• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Lukas Berger

Numerical Study on Thermodiffusive Instabilities in Laminar and Turbulent Hydrogen Flames

FrontBack
 
ISBN:978-3-8440-8713-0
Series:Energietechnik
Keywords:Direct Numerical Simulations; Hydrogen Combustion; Thermodiffusive Instabilities; Turbulence
Type of publication:Thesis
Language:English
Pages:194 pages
Figures:88 figures
Weight:288 g
Format:21 x 14,8 cm
Binding:Paperback
Price:48,80 € / 61,10 SFr
Published:August 2022
Buy:
  » plus shipping costs
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs36,60 EUR 
 ActionPurchase in obligation and display of file - 26,6 MB (27903332 Byte) 
 ActionPurchase in obligation and download of file - 26,6 MB (27903332 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 924 kB (946199 Byte) 
 ActionDownload of file - 924 kB (946199 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:The deployment of hydrogen represents a unique opportunity to decarbonize thermochemical energy conversion processes, but its utilization involves several scientific and technological challenges, e.g., lean hydrogen/air flames are prone to thermodiffusive instabilities. In this thesis, a series of direct numerical simulations (DNS) is performed to assess the impact of these instabilities on hydrogen/air flames. Such instabilities are shown to have a leading order effect on the flame propagation, yielding consumption speeds several times higher than the laminar unstretched burning velocity. An analysis of the characteristic flame front corrugation in laminar flows reveals the existence of a smallest and largest flame intrinsic length scale, whose formation mechanisms are studied in detail. Theoretical models are shown to be not capable of accurately describing the evolution of such flames, so the propensity of laminar lean hydrogen flames to develop thermodiffusive instabilities is studied at different equivalence ratios, unburned temperatures, and pressures. Further, to investigate the interactions of thermodiffusive instabilities and turbulence, large-scale DNS of turbulent lean hydrogen/air flames have been performed in a slot burner configuration. Thermodiffusive instabilities are shown to significantly affect the turbulent flame speed, which is not only enhanced by flame wrinkling, but is also greatly increased due to significant variations of the local reaction rates. The effects of differential diffusion are found to be even enhanced in a turbulent flame compared to a laminar flame at the same conditions. Thus, thermodiffusive instabilities are sustained in turbulent flows and even show synergistic interactions with turbulence.