_0}^{\rm PP}({\rm e}^{{\rm j}\omega MT_1/L})$	Frequenzgang von $h_{m_0}^{\text{PP}}(\lambda \frac{M}{L}T_1)$, S.20
h _{Max}	Maximum von $h_{\text{Dig}}(\lambda \frac{\tilde{T}_1}{L}), S.165$
$h_{\rm Min}$	Minimum von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.165
$oldsymbol{h}_{ ext{Rest}}$	Vektor mit den Elementen $h_{\text{Spline}}(\tau_{\kappa})$, S.87
$h_{\rm Skal}$	Skalierungsgröse bei der Quantisierung, S.165
$h_{\text{Spline}}(t)$	Impulsantwort eines idealen Tiefpasses mit Übergangsbereich,
	S.58
$H_{ m Spline}({ m j}\omega)$	Fouriertransformierte von $h_{\text{Spline}}(t)$, S.59
$m{h}_{ m Start}$	Startlösung des CLS-Algorithmus, S.66
$h_{\rm TP}(t)$	analoger Glättungstiefpaß bei DA-Umsetzung, S.7
$H_{\mathrm{TP}}(\mathrm{j}\omega)$	Fouriert ransformierte von $h_{\rm TP}(t)$, S.10
$m{h}_{ m u}$	Vektor mit den unbekannten (unknown) $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.64
$I(\omega, \mu)$	Integral bei Bestimmung von $H_{\text{Int}}(j\omega)$, S.75
$I_{\eta}(\omega,\mu)$	Integral bei Bestimmung von $H_{\text{Int}}(j\omega)$, S.85
kT_1	äquidistante Abtastzeitpunkte von $x(kT_1)$, S.8
\boldsymbol{k}_1	Vektor zur Berechnung von $\boldsymbol{c}_1^{\text{LP}}$, S.98
$K(e^{j\omega T_1})$	Funktion zur Beschreibung des tiefpaßbegrenzten Eingangssig-
	nals mit konstantem Spektrum, S.24
L	Aufwärtstastfaktor, S.15
l_{∞} -Fehler	maximaler Zeitbereichsfehler, S.30
L_{∞} -Fehler	maximaler Frequenzbereichsfehler, S.30
l_2 -Fehler	Energie des Zeitbereichsfehlers, S.30
L_2 -Fehler	Energie des Frequenzbereichsfehlers, S.30
$L_{ m LI}$	notwendiger Aufwärtstastfaktor für $h_{\text{Int}}(t)$ als linearer Interpo-
_	lator, S.136
L_{Raster}	Dichte des Approximationsrasters in Abschnitt 5.6.1.1, S.85
$L_{\rm SH}$	notwendiger Aufwärtstastfaktor für $h_{\text{Int}}(t)$ als SH-Glied, S.136
m_0	ganzzahlige Variable $m_0 \in [0, M-1]$, S.19
$m{m}_{ m Lagr}$	Vektor der Lagrange-Multiplizierer, S.66,97
m_M	ganzzahlige Variable, S.19
$m_M^{_0}$	obere Grenze für m_M in (3.80), S.42
m_M^{u}	untere Grenze für m_M in (3.80), S.42

