Guang XuIn-Network Processing Algorithms for Cooperative Networks | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISBN: | 978-3-8440-7270-9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Series: | Dissertationen aus dem Arbeitsbereich Nachrichtentechnik der Universität Bremen Herausgeber: Prof. Dr.-Ing. Armin Dekorsy Bremen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume: | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: | Distributed Signal Processing; Cooperative Processing; Communications Networks; Wireless Sensor Networks; Constrained Optimization Problem | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type of publication: | Thesis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pages: | 242 pages | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figures: | 61 figures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weight: | 359 g | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format: | 21 x 14,8 cm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bindung: | Paperback | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Price: | 49,80 € / 62,30 SFr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Published: | March 2020 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Buy: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Download: | Available PDF-Files for this title: You need the Adobe Reader, to open the files. Here you get help and information, for the download. These files are not printable.
User settings for registered users You can change your address here or download your paid documents again.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recommendation: | You want to recommend this title? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review copy: | Here you can order a review copy. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Link: | You want to link this page? Click here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Export citations: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract: | The dissertation is about distributed algorithms for cooperative processing among collaborated nodes within a network (In-Network Processing (INP)). The main content is mainly focused on the novel INP algorithms development of distributed signal processing that are applied to cooperative networks like the mobile communications networks or wireless sensor networks. For the distributed applications, the INP can generally provide solutions to distributed inference problems based on measurements of physical, medical, biological chemical sensors in wireless sensor networks, in addition, the INP can also facilitate distributed signal processing for distributed radio access networks in 5G/6G communications system.
In this dissertation, a variety of distributed algorithms under the framework of INP have been provided. These INP algorithms are designed for application scenarios where joint processing tasks are executed by cooperated entities in wireless communications networks through a distributed and parallel fashion. In particular, two main areas the distributed consensus-based joint estimation for signal detection and distributed joint precoding for signal transmission in communications networks are highly focused on and investigated in this dissertation. The INP algorithms for distributed consensus-based joint estimation are applied to the scenario where a group of nodes receive signals from common users, and those receive nodes aim to collaborate to estimate the received signals in a distributed way, such that all receive nodes can eventually achieve same estimates on the user signals. To develop the INP algorithms for distributed consensus-based joint estimation, several numerical approaches like Lagrangian dual method and alternating direction method of multipliers have been investigated in order to solve for corresponding constrained optimization problems in a distributed way. In addition, some novel approaches like the virtual clustering as well as consensus-achieving filtering approaches have also be invented to improve the performance with low communication overhead and low computation complexity during the cooperative processing. Moreover, the INP algorithms for the distributed joint precoding are applied to another scenario where a group of nodes cooperate to perform joint transmission to target users in order to avoid interference at the receivers. Correspondingly, by exploiting advanced numerical approaches for distributed implementation of joint signal processing like two-step Jacobi and pre-conditioned Richardson methods, several types of INP algorithms for distributed joint precoding with low communication effort and low computation complexity have been developed. Meanwhile, different transmit power constraints are also taken into account for the development of different distributed precoding algorithms to cope with different practical system requirements. Overall, this work not only presents a variety of concrete INP algorithms for distributed processing in communication networks, it also provides novel ideas and deep analysis of the INP approaches and techniques that can be applied to a wide range of applications for distributed joint processing in cooperative networks. |