• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Patrick Schmid

Model Predictive Control for High-Speed Maglev Vehicles: Modeling, Design, Implementation, and Simulation

FrontBack
 
ISBN:978-3-8440-9290-5
Series:Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart
Herausgeber: Prof. Dr.-Ing. Peter Eberhard
Stuttgart
Volume:2023,81
Keywords:magnetic levitation; maglev; high-speed maglev vehicles; maglev vehicles; Transrapid; model predictive control; MPC; sMPC; electromagnet modeling; offset-free control; real-time control; processor-in-the-loop; hardware-in-the-loop; dependability; simulation
Type of publication:Thesis
Language:English
Pages:246 pages
Figures:75 figures
Weight:324 g
Format:21 x 14,8 cm
Binding:Paperback
Price:59,80 € / 74,80 SFr
Published:November 2023
Buy:
  » plus shipping costs
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs44,85 EUR 
 ActionPurchase in obligation and display of file - 6,6 MB (6965373 Byte) 
 ActionPurchase in obligation and download of file - 6,6 MB (6965373 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 213 kB (217839 Byte) 
 ActionDownload of file - 213 kB (217839 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:High-speed magnetic levitation (Maglev) vehicles have the potential to close the existing gap between classical railroads and air travel. However, efforts in the high-speed sector have stopped in the meantime, but now Maglev technology is experiencing a renaissance in China. The latter accompanies with the intention to reach a maximum speed of 600 km/h, which, however, immediately increases the demands on the magnet control system. As less attention was paid to this technology in the meantime, the research in methods for controlling the unstable magnet system almost stagnated. At the same time, the optimization-based control methodology model predictive control (MPC) evolved toward an efficient control technique.

Against this background, the dissertation at hand thoroughly combines the topics of MPC and high-speed Maglev vehicles and, in particular, deals with the issue of whether a practical realization seems possible. First, this includes deriving mathematical models, which the MPC internally uses to predict the expected actual system behavior. In addition, the treatise provides a valuable contribution to the design of practically applicable offset-free MPC control structures. Furthermore, real-time capable MPC algorithms are tested in realistic Processor-in-the-Loop and Hardware-in-the-Loop setups, revealing that the MPC's real-time dilemma can be overcome. The work also contributes in the context of dependable control architectures to safeguard the derived practically stable and efficient MPC-based control laws. The final control concept's application within detailed vehicle simulation models shows the MPC's advantages and capabilities as a holistic, efficient, powerful, and real-time capable control approach, which has the potential to meet future requirements.