M	Abwärtstastfaktor, S.15
$M_{ m LP}$	Matrix zur Berechnung von $\boldsymbol{c}_1^{\text{LP}}, \boldsymbol{c}_2^{\text{LP}}, \text{S.98}$
$oldsymbol{M}_1^{\mathrm{u}}$	Untermatrix von $M_{\rm LP}$, S.98
N	Menge der natürlichen Zahlen
\mathbb{N}_0	Menge der natürlichen Zahlen mit Null
$N_{\rm Dig}$	Länge von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$, S.44
$N_{\rm Gl}$	Zahl an Gleichheitsanforderungen der l_2 - und l_{∞} -Approxima-
	tion, S.86
$N_{\rm PP}$	Länge einer Polyphasen-Komponente von $h_{\text{Dig}}(\lambda \frac{T_1}{L})$ bei OET- KEN S.61
0	Operationsbitrate S 49
Ohanat	Operationsbitrate für konstante Koeffizienten S 49
O _{noit}	Operationsbitrate für zeitvariante Koeffizienten, S 49
n	Parameter von $h_{\text{Splin}}(t) = S.58$
P DOpt	optimales n für minimalen l_2 -Abschneidfehler S 85
0	Menge der rationalen Zahlen
(IDia	Quantisierungsstufe von h_{Σ}^{Q} $(\lambda^{\frac{T_{1}}{2}})$ S 105
4 Dig	Quantisierungsstufe der Signale S 136
R	Menge der reellen Zahlen
R	Vektor mit den Elementen $R(i\omega_{c})$, S.66
$R(j\omega_{\alpha})$	Gleichheitsanforderungen beim CLS-Verfahren, S.66
R_{aAII}	Vektor mit den Elementen $R_{aAII}(j\omega_{\alpha})$, S.97
$R_{\mathrm{aAU}}(\mathrm{j}\omega_{arphi})$	Gleichheitsanforderungen an $H_{\text{Dig}}(\mathbf{e}^{ \omega^{T_1/L}})$ bei der CLS-Approximation S 97
B _M	Vektor der CLS-Approximation mit Freiheitsgrad c S 98
$R_{\rm rb} \left(e^{j\omega_{\varphi}T_1/L} \right)$	obere Grenze der CLS-Approximation und Preineusgrud \mathcal{O}_{II} , 5.55
$R_{\rm ob}(i\omega_{\rm ob})$	obere Grenze der CLS-Approximation S 97
$R_{\rm ur} \left(e^{j\omega_{\varphi}T_1/L} \right)$	untere Grenze der CLS-Approximation von $h_{\text{Dis}}(\lambda^{\frac{T_1}{T_1}})$ S 66
$R_{un}(i\omega_{a})$	untere Grenze der CLS-Approximation, S.97
SInt S Dig	Konstante Faktoren in den Aufwandsbetrachtungen $(=1.2)$, S.50
S _{Kooff}	Zugriffsbitrate für Koeffizientenspeicher, S.48
Ssig	Anzahl an Zustandsspeichern gewichtet mit Zugriffstakt, S.48
SNR_1	Signal-Stör-Abstand, S.31
SNR_2	Signal-Stör-Abstand, S.32
t	kontinuierliche Zeit
t ₀	beliebiger Zeitpunkt, S.45
$t_{\Delta}[n]$	Approximationszeitpunkte, S.45
t_{1k}	Abtastzeitpunkte von $x(t_{1k})$, nicht notwendigerweise äquidi-
	stant, S.7
t_{2n}	Abtastzeitpunkte von $y(t_{2n})$, nicht notwendigerweise äquidi-
	stant, S. 7
Т	Abtastzeit
T_{η}	halbe Länge von $h_{\text{Int}}(t)$, S.46
T_0	halbe Länge von $h_{\text{TP}}(t)$, S.13

T_1	Abtastzeit von $x(kT_1)$, S.3
T_2	Abtastzeit von $y(kT_2)$, S.11
$\tilde{T_{G11}}$	Matrix der l_2 -Approximation in Abschnitt 5.6.1.1, S.86
T_{GL2}	Matrix der l_2 -Approximation in Abschnitt 5.6.1.1, S.87
T _{Max}	minimale Auflösung für $\tau_{\Lambda}[\nu_0]$, S.161
T _{Rest 1}	Matrix der l ₂ -Approximation in Abschnitt 5.6.1.1, S.86
T _{Bost 2}	Matrix bei der Approximation in Abschnitt 5.6.1.1. S.87
$u(\lambda \frac{M}{L}T_1)$	Ausgangssignal einer synchronen Abtastratenumsetzung mit $\frac{L}{M}$.
(L 1)	S.15.19
$U(e^{j\omega MT_1/L})$	Frequenzgang von $u(\lambda \frac{M}{2}T_1)$, S.16
vaAU	Vektor der CLS-Approximation eines Interpolators $h_{\text{Int}}(t)$, S.97
$v_{\rm f}$	Teilvektor von \boldsymbol{v}_{aAU} zugehörig zu \boldsymbol{c}_{f} , S.98
$v_{\rm IB}$	Teilvektor von v_{aAU} zugehörig zu c_1^{IB} , S.98
v_{LP}	Teilvektor von v_{aAU} zugehörig zu c_{LP}^{LP} . S.98
$v_{ m Mod}$	Vektor der CLS-Approximation mit Freiheitsgrad $c_{\rm u}$, S. 98
v_{u}	Teilvektor von \boldsymbol{v}_{aAU} zugehörig zu \boldsymbol{c}_{0} , S.98
w _{Dig}	Wortlänge der Koeffizienten von $h_{\text{Dig}}(\lambda \frac{T_1}{T})$, S.48
wInt	Wortlänge der Koeffizienten von $h_{Int}(t)$, S.48
WSig	Wortlänge der Signale, S.136
$x(t_{1k}), x(kT_1)$	Eingangssignal der asynchronen Abtastratenumsetzung, S.3.7
$X(e^{j\omega T_1})$	Frequenzgang von $x(kT_1)$, S.10
X ₀	Frequenzbereichsamplitude des tiefpaßbegrenzten Eingangssig-
-	nals mit konstantem Spektrum, S.23
$x_{Auf}\left(\lambda \frac{T_1}{L}\right)$	mit L aufwärtsgetastetes Signal, S.15
$X_{\text{Auf}}(e^{j\vec{\omega}T_1/L})$	Frequenzgang von $x_{Auf}(\lambda \frac{T_1}{L})$, S.16
$x_{\text{Dig}}(\lambda \frac{T_1}{T})$	Signal nach Filterung mit $h_{\text{Dig}}(\lambda \frac{T_1}{T})$, S.15
$X_{\text{Dig}}(e^{j\omega T_1/L})$	Frequenzgang von $x_{\text{Dig}}(\lambda \frac{T_1}{T})$, S.16
$x_{\rm Ein}(\nu T)$	Eingangssignal einer Approximation bzw. Interpolation, S.45,47
$x_{\rm Ein}(t)$	Referenz-Signal einer Approximation bzw. Interpolation
$X_{\rm Ein}({\rm e}^{{\rm j}\omega T})$	Fouriertransformierte von $x_{\rm Ein}(kT)$, S.75
$x_{\rm K}(t)$	zeitkontinuierliches Referenz-Signal, S.3
$X_{\rm K}({\rm j}\omega)$	Fouriert ransformierte von $x_{\rm K}(t)$, S.10
$x_{m_0}(m_M M T_1)$	eine der M Polyphasen-Komponenten von $x(kT_1)$, S.19
$X_{m_0}(e^{j\omega MT_1})$	Frequenzgang von $x_{m_0}(m_M M T_1)$, S.20
$x_{\text{Oetken}}(\omega)$	Amplitude des Testsignals beim L -tel Bandfilterentwurf nach
	Oetken, S.62
$x_{\text{Puls}}(t)$	pulsgeformtes Signal, S.7
$X_{\text{Puls}}(j\omega)$	Fouriertransformierte von $x_{Puls}(t)$, S.11
y(t)	(quasi-)kontinuierliches Ausgangssignal der asynchronen Abta-
	stratenumsetzung, S.7
$Y(j\omega)$	Fouriert ransformiert e von $y(t)$, S.10
$y(t_{2n}), y(nT_2)$	Ausgangssignal der asynchronen Abtastratenumsetzung, S.3
$Y(e^{j\omega T_2})$	Fouriertransformierte von $y(nT_2)$, S.10
$y_{Aus}(t)$	Ausgangs signal einer Approximation bzw. Interpolation, $\rm S.45,47$

