• Home
  • About us
  • Your Publication
  • Catalogue
  • Newsletter
  • Help
  • Account
  • Contact / Imprint
Thesis - Publication series - Conference proceedings - Reference book - Lecture notes/Textbook - Journal - CD-/DVD-ROM - Online publication - Open Access
Newsletter for authors and editors - New publications service - Archive
View basket
Catalogue : Details

Christopher Jan Plachetka

3D Map Evaluation in LiDAR Point Clouds Using Deep Neural Networks:

Dataset, Framework, DNN Architecture, and Methods

FrontBack
 
ISBN:978-3-8440-9932-4
Series:Mitteilungen aus dem Institut für Nachrichtentechnik der Technischen Universität Braunschweig
Herausgeber: Prof. Dr.-Ing. U. Reimers, Prof. Dr.-Ing. T. Kürner and Prof. Dr.-Ing. T. Fingscheidt
Braunschweig
Volume:85
Keywords:machine learning; deep neural networks; artificial intelligence; computer vision; perception; automated driving; HD maps; map change detection; map deviation detection; map verification; map validation
Type of publication:Thesis
Language:English
Pages:212 pages
Figures:53 figures
Weight:283 g
Format:21 x 14,8 cm
Binding:Paperback
Price:59,80 € / 74,80 SFr
Published:March 2025
Buy:
  » plus shipping costs
Open Access (PDF): 978-3-8191-0014-7
Recommendation:You want to recommend this title?
Review copy:Here you can order a review copy.
Link:You want to link this page? Click here.
Export citations:
Text
BibTex
RIS
Abstract:This dissertation examines the evaluation of high-definition maps using LiDAR point clouds as sensor data and deep neural networks (DNNs). The developed methods are suitable for both automated driving and geodesy. By utilizing the map as an additional input, the DNN can verify the map even under adverse conditions that degrade the sensor input. This work introduces a novel dataset, a conceptual framework, a specialized DNN architecture, and innovative evaluation methods, contributing significantly to the field.
» more titles from Christopher Jan Plachetka