• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Benjamin Maschler

Eine Architektur für maschinelles Transfer-Lernen in industriellen Automatisierungssystemen

FrontBack
 
ISBN:978-3-8440-9325-4
Series:IAS-Forschungsberichte
Herausgeber: Prof. Dr.-Ing. Dr. h. c. Michael Weyrich
Stuttgart
Volume:2023,2
Keywords:Industrieautomatisierung; Künstliche Intelligent; KI; Maschinelles Lernen; Transfer-Lernen; Automatisierung
Type of publication:Thesis
Language:German
Pages:154 pages
Figures:38 figures
Weight:216 g
Format:21 x 14,8 cm
Binding:Paperback
Price:58,80 € / 73,60 SFr
Published:December 2023
Buy:
  » plus shipping costs
DOI:10.2370/9783844093254 (Online document)
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs44,10 EUR 
 ActionPurchase in obligation and display of file - 4,4 MB (4662669 Byte) 
 ActionPurchase in obligation and download of file - 4,4 MB (4662669 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 450 kB (460822 Byte) 
 ActionDownload of file - 450 kB (460822 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:Industrielles Transfer-Lernen ermöglicht einen breiteren Einsatz von maschinellem Lernen in der Industrieautomatisierung, indem es die praktischen Herausforderungen konventionellen Deep Learnings überwindet: Lernalgorithmen müssen zwischen Anlagen und über Prozessgrenzen hinweg übertragbar sein und dabei Daten unterschiedlicher Qualität, Dimensionalität und Herkunft verwenden können, um mit geringen Anpassungsaufwänden auf Veränderungen der betrachteten (Teil-)Probleme reagieren zu können.

In dieser Arbeit wurde mittels Design Science Research angelehnt an Dual-Memory-Methoden und den Parametertransfer (Feinabstimmung) im Bereich der visuellen Objekterkennung eine modulare Architektur für industrielles Transfer-Lernen entwickelt: Eine statische, aber Anwendungsfall-spezifische Eingangsdatenverarbeitung führt eine Merkmalsextraktion aus. Die resultierenden Merkmalsvektoren können in der Folge über Clustering mit bereits bekannten Merkmalsvektoren im Transfermodul verglichen und von einem einfach nachtrainierbaren Ausgangsmodul weiterverarbeitet werden.

Zur Evaluation dieser Architektur wurden prototypische Realisierungen in drei Industrie-typischen Anwendungsfällen untersucht: Für die Pumpen einer Hydraulikpresse, die häufig wechselnde Produkte fertigt, wurde auf Basis von Druckverläufen eine Anomaliedetektion implementiert. Über einen Vergleich von Verläufen neuer Produkte mit denen bereits bekannter konnte eine deutliche Reduktion der benötigten Trainingsdatenmenge sowie eine gesteigerte Robustheit des Algorithmus erzielt werden. Für unter unterschiedlichen Einsatzbedingungen genutzte elektromechanische Relais wurde eine Ausfallvorhersage implementiert. Auch hier wurden über Vergleiche zwischen neuen Einsatzbedingungen mit bekannten Einsatzbedingungen deutliche Verbesserungen der Vorhersagegenauigkeit auch bei reduzierter Trainingsdatenmenge erreicht. Für unter unterschiedlichen Einsatzbedingungen genutzte Kugellager wurde auf Basis von Vibrationsdaten eine Ausfallvorhersage implementiert. Mittels Domänen-Adaption konnten hierbei erfolgreich Zusammenhänge aus bekannten, gelabelten Einsatzbedingungen auf neue, ungelabelte Einsatzbedingungen übertragen werden.

Im Rahmen der Evaluation konnte gezeigt werden, dass die vorgeschlagene Architektur auch mit wenigen Trainingsdaten robust gute Vorhersagequalitäten gewährleisten kann und so bspw. auch dynamische Probleme lösbar macht. Sie bietet darüber hinaus Ansätze, um auch auf ungelabelten Daten Regressions- oder Klassifikationsaufgaben ausführen zu können, und ermöglicht mit ihrem modularen Aufbau ein hohes Maß an Wiederverwendbarkeit.