• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Dorothea Schwung

Maschinelle Lernalgorithmen zur Selbstoptimierung in verteilten Produktionssystemen basierend auf spieltheoretischen Konzepten

FrontBack
 
ISBN:978-3-8440-7840-4
Series:Automatisierungstechnik / Prozessinformatik
Keywords:Künstliche Intelligenz; Maschinelles Lernen; Spieltheorie; Produktionssysteme
Type of publication:Thesis
Language:German
Pages:150 pages
Figures:61 figures
Weight:222 g
Format:21 x 14,8 cm
Binding:Paperback
Price:45,80 € / 57,30 SFr
Published:January 2021
Buy:
  » plus shipping costs
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs34,35 EUR 
 ActionPurchase in obligation and display of file - 10,2 MB (10646831 Byte) 
 ActionPurchase in obligation and download of file - 10,2 MB (10646831 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 174 kB (178493 Byte) 
 ActionDownload of file - 174 kB (178493 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:Die Dissertation beschäftigt sich mit der Entwicklung von maschinellen Lernalgorithmen zur Selbstoptimierung in verteilten Produktionssystemen basierend auf spieltheoretischen Konzepten sowie deren Implementierung auf industriellen Steuerungssystemen. Ausgehend von einer bestimmten spieltheoretischen Spielgattung, den Potentialspielen, die sich durch Ihre Beschaffenheit und Eigenschaften besonders gut zur Lösung von verteilten Optimierungsproblemen eignen, werden diese in den Nutzenfunktionen um einen Zustandsraum ergänzt. Eine Modellierung von modular aufgebauten Produktionsanlagen auf Basis der Graphentheorie mit alternierenden Sequenzen von Zuständen und Aktionen zur Formung des Spielaufbaus, erlaubt die formal beweisbare Aufstellung eines solchen zustandsbasierten Potentialspiels. Diese Art des Spielkonzepts ermöglicht das Lösen von Mehrziel-Optimierungsproblemen mithilfe von maschinellen Lernalgorithmen. Als Optimierungsziele innerhalb von Produktionssystemen werden exemplarisch das Produktionsziel, die Einhaltung von Produktionsprozessbeschränkungen sowie die Reduktion des Energieverbrauchs festgelegt. Die verschiedenen im Rahmen dieser Arbeit entwickelten Lernalgorithmen unterscheiden sich in dem Grad des genutzten Vorwissens, in den Lernregeln selbst sowie in spezifischen Merkmalen im Lernmechanismus, wie z.B. Kommunikation oder Gedächtnis. Als Anwendungsbeispiel dient eine Schüttgutanlage bestehend aus vier Stationen. Ein Vergleich der Ergebnisse mit verschiedenen state-of-the-art Algorithmen unterstreicht die Wirksamkeit der neuen Lernverfahren. Zudem werden Plug-and-Play Funktionen sowie die Generalisierungsfähigkeit der neuen Algorithmen erfolgreich getestet. Die effiziente Implementierung auf der Schüttgutanlagen-SPS bestärkt die industrielle Relevanz.