• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Daniel Bergmann

Lernende Gauß-Prozessregression zur Optimierung und modellprädiktiven Regelung von Großdieselmotoren

FrontBack
 
ISBN:978-3-8440-7965-4
Series:Steuerungs- und Regelungstechnik
Keywords:Gauß-Prozessregression; Modellprädiktive Regelung; Dieselmotoren
Type of publication:Thesis
Language:German
Pages:160 pages
Figures:70 figures
Weight:237 g
Format:21 x 14,8 cm
Binding:Paperback
Price:48,80 € / 61,10 SFr
Published:April 2021
Buy:
  » plus shipping costs
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:In dieser Arbeit wird ein Modellbildungsverfahren entwickelt, welches einige Herausforderungen datenbasierter Modellbildung aufgreift und Lösungsansätze mit Hilfe der Gauß-Prozessregression aufzeigt. Zunächst wird hier auf eine sinnvolle Extrapolation in Randbereiche eingegangen. Dabei wird ein Verfahren entwickelt, mit dem es ermöglicht wird, bekannte Eigenschaften in Form von Montonieinformationen in die Modellbildung einfließen zu lassen.

Im Anschluss wird ein Algorithmus vorgestellt, mit Hilfe dessen das Modell auch zeitlich veränderliches Verhalten erlernen kann. Ein besonderer Fokus des Lernverfahrens liegt auf der Berücksichtigung von limitierten Rechen- und Speicherresourcen.

Die Modellierung über Gauß-Prozesse kann auch für die Bayes'sche Optimierung unbekannter Systeme vorteilhaft genutzt werden. Die Berücksichtigung von Beschränkungen wird in dieser Arbeit dahingehend erweitert, dass eine Auswertung unter Verletzung von Gleichungs- und Ungleichungsbeschränkungen im probabilistischen Sinne vermieden wird.

Die Anwendung der Methodik auf ein reales System in Form der Regelung von Großdieselmotoren stellt den zweiten Teil dieser Arbeit dar. Hier wird die Modellbildungsmethodik auf die Erzeugung von Verbrennungsmodellen angewendet. Auf Basis dieser Modelle wird dann eine modellprädiktive Regelung erstellt, mit der das Motorsystem unter Einhaltung der Emissionsnormen und Motorschutzgrenzen betrieben werden kann. Für die Verwendung des Lernalgorithmus im geschlossenen Regelkreis wird außerdem eine gleitende Modellübergabe an die Regelung entwickelt.

Die experimentellen Ergebnisse zeigen, dass durch das Erlernen der individuellen Motoreigenschaften eine hohe Regelgüte erreicht wird und auch Begrenzungen exakt eingehalten werden.