Conrad GstöttnerAnalysis and Control of Flat Systems by Geometric Methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISBN: | 978-3-8440-8946-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Series: | Modellierung und Regelung komplexer dynamischer Systeme Herausgeber: Univ.-Prof. Dr. Andreas Kugi (TU Wien), o. Univ.-Prof. Dr. Kurt Schlacher (JKU Linz) and Prof. Dr.-Ing. Wolfgang Kemmetmüller (TU Wien) Wien / Linz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume: | 59 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: | flatness; nonlinear control; exact linearization | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type of publication: | Thesis | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Language: | English | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pages: | 166 pages | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figures: | 3 figures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weight: | 289 g | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format: | 24 x 17 cm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Binding: | Paperback | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Price: | 48,80 € / 61,10 SFr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Published: | February 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Buy: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Download: | Available PDF-Files for this title: You need the Adobe Reader, to open the files. Here you get help and information, for the download. These files are not printable.
User settings for registered users You can change your address here or download your paid documents again.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recommendation: | You want to recommend this title? | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review copy: | Here you can order a review copy. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Link: | You want to link this page? Click here. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Export citations: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract: | Dieses Buch beschäftigt sich mit differentiell flachen nichtlinearen Systemen die durch gewöhnliche Differentialgleichungen beschrieben werden. Die charakteristische Eigenschaft differentiell flacher Systeme ist, dass sie einen (fiktiven) Ausgang besitzen, so dass der Zustand und der Eingang des Systems durch diesen Ausgang und dessen Zeitableitungen ausgedrückt werden können. Ein solcher Ausgang wird flacher Ausgang genannt. Ist ein flacher Ausgang bekannt, so können Vorsteuerungen oder Rückführungen systematisch entworfen werden. Viele praktische Systeme sind in der Tat flach.
In dieser Arbeit werden der systematische Entwurf von flachheitsbasierten Folgeregelungen und die Berechnung flacher Ausgänge behandelt. Es wird eine Entwurfsmethode vorgestellt, die auf einer quasistatischen Rückführung von klassischen Zuständen beruht. Die vorgeschlagene Methode vereint die Vorteile und vermeidet Nachteile der Standardmethoden für den Entwurf von flachheitsbasierten Folgeregelungen, denen entweder eine exakte Linearisierung durch eine endogene dynamische Rückführung oder eine exakte Linearisierung durch eine quasistatische Rückführung von verallgemeinerten Zuständen zu Grunde liegt. Die Anwendung flachheitsbasierter Regelungsentwurfsmethoden setzt die Kenntnis eines flachen Ausgangs voraus. Einfach überprüfbare notwendige und hinreichende Bedingungen für Flachheit gibt es nicht. In der vorliegenden werden zwei strukturell flache Dreiecksformen charakterisiert, was auf nicht triviale hinreichende Bedingungen für Flachheit führt. Außerdem wird eine geometrische Charakterisierung der Klasse flacher System mit zwei Eingängen, die durch eine maximal zweidimensionale endogene dynamische Rückführung exakt linearisiert werden können hergeleitet. |