• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Christopher Jan Plachetka

3D Map Evaluation in LiDAR Point Clouds Using Deep Neural Networks:

Dataset, Framework, DNN Architecture, and Methods

ISBN:978-3-8191-0014-7
Series:Mitteilungen aus dem Institut für Nachrichtentechnik der Technischen Universität Braunschweig
Herausgeber: Prof. Dr.-Ing. U. Reimers, Prof. Dr.-Ing. T. Kürner and Prof. Dr.-Ing. T. Fingscheidt
Braunschweig
Volume:85
Keywords:machine learning; artificial intelligence; deep neural networks; computer vision; perception; automated driving; HD maps; map change detection; map deviation detection; map verification; map validation
Type of publication:Thesis
Language:English
Pages:212 pages
Figures:53 figures
Price:59,80 €
Published:March 2025
Print-Version: 978-3-8440-9932-4
DOI:10.2370/9783819100147 (Online document)
Download:

Available PDF-Files for this title:

You need the Adobe Reader, to open the files. Here you get help and information, for the download.

These files are not printable.

 
 DocumentDocument 
 TypePDF 
 Costs44,85 EUR 
 ActionPurchase in obligation and display of file - 26,5 MB (27770273 Byte) 
 ActionPurchase in obligation and download of file - 26,5 MB (27770273 Byte) 
     
 
 DocumentTable of contents 
 TypePDF 
 Costsfree 
 ActionDisplay of file - 291 kB (298256 Byte) 
 ActionDownload of file - 291 kB (298256 Byte) 
     

User settings for registered users

You can change your address here or download your paid documents again.

User:  Not logged in.
Actions:  Login / Register
 Forgotten your password?
Recommendation:You want to recommend this title?
Link:You want to link this page? Click here.
Abstract:This dissertation examines the evaluation of high-definition maps using LiDAR point clouds as sensor data and deep neural networks (DNNs). The developed methods are suitable for both automated driving and geodesy. By utilizing the map as an additional input, the DNN can verify the map even under adverse conditions that degrade the sensor input. This work introduces a novel dataset, a conceptual framework, a specialized DNN architecture, and innovative evaluation methods, contributing significantly to the field.
» more titles from Christopher Jan Plachetka