Header

Shop : Details

Shop
Details
58,80 €
ISBN 978-3-8440-9548-7
Softcover
164 pages
68 figures
223 g
21 x 14,8 cm
English
Thesis
July 2024
Caner Bektas
Machine Learning-Enabled Dimensioning of Slicing-Based Private Mobile Communication Networks
5G and future mobile communication networks present new possibilities for highly critical applications requiring resilient communication. In response, private 5G networks have emerged, offering localized solutions, while the network slicing technology allows for tailored services within a single infrastructure.

This thesis proposes new solutions for optimizing network slices and planning private 5G networks to meet the challenging demands of highly critical applications and scenarios. Regarding network slicing, a novel approach called Slice-Aware Machine Learning-based Ultra-Reliable Scheduling (SAMUS) is introduced, which is a dynamic resource scheduler based on Machine Learning (ML), aimed at achieving low latency for critical slices while maintaining high resource utilization for high throughput applications. This approach is analyzed based on experimental and simulative methods and is shown to be effectively reducing end-to-end latency for critical data while providing high throughput for best effort services.

Additionally, this thesis introduces an automated network planning approach based on the unsupervised ML method k-means for planning demand-based private 5G networks. This approach offers results comparable to exhaustive search but with significantly reduced computation time. By leveraging this method, possible operators can rapidly deploy private 5G networks, making this approach ideal for temporary or nomadic deployments.
Keywords: 5G Network Slicing; Private 5G Networks; Automated Network Planning
Dortmunder Beiträge zu Kommunikationsnetzen und -systemen
Edited by Prof. Dr.-Ing. C. Wietfeld, Dortmund
Volume 23
Available online documents for this title
You need Adobe Reader, to view these files. Here you will find a little help and information for downloading the PDF files.
Please note that the online documents cannot be printed or edited.
Please also see further information at: Help and Information.
 
 DocumentDocument 
 TypePDF 
 Costs44,10 € 
 ActionDownloadPurchase in obligation and download the file 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDownloadDownload the file 
     
User settings for registered online customers (online documents)
You can change your address details here and access documents you have already ordered.
User
Not logged in
Export of bibliographic data
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
Germany
  +49 2421 99011 9
Mon. - Thurs. 8:00 a.m. to 4:00 p.m.
Fri. 8:00 a.m. to 3:00 p.m.
Contact us. We will be happy to help you.
Captcha
Social Media