• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Amgad Dessoky

Numerical Investigation of Aerodynamic and Aeroacoustic Characteristics of Small Vertical Axis Wind Turbines

FrontBack
 
ISBN:978-3-8440-8626-3
Series:Strömungstechnik
Keywords:Wind turbines; Aerodynamic; Aeroacousric
Type of publication:Thesis
Language:English
Pages:188 pages
Figures:136 figures
Weight:278 g
Format:21 x 14,8 cm
Bindung:Paperback
Price:48,80 € / 61,10 SFr
Published:June 2022
Buy:
  » plus shipping costs
DOI:10.2370/9783844086263 (Online document)
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs36,60 EUR 
 ActionPurchase in obligation and display of file - 6,7 MB (6987088 Byte) 
 ActionPurchase in obligation and download of file - 6,7 MB (6987088 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 1,1 MB (1136472 Byte) 
 ActionDownload of file - 1,1 MB (1136472 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:The depletion of petroleum oil, which is the primary source of energy, as well as the expanding awareness of the issues of climate change, have led to growing levels of interest in sustainable energy utility. Several governments now introduce feed-in tariffs, pay house owners for generating their own electrical power, and present the financial support to build the small-scale power generation unit. All that pays extra attention to the small scale or domestic wind turbines in the last decade.

Vertical axis wind turbines (VAWTs) show the ability to accept wind from random directions, have compact design, including the possibility of housing mechanical and electrical components at ground level. Thus, VAWTs have been proposed as an adequate solution for deployment in urban areas, where the wind is gusty. As the VAWTs are erected in the urban areas, they will get considerably close to people; therefore, the annoyance level is essential for public acceptance, and the build-up of a low-noise rotor becomes crucial.

To date, very few actions have been undertaken to investigate the noise mechanisms of VAWTs. The primary aim of this study was to investigate the noise generated from the H- rotor VAWT for a range of operating conditions and design parameters. Numerical investigations were carried out by means of Computational Fluid Dynamics (CFD). In these evaluations, Delayed Detached Eddy Simulations (DDES) using the 6th-order WENO (Weighted Essentially Non-Oscillatory) scheme were performed. The prediction of the flow induced noise was achieved based on Computational Aeroacoustics (CAA) approach employing the in-house Ffowcs Williams-Hawkings (FW-H) code.

This research is intended to investigate the behavior of VAWTs under the turbulent flow conditions with different turbulence length scales. Then, simulations with resolved broadband turbulence were performed to study the influence of complex, urban, and flat terrain on the aerodynamic and aeroacoustics behavior of VAWT.

Finally, a development in turbine design was carried out and accompanied by aeroacoustics analyses, by investigating three alternative turbine configurations. These configurations are the turbine implemented with wind-lens, guide-vanes, and turbine endplate.