• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Giancarlo Dalle Ave

Energy- and Equipment-Condition-Aware Online Scheduling Methods for the Process Industries

FrontBack
 
ISBN:978-3-8440-8254-8
Series:Schriftenreihe des Lehrstuhls für Systemdynamik und Prozessführung
Herausgeber: Prof. Dr.-Ing. Sebastian Engell
Dortmund
Volume:2022,2
Keywords:Optimization; Scheduling; Demand Side Management
Type of publication:Thesis
Language:English
Pages:208 pages
Figures:69 figures
Weight:309 g
Format:21 x 14,8 cm
Bindung:Paperback
Price:49,80 € / 62,30 SFr
Published:June 2022 - in preparation
Buy:
  » plus shipping costs
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs37,35 EUR 
 ActionPurchase in obligation and display of file - 38,4 MB (40260054 Byte) 
 ActionPurchase in obligation and download of file - 38,4 MB (40260054 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 2,5 MB (2590138 Byte) 
 ActionDownload of file - 2,5 MB (2590138 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copyHere you can order a review copy.
LinkYou want to link this page? Click here.
AbstractThis work investigates aspects of online scheduling with an emphasis placed on industrial requirements. Two areas that are becoming increasingly important in industry are energy management (via demand side management) and condition-based maintenance. This work investigates the challenges of online production scheduling considering both of these production concerns. This work builds upon the Resource Task Network (RTN) scheduling framework (Pantelides, 1994) as it is easily adaptable to the ISA-95 industrial production scheduling standard (ANSI/ISA-95.00.03-2005, 2005). Results show that the proposed algorithms and models can address shortcomings of current methods and represent a step forward in online scheduling.