Header

Shop : Details

Shop
Details
35,80 €
ISBN 978-3-8440-6917-4
Softcover
152 pages
45 figures
232 g
21 x 14,8 cm
English
Thesis
September 2019
Daniel Hast
Structured Design of Parametric Fault Candidates
A set-based Approach
Detection and isolation of faults in technical systems is essential to ensure safe and reliable operation. Faults might lead to dangerous operating conditions or unplanned breakdowns of processes. The overall goal of this work is to devise a set-based approach for the challenging task of fault diagnosis in nonlinear dynamical systems with particular consideration of the structured design of fault candidates, robust diagnosability and applicability in practice.

To this end a set-based framework for fault detection and isolation is employed. The design procedure focuses on the parameter space and uses sets to model uncertain and qualitative knowledge. It is shown how uncertainty can be incorporated in the design of fault candidates such that parametric faults based on qualitative and quantitative knowledge can be described. Furthermore, it is elaborated how diagnosability can be achieved by suitable design of fault candidates. To provide a proof-of-concept for a practical application, the approaches are validated with hydraulic axial-piston pumps as a non-trivial industry-scale example.

The theoretical contributions are adopted using real-world data from test bench experiments to design fault candidates for a set of qualitatively derived fault cases and to perform fault detection and isolation by employing guaranteed model invalidation. By doing so, the applicability of set-based approaches in demanding practical applications is demonstrated for the design of fault candidates as well as for fault detection and isolation.
Keywords: Fault Diagnosis; Set-based methods; Hydraulic Pumps
Contributions in Systems Theory and Automatic Control, Otto-von-Guericke-Universität Magdeburg
Edited by Otto-von-Guericke Universität Magdeburg and Institut für Automatisierungstechnik, Magdeburg
Volume 8
Available online documents for this title
DOI 10.2370/9783844069174
You need Adobe Reader, to view these files. Here you will find a little help and information for downloading the PDF files.
Please note that the online documents cannot be printed or edited.
Please also see further information at: Help and Information.
 
 DocumentDocument 
 TypePDF 
 Costs26,85 € 
 ActionDownloadPurchase in obligation and download the file 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDownloadDownload the file 
     
User settings for registered online customers (online documents)
You can change your address details here and access documents you have already ordered.
User
Not logged in
Export of bibliographic data
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
Germany
  +49 2421 99011 9
Mon. - Thurs. 8:00 a.m. to 4:00 p.m.
Fri. 8:00 a.m. to 3:00 p.m.
Contact us. We will be happy to help you.
Captcha
Social Media