Header

Shop : Details

Shop
Details
978-3-8440-4933-6
45,80 €
ISBN 978-3-8440-4933-6
Softcover
142 pages
68 figures
195 g
21 x 14,8 cm
English
Thesis
December 2016
Volker Patricio Schomerus
Context-Supported Lane Estimation
Understanding the Scene by Learning Spatial Relations Between Semantic Features and Virtual Ground Truth
Fahrerassistenzsysteme und automatisches Fahren gewinnen im Bereich der Mobilität mehr und mehr an Bedeutung. Durch erhöhte Sicherheit und die Möglichkeit einer anderweitigen Nutzung der Reisezeit wird die Entwicklung intelligenter Fahrzeuge die Mobilität der Zukunft neu definieren. Um die Grenzen bisheriger Systeme für vollautomatisches Fahren zu erweitern, werden leistungsfähige Methoden des maschinellen Lernens eingesetzt, um die räumlichen Beziehungen zwischen diversen Merkmalen im Kamerabild und der Fahrzeugtrajektorie zu lernen. Das Zusammenführen der räumlichen Beziehungen aller gefundenen Merkmale eines Kamerabildes resultiert in einer sogenannten Verteilungskarte, in die ein Fahrstreifenmodell eingepasst werden kann. Des Weiteren wird mit Hilfe globaler Bildmerkmale der Kontext der aktuellen Szene bestimmt. Es werden verschiedene Möglichkeiten untersucht, mit Hilfe der gewonnenen Kontextinformation die Fahrstreifenerkennung zu verbessern, und es wird erläutert, wie ein solches globales Verfahren mit einer lokalen Methode zur Fahrstreifen- bzw. Fahrstreifenbegrenzungserkennung kombiniert werden kann. Es wird gezeigt, dass viele verschiedene Arten von Merkmalen in der Fahrzeugumgebung wichtige Informationen über die Lage des Fahrstreifens liefern und dass dieser Fahrstreifen im Bild detektiert werden kann, indem dessen räumliche Beziehungen zu diesen Merkmalen modelliert werden. Außerdem wird gezeigt, wie zusätzliches Wissen über den aktuellen Kontext die Qualität der Fahrstreifenerkennung erhöhen kann.
Keywords: Automatic Driving; Computer Vision; Machine Learning; Lane Detection
Fortschritte in der Robotik
Edited by Prof. Dr.-Ing. Friedrich M. Wahl, Braunschweig
Volume 16
Available online documents for this title
DOI 10.2370/9783844049336
You need Adobe Reader, to view these files. Here you will find a little help and information for downloading the PDF files.
Please note that the online documents cannot be printed or edited.
Please also see further information at: Help and Information.
 
 DocumentDocument 
 TypePDF 
 Costs34,35 € 
 ActionDownloadPurchase in obligation and download the file 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDownloadDownload the file 
     
User settings for registered online customers (online documents)
You can change your address details here and access documents you have already ordered.
User
Not logged in
Export of bibliographic data
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
Germany
  +49 2421 99011 9
Mon. - Thurs. 8:00 a.m. to 4:00 p.m.
Fri. 8:00 a.m. to 3:00 p.m.
Contact us. We will be happy to help you.
Captcha
Social Media