$Y_{\rm Aus}(j\omega)$	Fouriertransformierte von $y_{Aus}(t)$, S.75
$y_{\rm FSD}(\nu T)$	Ausgangssignal eines FSDs, S.99
$y_{\text{Korr}}(t_{2n})$	durch adaptives Filter bzw. IIR-Filter korrigiertes Ausgangssi-
	gnal der asynchronen Abtastratenumsetzung, S.116,117
$y_{m_0}(t)$	Teilergebnis des DAAU2, S.42
Z	Menge der ganzen Zahlen
z	Variable der z-Transformation
Z_{Int}	Zahl der Interpolationen bei der Aufwandsbetrachtung, S.51

Operatoren und Funktionen

8	Faltungsoperator	zwischen	kontinuierliche	m und	$\operatorname{diskretem}$	Signal
	bzw. zwischen zw	ei diskrete	n Signalen verse	chiedene	er Abtastfre	equenz,
	S.8,8					

- nächstkleinere ganze Zahl zu \boldsymbol{a}
- $\begin{bmatrix} a \end{bmatrix}$ nächstgrößere ganze Zahl zu a
- $Rd\{\}$ Rundungsoperator der Quantisierung, S.105
- $\operatorname{Im}\{a\}$ Imaginärteil von a
- Realteil von a $\operatorname{Re}\{a\}$
- Signum-Funktion $\operatorname{sgn}(x)$
- si-Funktion, $\frac{\sin(t)}{t}$ $\operatorname{si}(t)$

Abkürzungen

AD	Analog-Digital
AQ	Abgleich-Quantisierung, S.107
CLS	Constrained Least Square
CSD	Canonical Signed Digit
DA	Digital-Analog
DAAD	Kaskade von DA- und AD-Umsetzung, S.7
DAAU	Digitaler asynchroner Abtastratenumsetzer, S.15
DAAU1	Realisierung des DAAU wie in Abschnitt 3.4.1
DAAU2	Realisierung des DAAU wie in Abschnitt 3.4.2
DB	Durchlaßbereich eines Filters
DQ	Direkte Quantisierung, S.105
DFT	Diskrete Fourier-Transformation
DTFT	Discrete Time Fourier-Transformation, S.10
FIR	Finite Impulse Response
FKA	Festkomma-Arithmetik
FSD	Fractional Sample Delay
GKA	Gleitkomma-Arithmetik
IB	Interpolationsbedingung
IIR	Infinite Impulse Response

.31
-