Desiree Ingrid BaumannUntersuchung von chemometrischen Methoden zur Erstellung und Validierung von QSAR-Modellen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISBN: | 978-3-8440-4551-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Series: | Pharmazie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: | Validierung; QSAR; Vorhersagefehler; Kreuzvalidierung; lineares Modell; Modellerstellung; Modelloptimierung; Güteparameter; Validierungskonzepte; DCV; Regressionsfall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type of publication: | Thesis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | German | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pages: | 320 pages | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figures: | 48 figures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weight: | 419 g | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format: | 21 x 14,8 cm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Binding: | Paperback | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Price: | 49,80 € / 62,30 SFr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Published: | July 2016 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Buy: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Download: | Available PDF-Files for this title: You need the Adobe Reader, to open the files. Here you get help and information, for the download. These files are not printable.
User settings for registered users You can change your address here or download your paid documents again.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recommendation: | You want to recommend this title? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review copy: | Here you can order a review copy. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Link: | You want to link this page? Click here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Export citations: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract: | In der vorliegenden Arbeit wurden mathematische Methoden zur Erstellung und Validierung von QSAR-Modellen untersucht. Hierbei wurde die Methode der Doppelten Kreuzvalidierung (die zur simultanen Modellselektion und Modellbewertung eingesetzt wird) systematisch untersucht, da die Validität dieser Methode häufig in der Literatur angezweifelt wird. Mithilfe umfangreicher Simulationsstudien und realer Datensätze konnte gezeigt werden, dass die DCV selbst unter Modellunsicherheit das Potential hat, den Vorhersagefehler der Modelle ohne einen statistisch nachweisbaren systematischen Fehler zu schätzen. Da das Potential der DCV von frei wählbaren Parametern wie z.B. der Testdatensatzgröße abhängt, wurde der Einfluss der Parameterauswahl auf die Leistungsfähigkeit der DCV analysiert. Letztlich konnte ein umfassendes Regelwerk entwickelt werden, das dem Anwender ermöglicht, die Parameter der DCV derart auszuwählen, dass eine hohe Modellqualität resultiert und zugleich eine zuverlässige Modellbewertung möglich ist.
Ferner wurde in der vorliegenden Arbeit der R2test, der als relatives Gütekriterium zur Modellbewertung bei QSAR-Modellen eingesetzt wird, untersucht, da seine komplexen Eigenschaften bisher noch weitestgehend unverstanden sind. Im Rahmen dieser Arbeit gelang es erstmalig, den systematischen Fehler des R2test in Abhängigkeit von der Testdatensatzgröße zu erklären, indem die zugrundeliegende Verteilungsdichte und der Erwartungswert des R2test unter einigen Annahmen hergeleitet wurden. Um den systematischen Fehler zu korrigieren, wurde im Rahmen der Arbeit ein neuer Ansatz entwickelt, der häufig den bekannten Schätzverfahren (die auf etablierten Gütekriterien basieren) deutlich überlegen ist, da er selbst für sehr kleine Testdatensätze realistische Schätzungen der Vorhersagekraft liefert. Die Vorteile des neu entwickelten Ansatzes wurden mit einem mathematischen Beweis dargelegt und konnten sowohl anhand umfangreicher Simulationsstudien als auch anhand realer Daten belegt werden. |